Completeness and Nondeterminism in
Model Checking Transactional Memories *

Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh

EPFL, Switzerland

Abstract. Software transactional memory (STM) offers a disciplined
concurrent programming model for exploiting the parallelism of mod-
ern processor architectures. This paper presents the first deterministic
specification automata for strict serializability and opacity in STMs. Us-
ing an antichain-based tool, we show our deterministic specifications to
be equivalent to more intuitive, nondeterministic specification automata
(which are too large to be determinized automatically). Using determin-
istic specification automata, we obtain a complete verification tool for
STMs. We also show how to model and verify contention management
within STMs. We automatically check the opacity of popular STM algo-
rithms, such as TL2 and DSTM, with a universal contention manager.
The universal contention manager is nondeterministic and establishes
correctness for all possible contention management schemes.

1 Introduction

Software transactional memory (STM) has gained much recent interest with the
advent of multicore architectures. An STM enables the programmer to structure
her application in terms of coarse-grained code blocks that appear to be exe-
cuted atomically [7,12]. Behind the apparent simplicity of the STM abstraction,
however, lie challenging algorithms that seek to ensure transactional atomicity
without restricting parallelism. Despite the large amount of experimental work
on such algorithms [8], little effort has been devoted to their formalization [3,
11].

We believe that an approach to formalizing and verifying STM algorithms
can only have impact if it is accepted by the transactional memory community,
and this concern has guided our decisions in choosing the correctness properties
that STMs should satisfy. For this reason we consider strict serializability [9]
and opacity [3] as the two measures of the correctness of STMs. The former
requires committed transactions to appear as if executed at indivisible points in
time during their lifetime. Opacity goes a step further and also requires aborted
transactions to always access consistent state. The notion of opacity corresponds
closest to an emerging consensus about correctness in the transactional software
community [2,6]. The motivation of this work is to formally check popular STM
algorithms such as DSTM [6] and TL2 [2] against opacity.

* This research was supported by the Swiss National Science Foundation.

Our first step in this direction addressed the problem of space explosion in
STMs [4]. We restricted our attention to STMs that satisfy certain structural
properties, and we proved that the correctness of such an STM for 2 threads
and 2 variables implies the correctness of the STM for an arbitrary number of
threads and variables. Then, to check the correctness of an STM for 2 threads
and 2 variables, we modeled an STM as a deterministic transition system. At
the same time, we constructed nondeterministic specification automata for the
strictly serializable and opaque words on 2 threads and 2 variables. An STM
is then correct if the language of the STM transition system is included in the
language of the specification automaton. Since checking language inclusion was
too expensive, we resorted to checking the existence of a simulation relation. As
the existence of a simulation relation is a sufficient, but not a necessary, condition
for language inclusion with nondeterministic specifications, our procedure was
sound but not complete.

In this paper, we provide deterministic specification automata for strict se-
rializability and opacity. Constructing such deterministic specifications is non-
trivial. Roughly speaking, the difficulty comes in specifying opacity in the pres-
ence of aborting transactions. In this scenario, some conflicts between transac-
tions are transitive, whereas others are not. The determinism of the specification
automata allows for an efficient check of language inclusion (by constructing the
product of the specification and implementation), which results in a complete
verification procedure. Moreover —and perhaps surprisingly— the determinis-
tic specification automata are significantly smaller than their nondeterministic
counterparts, which provide more intuitive specifications. As the nondetermin-
istic automata are too large to be determinized explicitly, we use an antichain-
based tool [13] to prove the correctness of our deterministic specifications. The
tool shows language equivalence of our deterministic automata with the natu-
ral, nondeterministic specifications, without an explicit subset construction. The
smaller, deterministic specification automata speed up the verification of STMs
like DSTM and TL2 by an order of magnitude. This speed-up allows us to check
the correctness of STMs with much larger state spaces. We use this gain to ver-
ify nondeterministic STMs that model realistic contention management schemes
like exponential backoff and prioritized transactions.

In practice, STMs employ an external contention manager to enhance live-
ness [5,10]. The idea of the contention manager is to resolve conflicts between
transactions on the basis of their past behavior. Various contention managers
have been proposed in the literature. For example, the Karma contention man-
ager prioritizes transactions according to the number of objects opened, whereas
the Polite contention manager backs off conflicting transactions for a random
duration [10]. For verification purposes, modeling a contention manager explic-
itly is infeasible. First, it would blow up the state space, as the decision of a
contention manager often depends on the past behavior of every thread in an
intricate manner. Second, many contention managers break the structural prop-
erties that the model checking approach [4] expects in order to reduce the prob-
lem to two threads and two variables. Third, an STM is designed to maintain

safety for all possible contention managers, which can be changed independent
of the STM.

To tackle these issues, we model the effect of all possible contention man-
agers on an STM by defining a universal contention manager. An STM with the
universal contention manager is a nondeterministic transition system that con-
tains transitions for all possible decisions of any contention manager. Moreover,
the universal contention manager does not break any structural property of the
STM, which allows us to reduce the verification problem to two threads and
two variables. Putting everything together, we are able to automatically verify
opacity for STMs such as DSTM and TL2 for all contention managers.

Related work. This work improves the model-checking approach [4] for trans-
actional memories in terms of both the generality of the model (including non-
deterministic contention management) and the efficiency and completeness of
the verification procedure. There also has been recent independent work on the
formal verification of STM algorithms [1]. That verification model checks STMs
applied to programs with a small number of threads and variables against the
safety criteria of Scott [11], which are stronger than opacity.

2 Framework

We describe a framework to express transactions and their correctness properties.

Preliminaries. Let V be a set {1,...,k} of k variables, and let C' = {commit} U
({read, write} x V') be the set of commands on the variables V. Also, let C' =
C U {abort}. Let T = {1,...,n} be a set of n threads. Let S = C x T be the
set of statements. Also, let S = C' x T. A word w € S* is a finite sequence of
statements. Given a word w € S*, we define the thread projection w|; of w on
thread ¢t € T as the subsequence of w consisting of all statements s in w such that
seC x {t}. Given a thread projection w|; = sq ... S, of a word w on thread ¢,
a statement s; is finishing in w|; if it is a commit or an abort. A statement s; is
initiating in w|; if it is the first statement in w|¢, or the previous statement s;_1
is a finishing statement.

Transactions. Given a thread projection w|; of a word w on thread ¢, a consec-
utive subsequence x = g . .. S, of wl; is a transaction of thread ¢ in w if (i) sg is
initiating in w|s, and (ii) s, is either finishing in wl¢, or s, is the last statement
in w|¢, and (iii) no other statement in z is finishing in w|;. The transaction x is
committing in w if s, is a commit. The transaction z is aborting in w if s, is an
abort. Otherwise, the transaction x is unfinished in w. Given a word w and two
transactions x and y in w (possibly of different threads), we say that « precedes
y in w, written as x <,, y, if the last statement of x occurs before the first state-
ment of y in w. A word w is sequential if for every pair z,y of transactions in w,
either x <, y or y <, x. We define a function com : S* — §* such that for all
words w € S*, the word com(w) is the subsequence of w which consists of every
statement in w that is a part of a committing transaction. A transaction z of a
thread ¢t writes to a variable v if x contains a statement ((write,v),t). A state-
ment s = ((read,v),t) in z is a global read of a variable v if there is no statement

((write, v), t) before s in the transaction z. A transaction z of a thread t globally
reads a variable v if there exists a global read of variable v in transaction x.

Correctness properties. We consider two correctness properties for transac-
tional memories: strict serializability and opacity. Strict serializability [9] re-
quires that the order of conflicting statements from committing transactions is
preserved, and the order of non-overlapping transactions is preserved. Opacity,
in addition to strict serializability, requires that even aborting transactions do
not read inconsistent values. The motivation behind the stricter requirement for
aborting transactions in opacity is that in STMs, inconsistent reads may have
unexpected side effects, like infinite loops, or array bound violations.

A statement s; of transaction z and a statement s of transaction y (Where x
is different from y) conflict in a word w if (i) s; is a global read of some variable
v, and sg is a commit, and y writes to v, or (ii) s; and sy are both commits,
and x and y write to some variable v. This notion of conflict corresponds to the
deferred update semantics [8] in transactional memories, where the writes of a
transaction are made global upon the commit. A word w = sg...S,, is strictly
equivalent to a word w’ if (i) for every thread t € T, we have w|, = w’|;, and (ii)
for every pair s;, s; of statements in w, if s; and s; conflict and ¢ < j, then s;
occurs before s; in w’, and (iii) for every pair z,y of transactions in w, where
x is a committing or an aborting transaction, if x <,, y, then it is not the case
that y <, x. We define the correctness property strict serializability wss C S
as the set of words w such that there exists a sequential word w’, where w’ is
strictly equivalent to com(w). Furthermore, we define opacity m,, C S* as the
set of words w such that there exists a sequential word w’, where w’ is strictly
equivalent to w. We note that m,, C 7, that is, if a word is opaque, then it is
strictly serializable.

3 Transactional Memory Specifications

We capture correctness properties using TM specification automata. A transition
system is a 3-tuple (Q, ¢init, 9), where @ is a set of states, ¢, is the initial state,
and 6 C @ x S x Q is a transition relation. A transition system is deterministic
if for every state ¢ € Q and every statement s € S, there is at most one state
¢ € @ such that (¢,s,q") € §. A word sg... S, is a run of the transition system
if there exist states qq ... ¢m+1 in @ such that gy = gt and for all ¢ such that
0 < i < m, we have (q;, $;,¢i+1) € §. The language L of a transition system is the
set of all runs of the transition system. A TM specification X for a correctness
property 7 is a transition system such that L(X) = w. A TM specification is
deterministic if it is a deterministic transition system.

Strict serializability and opacity have been formally defined so far using non-
deterministic TM specifications [4]. The nondeterminism allows a natural con-
struction of the specification, where a transaction nondeterministically guesses
a serialization point during its lifetime. A branch of the nondeterministic spec-
ification corresponds to a specific serialization choice of the transactions, which

makes the construction simple and intuitive, though redundant. Due to the non-
determinism of the specification, the existence of a simulation relation is a suf-
ficient but not a necessary condition for language containment. This makes the
decision procedure incomplete [4]. Moreover, these specifications are too large to
be determinized automatically.

3.1 Difficulties in Providing Deterministic TM Specifications

It turns out that creating deterministic TM specifications for strict serializability
and opacity is a non-trivial problem. We first give some examples that manifest
the subtleties involved.

Analysis of strict serializability. We look at two words and reason whether
they are strictly serializable.

E

(r,v1)1

(w,v2)1

C1

time

v

(w,v1)2

C2

(a)

(r,v2)3

(T7 U1)3

c3

[y

(ryv1)1

(w,v3)1
a1

(w,v1)2
(ryv2)2

Cc2

time

(b)

(r,v3)3

(w,v2)3

C3

Fig. 1. Examples for strict serializability. The words are fragmented into transactions
of different threads. We use the notation: w for write, r for read, ¢ for commit, and a
for abort.

— Consider the word w = ((write, v1), t2), ((read, vy1), t1), ((read, v2), ts3),

(commit, t2), ((write, va), t1), ((read, v1), t3), (commit, t1), (commit, t3). The
word w is illustrated in Figure 1(a). The transaction « has to serialize before
y due to a conflict on vy (as x reads vy before y commits and y writes to vy).
Similarly, the transaction z has to serialize before due to a conflict on vs.
However, z has to serialize after y due to a conflict on v; (z reads v; after
v1 is written and committed by y). So, w is not strictly serializable. On the
other hand, if one of the transactions had not committed, the word would
have been strictly serializable.

Consider the word w = ((write, v1), t2), ((read, v2), t2), ((read, vs), ts3),
((read, v1), t1), (commit, to), ((write, va), t3), ((write, vs), t1), (commit, t1),
(commit, t3). The word is illustrated in Figure 1(b). The transaction x has
to serialize before y due to a conflict on v;. Similarly, the transaction z has
to serialize before x due to a conflict on v3. Also, z writes to the variable

vo which is read by transaction y before z commits. Thus, z has to serialize
after y. This makes w not strictly serializable.

These examples show that strict serializability is a property concerned with
committing transactions. Our deterministic TM specification maintains all con-
flicts as part of the state. We define that a transaction x is a weak predecessor
of transaction y in a word w if y must serialize after « for both x and y to be
committing transactions. When a transaction y commits, all weak predecessors
of y become weak predecessors of the threads of which y is a weak predecessor.
Note that the relation weak predecessor itself is not a transitive relation. The
deterministic TM specification ensures that a transaction x cannot commit if
x is a weak predecessor of itself. Moreover, when a transaction commits, the
information of reads and writes of the transaction has to be provided to all weak
predecessors of the transaction.

Analysis of opacity. Designing a deterministic specification for opacity requires
even further care. This is because even aborting transactions should be prevented
from reading inconsistent values. To demonstrate the intricacies involved, we
again give two examples.

\L (’w,’Ul)Q \L (wvvl)Q
\i (r,v1)1 \L (r,v1)1

\i (r,v2)3 2
co \i (ryv2)3

as

(w,v2)1
(r,v1)3

(w,v2)1
c1 Cc1

time time
(a) (b)

Fig. 2. Examples for opacity. The words are fragmented into transactions of different
threads.

— Consider the word w = ((write, vy1), t2), ((read, v1), t1), ((read, va), ts3),
(commit, t9), ((write, vo), t1), ((read, v1), t3), (commit, ¢t1). The word is
illustrated in Figure 2(a). Transaction x has to serialize before y due to a
conflict on vy. Also, z has to serialize after y due to a conflict on vy, and
before x due to a conflict on vy. Note that although z does not commit,
opacity requires that transaction x does not commit. So, w is not opaque.

— Consider the word w = ((write, v1), t2), ((read, v1), t1), (commit, t2), ((read,
va), t3), (abort, t3), ((write, v2), t1), (commit, t1). The word is illustrated in
Figure 2(b). Transaction x has to serialize before y due to a conflict on v;.

Transaction z has to serialize after y as they do not overlap in w. Also, z
has to serialize before x due to the conflict on vo. This makes w not opaque.
This shows how a read of an aborting transaction may disallow a commit of
another transaction, for the sake of opacity.

Opacity concerns committing as well as aborting transactions. Again, the
deterministic TM specification for opacity maintains all conflicts as part of the
state. As for strict serializability, we again use the notion of weak predecessors
to store intransitive conflicts. We say that a transaction x is a strong predecessor
of transaction y in a word w if y must serialize after x in w. Unlike weak prede-
cessor, strong predecessor is a transitive relation. The specification for opacity
ensures that a transaction y cannot execute any statement s if s makes some
transaction = a strong predecessor of z. This shows how opacity poses a restric-
tion on commands other than commit.

3.2 Deterministic TM specifications

We now present the formal definitions of the deterministic TM specifications for
strict serializability and opacity. The deterministic TM specification for strict
serializability Xy, is given by the tuple (Q, ginst, dss)- A state ¢ € Q is a 7-tuple
(Status, rs, ws, prs, pws, wp, sp), where Status : T — {started, invalid, pending,
finished} is the status, rs : T — 2V is the read set, ws : T — 2V is the write
set, prs : T — 2V is the prohibited read set, pws : T — 2V is the prohibited
write set, wp : T — 27 is the weak predecessor set, and sp : T — 27 is the
strong predecessor set for the threads. If v € prs(t) (resp. v € pws(t)), then
the status of the thread ¢ is set to invalid if ¢ globally reads (resp. writes to) v.
A thread u is in the weak predecessor set of thread ¢ if the unfinished trans-
action of u is a weak predecessor of the unfinished transaction of ¢. The initial
state qinir is (Statusg, 18, WSo, Prsg, PWSy, WPy, SPy), Where Statusy(t) = finished
for all threads t € T, and rso(t) = wso(t) = prsg(t) = pwsy(t) = wpy(t) =
spo(t) = 0 for all threads ¢ € T. The transition relation dss is obtained from
Algorithm 1. For all states ¢ € @ and all statements s € S, the following
hold: (i) if specTransition(q, s, wss) =L, then there is no state ¢’ € @ such that
(q,8,¢") € dss, and (ii) if specTransition(q, s, 7ss) = ¢’ for some state ¢’ € Q,
then (q,s,q') € d0ss. Given a state ¢ = (Status, rs, ws, prs, pws, wp, sp) and a
thread ¢t € T, the procedure ResetState(q,t) changes Status(t) to finished and
the sets rs(t), ws(t), prs(t), pws(t), wp(t), and sp(t) to . The deterministic TM
specification for opacity builds upon the deterministic TM specification for strict
serializability. The difference comes in the strong predecessor set. We exploit the
relation of strong predecessors in such a way that even aborting transactions see
consistent values. For example, if a thread w is a strong predecessor of ¢, and ¢
is a weak predecessor of u, then u cannot commit but ¢ can. Many similar cases
of conflict have to be carefully considered to capture the exact notion of opacity,
that is, L(X,p) = mop. The deterministic TM specification for opacity X, is
given by the tuple (Q, ginit, dop). The set of states and the initial state are the
same as those for Xs. Also, the transition relation d,, can be similarly obtained
from Algorithm 1 using the property m,, in place of 7.

Algorithm 1 specTransition((Status, rs, ws, prs, pws, wp, $p), 8,)

if s = ((read,v),t) then
if v € ws(t) then return (Status, rs, ws, prs, pws, wp, sp)
if m = 7,y then
U:={u€eT|veprs(u) or v € prs(u’) such that u € sp(u’)}
if ¢t € U or there exists a thread v € U such that ¢ € sp(u) then return L
if Status(t) = finished then
add all threads u € T such that Status(u) = pending to wp(t) and sp(t)
add all threads v’ € T to sp(t) such that v’ € sp(u) and Status(u) = pending
Status(t) := started
rs(t) == rs(t) U {v}
if v € prs(t) then Status(t) := aborted
for all threads v € T do
if v € ws(u) then wp(u) := wp(u) U {t}
if v € prs(u) then wp(t) := wp(t) U {u}
if # = 7w, then return (Status, s, ws, prs, pws, wp, sp)
for all threads u € T such that u =t or t € sp(u) do sp(u) := sp(u) UU
for all threads u € T such that u € sp(t) do
pws(u) := pws(u) U {v}
if v € ws(u) then Status(u) := aborted
if s = ((write,v),t) then
if Status(t) = finished then
add all threads u € T such that Status(u) = pending to wp(t) and sp(t)
add all threads u’ € T to sp(t) such that «’ € sp(u) and Status(u) = pending
Status(t) := started
ws(t) := ws(t) U {v}
if v € pws(t) then Status(t) := aborted
for all threads v € T do
if v € rs(u) then
wp(t) = wp(t) U {u}
if T = m,, and ¢ € sp(u) then Status(t) := aborted
if v € pws(u) then wp(t) := wp(t) U{u}
if s = (commit, t) then
if t € wp(t) then return L
if m =7,y then
U:={u|u€ wp(t) or ue sp(u) for some u' € wp(t)}
if ¢t € U or there exists a thread u € U such that ¢t € sp(u) then return L
for all threads u € T such that v € wp(t) do
if ws(u) N ws(t) # 0 then Status(u) := aborted else Status(u) := pending
prs(u) := prs(u) U prs(t) U ws(t)
pws(u) := pws(u) U pws(t) U ws(t) U rs(t)
for all threads v’ € T such that ¢ € wp(u') or ws(u') N ws(t) # 0 do
wp(u') == wp(u') U {u}
for all threads u € T such that u =t or t € sp(u) do sp(u) := sp(u) UU
ResetState(q, t)
if s = (abort,t) then ResetState(q,t)
return (Status, rs, ws, prs, pws, wp, sp)

3.3 Model Checking with Deterministic TM Specifications

It has been shown [4] that for a transactional memory which satisfies certain
structural properties, it is sufficient to show its correctness for all programs with
two threads and two variables in order to prove the correctness of the transac-
tional memory for all programs. These properties were shown for transactional
memories like DSTM [6] and TL2 [2]. The nondeterministic TM specifications
presented [4] are too huge to be automatically determinized. However, surpris-
ingly enough, the deterministic TM specifications we present in this paper turn
out to be much smaller in size. Using an antichain-based tool [13], we establish
that for two threads and two variables, the language of our deterministic TM
specification for strict serializability (resp. opacity) is equivalent to the language
of the nondeterministic specification for strict serializability (resp. opacity) [4].

For strict serializability, our deterministic TM specification Y; has only
3520 states, whereas the nondeterministic one Ay has 12345 states. Similarly,
for opacity, X, has 2272 states, while the nondeterministic specification A,
requires 9202 states. Moreover, the deterministic TM specifications allow for
an efficient procedure that directly checks, whether the language of the TM
algorithm is included in the language of the deterministic TM specifications.
This procedure makes our model checking complete too. We show the results in
Table 1. For deterministic STMs [4], we observe that checking language inclusion
with deterministic TM specifications is much faster than checking existence of a
simulation relation with nondeterministic TM specifications.

4 Nondeterministic Transactional Memories

Our succinct deterministic TM specifications tempt us to go a step further in
model checking transactional memories. Transactional memories often employ
nondeterministic schemes to resolve conflicts, in the face of thread failures or
repetitive aborts of a thread. These schemes are generally treated externally
to the transactional memory, and are referred to as contention managers. The
notion of a contention manager helps to keep the design of a transactional mem-
ory modular. This allows a transactional memory to switch from one contention
manager to another, depending upon the contention scenario [5]. An STM is
designed in such a way that it maintains its correctness property for all possible
contention managers.

Transactional memories have been modeled in a restrictive framework as
TM algorithms [4], where a transactional memory is tied to an implicit, specific
contention manager. We now give a general formalism which is practically more
useful, where a transactional memory is separated from the contention manager.

4.1 A Formalism for TM with Contention Managers

Programs. We express a thread program as an infinite binary trees on com-
mands. For every command of a thread, we define two successor commands, one

Table 1. Time for simulation (resp. language inclusion) checking for STMs on a quad
dual core 2.8 GHz server with 16 GB RAM. In case simulation (resp. language inclusion)
holds, we write Y followed by the time required for finding it. Otherwise, we write N
followed by the counterexample produced, followed by the time required to prove that
no simulation exists (resp. language inclusion does not hold), followed by the time
required to find the counterexample. A ‘*’ for the search for simulation relation means
that it does not complete in 2 hours, but we do find a counterexample. A ‘~’ means
that the search for both, the simulation relation and the counterexample, does not
complete in 2 hours.

TM algo- Number

rithm A of states A= Ass A=< Aop L(4) € L(Zss) L(A) € L(Zop)

Deterministic STMs [4]

seq 3 Y, 0.8s Y, 0.7s Y, 0.01s Y, 0.01s
2PL 99 Y, 13s Y, 8s Y, 0.01s Y, 0.01s
dstm 944 Y, 127s Y, 82s Y, 0.09s Y, 0.07s
TL2 11840 Y, 1647s Y, 1438s Y, 1.2s Y, 1s

occ 4480 Y, 765s N, w1, 567s,4s Y, 0.46s N, wi, 0.41s, 4s

TL2 mod. 17520 N, wa, *, 9s N, wa, *, 95 N, we, 2.7s, 9s N, wa, 2.1s, 8s

Nondeterministic STMs

dstm 1846 Y, 303s Y, 279s Y, 0.16s Y, 0.13s
TL2 21568 - - Y, 3.2s Y, 2.4s

Counterexamples

w1 (w7 1)27(T7 1)1,02,(7”,1)1
w2 (wa2)17(wa 1)27(’!’, 2)2,(7‘71)1,02,61

if the command is successfully executed, and another if the command fails due
to an abort of the transaction. We use a set of thread programs to define a mul-
tithreaded program. Formally, a thread program 6 on a set C' of commands is a
function 6 : B* — C. We define a (multithreaded) program p on n threads and &
variables as an n-tuple p = (§1,...,0™) of thread programs on C.

TM algorithms. We model transactional memories using TM algorithms. A
TM algorithm consists of a set of states, an initial state, an extended set of com-
mands depending on the underlying TM, a conflict function, a pending function,
and a transition relation between the states. The extended commands include
the set C of commands, and TM specific additional commands. For example, a
given TM may require that a thread locks a variable before writing to the vari-
able. Every extended command is assumed to execute atomically. The conflict
function captures the statements in the states, when the TM algorithm needs
to consult a contention manager for a decision. The pending function represents
the pending command of a thread in a state, and ensures that if a thread has
not finished the execution of a particular command, then no other command is
executed by the thread.

We define a TM algorithm A = (Q, qinit, D, $,7,9), where @Q is a set of
states, ¢init is the initial state, D is the set of extended commands with C' C
D, ¢ : Q@ x D — B is the conflict function, v : @ x T — C U {L} is the
pending function, and § C Q x C' x Sp x Resp x Q is the transition relation,
where Sp = (D U {abort}) x T and Resp = {1,0,1}. For a TM algorithm
A ={(Q, qinit, D, 0,7, 9), the following rules hold:

— For all threads ¢t € T', we have y(qinit,t) =L.

— For all states ¢, ¢’ € @ such that there is an incoming transition (g, ¢, (d, t),r,q’)
to ¢ in §, if r =L, then v(¢’,t) = ¢, otherwise v(¢’,t) =L.

— For all states ¢, ¢’ € @ such that there is an incoming transition (g, ¢, (d, t),7,q")
to ¢’ in §, then v(¢',u) = (g,) for all threads u # t.

— For all states ¢ and all threads ¢, if y(¢q,t) = ¢ where ¢ #.1, then for all
outgoing transitions (g, c1, (d,t),r,q’") from ¢ in §, we have ¢; = c.

— For all states ¢ and all threads ¢, if v(g,t) =L, then there is an outgoing
transition (g, ¢, (d,t),r,¢’ from ¢ in § for every command ¢ € C.

— For all ¢ € Q, for all transitions (g, ¢, (d,t),r,¢’) in d, we have d = abort if
and only if r = 0.

Note that the rules above restrict the transition relation 6 and the pending
function ~ such that ~ is unique. A command c is enabled in a state g for thread
tif y(q,t) € {L,c} (i-e., either no command is pending, or c¢ itself is pending). A
command c is abort enabled in a state g for thread ¢ if ¢ is enabled in ¢ for thread
t and there is no transition (g, ¢, (d,t),r,q') € 0 such that d € D. A transition
relation 0 is deterministic if for all ¢ € Q and (¢, t) € S, if (q,¢, (d1,t),m1,q1) € 0
and (g, ¢, (da,t),r2,q2) € 6, then dy = do, r1 = 19, and ¢1 = ¢2. A TM algorithm
is deterministic if its transition relation is deterministic.
Contention managers. When the transactional memory detects a conflict (the
conflict function is true), it requests the contention manager to resolve the con-
flict. The contention manager proposes the TM algorithm the next statement to
be executed. Formally, a contention manager cm on a set D of commands is a
function cm : S’B — 290 such that if the last statement of w is from thread ¢,
then every statement in ¢m(w) is a statement of ¢.

Given a TM algorithm A = (Q, qinit, D, ¢, 7, d) and a contention manager cm :
S’B — 250 we define a TM algorithm and contention manager pair (M, cm) =
(Qx, (Ginit, €), D, ¥x,0x), where Qx = QX 5’}5 is the set of states, yx : Qx XT —
C'U{L} is the pending function such that for all states gx € @« and all threads
t € T, we have vy (gx,t) = v(q,t) where ¢x = (g, w) for some word w € 5’}*3,
0x C Qx X C x Sp x Resp x Q« is the transition relation such that for all
states ¢x, ¢y € Qx, for all commands ¢ € C, for all statements s € Sp, and for
all responses r € Resp, we have (gx,c,s,7,¢)) € dx if and only if (i) there is
a transition (¢, ¢, s,r,¢') € ¢, and (ii) if ¢(g,s) = true, then s € cm(w), where
w € 5’1*) and ¢, ¢ € @ such that ¢x = (¢,w) and ¢, = (¢/,w - s).
Runs and languages of TM algorithms. On putting the pieces together, a
TM algorithm interacts with a program, a scheduler, and a contention manager
(see Fig. 3). A thread of the program is chosen by the scheduler, and the next

command of the thread is given to the TM algorithm. The TM algorithm decides
whether the command can be executed in a single or several atomic steps, or the
command is in conflict. The commands executed by the TM algorithm are also
reported to the contention manager for its bookkeeping. If the TM algorithm
finds a conflict, the TM algorithm resolves the conflict using the contention
manager. The TM algorithm makes a transition accordingly, and gives back to
the program a response. The response is L if the TM algorithm needs additional
steps to complete the command, 0 if the TM algorithm needs to abort the
transaction of the scheduled thread, and 1 if the TM algorithm has completed
the command. Given a program, a scheduler, a TM algorithm, and a contention
manager, we get a run. Projecting the run to the set of successful statements
(that is, aborts, and statements that get response 1) gives an infinite word. The
language of a TM algorithm and contention manager pair is the set of infinite
words that the TM algorithm can produce for any program and any scheduler,
where conflicts are resolved using the specific contention manager.

Formally, a scheduler o on T is a function o : N — T. Let p = (91,...,0") be
a program, and let o be a scheduler. A run p = {(qo, lo, (do, t0), r0){q1, 11, (d1,t1),
r1) ... of a TM algorithm A with scheduler o on program p and contention man-
ager ¢m is an infinite sequence of tuples of states, program locations, statements,
and responses, where I; = (I,...,I}") € (B*)" for all j > 0 and the following
hold: (i) o = ginit and lp = (e, ..., &), and (ii) for all j > 0, there exists a transi-
tion (g;, ¢4, (dj,t),75,qj+1) € ¢ such that if ¢(g;, (d;,t;)) = true, then (d;,t;) €
em((do,to) ... (dj—1,t;_q)), and (iii) t; = o(j), and (iv) ¢; = 6% (l;j), and (v) for
allt € T, we have I}, | = I} if either t # t; or rj =1, and I} | = I} -7; otherwise.
A statement s; € S is successful in the run p = {(qo,lo, S0,70){q1,11,51,71) ... if
(i) r; € {0,1}, or (ii) rp = 1 with j < k and 741 ...75_1 are all equal to L.
We define the language L({A, cm)) of a (A, cm) pair as the set of all infinite
words w € S such that w is the sequence of all successful statements in a run
of A with some scheduler on some program and the contention manager cm. A
TM algorithm A with a contention manager c¢m ensures a correctness property
7 C S* if every finite prefix of every word in L({A, ¢m)) is in .

Command Request
Scheer | Program [/ TM Algorithm
Thread Response Satement
Run

Fig. 3. Interaction in the model

Modeling contention managers explicitly in our formalism is not a feasible
option. First of all, contention managers may blow up the state space as their
decisions may depend intricately on past behavior. For example, a simple ran-
dom backoff contention manager, that asks a conflicting thread to back off for
a random amount of time could blow up the state space. Secondly, some of the

structural properties break when we model a TM algorithm in conjunction with
a particular contention manager. For example, if a contention manager priori-
tizes transactions according to the number of times it has aborted in the past,
then the TM algorithm does not satisfy the structural property of ‘transactional
projection’ [4]. This is because, an abort of a transaction of thread ¢ may be the
reason why the next transaction of thread ¢t commits. As the remaining structural
properties build upon the transactional projection property, they also collapse
for specific contention managers.

We take a novel approach to model check transactional memories with differ-
ent contention managers. Given a TM algorithm A with extended alphabet D,
we define a universal contention manager ucm such that for all words w € S%),
we have ucm(w) = Sp. The idea of the universal contention manager is to allow
nondeterministically all choices that the TM algorithm has. It is easy to observe
that the transition relation for the pair (A, ucm) is identical to that of the TM
algorithm A. From the definition of the language of a TM algorithm and a con-
tention manager pair, we get L({4, e¢m)) C L({A, ucm)) for every contention
manager ¢m. Thus, if a TM algorithm ensures a correctness property with the
universal contention manager, then the TM algorithm is correct for all contention
managers. Moreover, if a TM algorithm A satisfies the structural properties, then
the pair (A, ucm) also satisfies the structural properties [4]. Thus, verifying the
correctness of the TM algorithm with ucm for two threads and two variables
proves the correctness of the TM algorithm for arbitrary number of threads and
variables for all possible contention managers.

We now provide, as examples, nondeterministic DSTM and nondeterministic
TL2, combined with the universal contention manager. We then verify their
correctness.

4.2 Nondeterministic DSTM

Dynamic software transactional memory (DSTM) [6] is one of the most popular
transactional memories. DSTM faces a conflict when a transaction wants to own
a variable which is owned by another thread. We define the nondeterministic
DSTM algorithm A gstm as (Q, Ginit, D, ¥, 0dstm). A state ¢ € @ is defined as a
3-tuple (Status, rs, os), where Status : T — {aborted, validated, invalid, finished}
is the status function, and rs : T — V is the read set, and os : T — V is the
ownership set.

The initial state gz = (Statusg, 150, 0s9), where for all threads ¢t € T, we
have Statuso(t) = finished and rso(t) = 0so(t) = 0. The set of extended com-
mands is D = C'U ({own} x V) U {validate}. The transition relation 6 4st,, is ob-
tained from Algorithm 2. For all states ¢ € @, all commands ¢ € C, all extended
commands d € DU{abort}, all threads ¢ € T', and all responses r € Resp, we have:
(i) if dstmTransition(q,c,d,t,r) =1, then there does not exist a state ¢ € @
such that (g, ¢, (d,t),7,q") € dastm, and (ii) if dstmTransition(q,c,d,t,r) = ¢ for
some state ¢ € Q, then (g, ¢, (d,t),7,q') € dastm.-

Our second example is a model of another popular transactional memory,
transactional locking 2 (TL2) [2] with the universal contention manager. We give

Algorithm 2 dstmTransition({Status, rs, 0s), c,d,t,r)

if ¢ is not enabled in ¢ for thread ¢ then return L
if ¢ = (read,v) then
if d =cand v € 0os(t) and r = 1 and Status(t) # aborted then return ¢
if d=cand v ¢ os(t) and r = 1 and Status(t) = finished then
rs(t) = rs(t) U {v}
return q
if ¢ = (write,v) then
if d =cand v € 0s(t) and r = 1 and Status(t) # aborted then return ¢
if d = (own,v) and r =L and Status(t) # aborted then
0s(t) := os(t) U{v}
for all threads u # t such that v € os(u) do
Status(u) := aborted rs(u):=0 os(u):=10
return ¢
if ¢ = commit then
if d = validate and r = and Status(t) = finished then
Status(t) := validated
for all threads u # t such that rs(t) N os(u) # 0 do
Status(u) := aborted rs(u) :=0 os(u) =0
return ¢
if d=cand r =1 and Status(t) = validated then
Status(t) := finished 7s(t) :=0 os(t):=0
for all threads u # t such that rs(u) N os(t) # @ do Status(u) := invalid
return ¢
if d = abort and r = 0 then
Status(t) := finished rs(t) :=0 os(t) :=10
if ¢ is abort enabled in ¢ and d = abort and r» = 0 then return q
if ¢ = (write,v) and v ¢ o0s(t) and v € os(u) s.t. u # ¢t then return ¢
if ¢ = commit and Status(t) = finished and 7s(t) N os(u) # 0 s.t. u # ¢ then
return ¢
return |

an informal description of the role of uem in TL2. TL2 uses locks for ensuring
opacity. A thread locks all the variables in the write set at the time of commit.
With TL2 algorithm using the universal contention manager, whenever a thread ¢
conflicts due to a variable being locked by another thread u, the nondeterministic
TL2 algorithm has the following transitions: one to abort ¢, and others to allow
the thread t to proceed by setting the abort flag of some thread wu.

We note that nondeterministic DSTM and nondeterministic TL2, combined
with the universal contention manager satisfy the transactional projection prop-
erty, as aborting or unfinished transactions can influence committing transac-
tions only by forcing them to abort. The remaining structural properties depend
on the transactional projection property, but are not influenced by a contention
manager. Thus, all required structural properties do hold for nondeterministic
DSTM and nondeterministic TL2 obtained with the universal contention man-
ager. We check whether the language of these nondeterministic STMs is included
in the language of the deterministic TM specifications. Our results, shown in Ta-

ble 1, establish that DSTM and TL2 ensure opacity for an arbitrary number of
threads and variables for all contention managers. We observe that the number
of states in the nondeterministic TM algorithm using the universal contention
manager is nearly double the number of states in the corresponding determinis-
tic TM algorithm. We note that the nondeterministic specifications are unable
to verify the correctness properties for the nondeterministic TL2 algorithm.

5 Conclusion

We presented deterministic specifications for two key correctness properties,
strict serializability and opacity, in transactional memories. Our deterministic
specifications make the model checking procedure for transactional memories
complete and efficient. We formalized the notion of nondeterministic transac-
tional memories to capture realistic contention management. We proved that
DSTM and TL2 ensure opacity with arbitrary numbers of threads and variables
for all possible contention managers.

Acknowledgment. We are thankful to Laurent Doyen for his kind support in
checking language inclusion with his antichain based tool.

References

1. A. Cohen, J. O’'Leary, A. Pnueli, M. R. Tuttle, and L. Zuck. Verifying correctness
of transactional memories. In FMCAD, pages 37-44, 2007.

2. D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, pages
194-208. Springer, 2006.

3. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In
PPoPP, pages 175-184, 2008.

4. Rachid Guerraoui, Thomas A. Henzinger, Barbara Jobstmann, and Vasu Singh.
Model checking transactional memories. In PLDI, 2008. to appear.

5. Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic contention
management. In DISC, pages 303—-323, 2005.

6. M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer. Software transactional
memory for dynamic-sized data structures. In PODC, pages 92-101, 2003.

7. M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In ISCA, pages 289-300. ACM Press, 1993.

8. J. R. Larus and R. Rajwar. Transactional Memory. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool, 2007.

9. C. H. Papadimitriou. The serializability of concurrent database updates. Journal
of the ACM, pages 631-653, 1979.

10. W. N. Scherer and M. L. Scott. Advanced contention management for dynamic
software transactional memory. In PODC, pages 240-248, 2005.

11. M. L. Scott. Sequential specification of transactional memory semantics. In
TRANSACT, 2006.

12. N. Shavit and D. Touitou. Software transactional memory. In PODC, pages 204—
213, 1995.

13. M. De Wulf, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Antichains: A new algo-
rithm for checking universality of finite automata. In CAV, pages 17-30. Springer,
2006.

