
Improved Bounds for Testing Juntas

Eric Blais?

Carnegie Mellon University
eblais@cs.cmu.edu

Abstract. We consider the problem of testing functions for the property
of being a k-junta (i.e., of depending on at most k variables). Fischer,
Kindler, Ron, Safra, and Samorodnitsky (J. Comput. Sys. Sci., 2004 )
showed that Õ(k2)/ε queries are sufficient to test k-juntas, and conjec-
tured that this bound is optimal for non-adaptive testing algorithms.
Our main result is a non-adaptive algorithm for testing k-juntas with
Õ(k3/2)/ε queries. This algorithm disproves the conjecture of Fischer et
al.
We also show that the query complexity of non-adaptive algorithms for
testing juntas has a lower bound of min

`
Ω̃(k/ε), 2k/k

´
, essentially im-

proving on the previous best lower bound of Ω(k).

1 Introduction

A function f : {0, 1}n → {0, 1} is said to be a k-junta if it depends on at
most k variables. Juntas provide a clean model for studying learning problems
in the presence of many irrelevant features [4,6], and have consequently been of
particular interest to the computational learning theory community [5, 6, 12,16,
17]. A problem closely related to learning juntas is the problem of testing juntas:
given query access to a function, is it possible to efficiently determine if all but
at most k of the variables in the function represent irrelevant features?

We consider the problem of testing juntas in the standard framework of
property testing, as originally introduced by Rubinfeld and Sudan [19]. In this
framework, we say that a function f is ε-far from being a k-junta if for every
k-junta g, the functions f and g disagree on at least an ε fraction of inputs. A
randomized algorithm A that makes q queries to its input function is an ε-testing
algorithm for k-juntas if

1. All k-juntas are accepted by A with probability at least 2/3, and
2. All functions that are ε-far from being k-juntas are rejected by A with prob-

ability at least 2/3.

A testing algorithm A is non-adaptive if does not use the answers of some queries
to determine later queries; otherwise, the algorithm A is adaptive.

In this article we consider the problem of determining the query complexity
for the problem of testing juntas: given fixed k ≥ 1 and ε > 0, what is the
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minimum number q = q(k, ε) of queries required for any algorithm A to ε-test
k-juntas?

Background. The first result related to testing juntas was obtained by Bellare,
Goldreich, and Sudan [2] in the context of testing long codes. That result was
generalized by Parnas, Ron, and Samorodnitsky [18] to obtain an algorithm for
ε-testing 1-juntas with only O(1/ε) queries.

The next important step in testing k-juntas was taken by Fischer, Kindler,
Ron, Safra, and Samorodnitsky [10], who developed multiple algorithms for test-
ing k-juntas with poly(k)/ε queries. Those algorithms were particularly signif-
icant for showing explicitly that testing juntas can be done with a query com-
plexity independent of the total number of variables. The most query-efficient
algorithms they presented require Õ(k2)/ε queries1 to ε-test k-juntas.

Fischer et al. [10] also gave the first non-trivial lower bound on the query
complexity for the testing juntas problem. They showed that any non-adaptive
algorithm for ε-testing k-juntas requires at least Ω̃(

√
k) queries and conjectured

that the true query complexity for non-adaptive algorithms is k2/ε queries.
Chockler and Gutfreund [8] improved the lower bound for testing juntas by

showing that all algorithms – adaptive or non-adaptive – for ε-testing k-juntas
require Ω(k) queries. This result applies for all values of ε < 1/8, but the bound
itself does not increase as ε decreases.

Our results and techniques. Our main result is an improvement on the upper
bound for the query complexity of the junta testing problem.

Theorem 1.1. The property of being a k-junta can be ε-tested by a non-adaptive
algorithm with Õ(k3/2)/ε queries.

The new algorithm presented in this article is the first for testing juntas with
a number of queries sub-quadratic in k, and disproves the lower bound conjecture
of Fischer et al.

Our algorithm is based on an algorithm of Fischer et al. for testing juntas [10,
§4.2]). The observation that led to the development of the new algorithm is that
the algorithm of Fischer et al. can be broken up into two separate tests: a “block
test” and a simple “sampling test”. In this article, we generalize the sampling
test, and we establish a structural Lemma for functions that are ε-far from
being k-juntas to show how the two tests can be combined to ε-test k-juntas
more efficiently.

Our second result is an improved lower bound on the number of queries
required for testing juntas with non-adaptive algorithms. The new bound is the
first lower bound for the query complexity of the junta testing problem that
incorporates the accuracy parameter ε.

1 Here and in the rest of this article, the Õ( · ) notation is used to hide polylog factors.

(i.e., Õ
`
f(x)

´
= O

`
f(x) logc f(x)

´
and Ω̃

`
f(x)

´
= Ω

` f(x)
logc f(x)

´
for some c ≥ 0.)



Theorem 1.2. Any non-adaptive algorithm for ε-testing k-juntas must make at
least min

(
Ω
( k/ε

log k/ε

)
, Ω
(

2k

k

))
queries.

We prove Theorem 1.2 via Yao’s Minimax Principle [20]. The proof involves
an extension of the argument of Chockler and Gutfreund [8] and an application
of the Edge-Isoperimetric Inequality of Harper [13], Bernstein [3], and Hart [14].

Organization. We introduce some notation and definitions in Section 2. We
present the new algorithm for ε-testing k-juntas and its analysis in Section 3.
In Section 4, we present the proof for the lower bound on the query complexity
of non-adaptive algorithms for testing juntas. Finally, we conclude with some
remarks and open problems in Section 5.

2 Preliminaries

Notation. For n ≥ 1, let [n] = {1, . . . , n}. For a set A ⊆ [n], we write Ā = [n]\A
to represent the complement of A in [n]. When x, y ∈ {0, 1}n, we define xAyĀ
to be the hybrid string z where zi = xi for every i ∈ A and zj = yj for every
j ∈ Ā.

We write Prx[ · ] (resp., Ex[ · ]) to denote the probability (resp., expectation)
over the choice of x taken uniformly at random from {0, 1}n. We also write
Hk =

∑k
j=1

1
j to denote the k-th harmonic number.

Variation. In the analysis of the new algorithm for testing juntas, we consider
the variation of sets of coordinates in a function, a concept introduced by Fischer
et al. [10].2

Definition 2.1. The variation of the set S ⊆ [n] of coordinates in the function
f : {0, 1}n → {0, 1} is

Vrf (A) = Prx [f(x) 6= f(xS̄yS)] .

We write Vrf (i) = Vrf ({i}) to represent the variation of the ith coordinate.
The variation of a single coordinate is equivalent to the notion of influence, as
defined in, e.g., [15].

Some useful properties of variation are its monotonicity, subadditivity, and
submodularity.

Fact 2.2 (Fischer et al. [10]) For any function f : {0, 1}n → {0, 1}, and any
sets A,B,C ⊆ [n], the following three properties hold:

(i) Monotonicity: Vrf (A) ≤ Vrf (A ∪B)
(ii) Subadditivity: Vrf (A ∪B) ≤ Vrf (A) + Vrf (B)

(iii) Submodularity: Vrf (A ∪B)−Vrf (B) ≥ Vrf (A ∪B ∪ C)−Vrf (B ∪ C)
2 The definition of variation used in [10] is slightly different, but is equivalent to the

one used in this article up to a constant factor.



The Independence Test. A function f is said to be independent of a set
S ⊆ [n] of coordinates if Vrf (S) = 0. The definition of variation suggests a nat-
ural test for independence:

IndependenceTest [10]: Given a function f : {0, 1}n → {0, 1} and a set
S ⊆ [n], generate two inputs x, y ∈ {0, 1}n independently and uniformly at
random. If f(x) = f(xS̄yS), then accept; otherwise, reject.

Let us define IndependenceTest(f , S, m) to be the algorithm that runs m
instances of the IndependenceTest on f and S and accepts if and only if every
instance of the IndependenceTest accepts. By the definition of variation, this
algorithm accepts with probability

(
1−Vrf (S)

)m. In particular, this test always
accepts when f is independent of the set S of coordinates, and rejects with
probability at least 1− δ when Vrf (S) ≥ ln(1/δ)/m.

3 The Algorithm for Testing Juntas

In this section, we present the algorithm for ε-testing k-juntas with Õ(k3/2)/ε
queries. The algorithm has two main components: the BlockTest and the
SamplingTest. We introduce the BlockTest in Section 3.1 and the Sam-
plingTest in Section 3.2. Finally, in Section 3.3 we show how to combine both
tests to obtain an algorithm for testing juntas.

3.1 The Block Test

The purpose of the BlockTest is to accept k-juntas and reject functions that
have at least k + 1 coordinates with “large” variation.

The BlockTest first randomly partitions the coordinates in [n] into s sets
I1, . . . , Is. It then applies the IndependenceTest to blocks of these sets to
identify the sets of coordinates that have low variation. The test accepts if all
but at most k of the sets I1, . . . , Is are identified as having low variation. The
full algorithm is presented in Fig. 1.

The BlockTest is based on Fischer et al.’s non-adaptive algorithm for
testing juntas [10, §4.2], which uses a very similar test.3 As the following two
Propositions show, with high probability the BlockTest accepts k-juntas and
rejects functions with k + 1 coordinates with variation at least η.

Proposition 3.1 (Completeness). Fix η > 0, and let f : {0, 1}n → {0, 1} be
a k-junta. Then the BlockTest accepts f with probability at least 1− δ.

Proof. Let Ij be a set that contains only coordinates i with variation Vrf (i) = 0.
In a given round, the probability that Ij is included in BT and none of the sets

3 The principal difference between our version of the BlockTest and Fischer et al.’s
version of the test is that in [10], the set T is generating by including exactly k
indices chosen at random from [s].



BlockTest(f , k, η, δ)

Additional parameters: s = d2k2/δe, r = d4k ln(s/δ)e, m = dln(2r/δ)/ηe

1. Randomly partition the coordinates in [n] into s sets I1, . . . , Is.
2. For each of r rounds,

2.1. Pick a random subset T ⊆ [s] by including each index independently with
probability 1/k.

2.2. Define the block of coordinates BT =
S
j∈T Ij .

2.3. If IndependenceTest(f , BT , m) accepts, mark Ij as “variation-free” for
every j ∈ T .

3. Accept f if at most k of the sets I1, . . . , Is are not marked as “variation-free”;
otherwise reject f .

Fig. 1. The algorithm for the block test.

Ij′ that contain a coordinate with positive variation are included in BT is at
least (1/k)(1 − 1/k)k ≥ 1/4k since (1 − 1/k)k ≥ 1/4 for all k ≥ 2. So the
probability that Ij is not marked as “variation-free” in any of the r rounds is
at most (1 − 1/4k)r ≤ e−r/4k ≤ δ/s when r ≥ 4k ln(s/δ). By the union bound,
all the sets Ij that contain only coordinates with no variation are identified as
“variation-free” with probability at least 1− s(δ/s) = 1− δ. ut

Proposition 3.2 (Soundness). Let f : {0, 1}n → {0, 1} be a function for
which there exists a set S ⊆ [n] of size |S| = k + 1 such that every coordinate
i ∈ S has variation Vrf (i) ≥ η. Then the BlockTest rejects f with probability
at least 1− δ.

Proof. There are two ways in which the block test can wrongly accept the input
function. The first way it can do so is by mapping all the coordinates with
variation at least η into at most k sets during the random partition. We can
upper bound the probability of this event with the probability that any collision
occurs during the mapping of the first k + 1 coordinates with high variation,
which is at most 1

s + 2
s + · · ·+ k

s = k(k+1)
2s ≤ k2

s ≤ δ/2.
The second way in which the block test can wrongly accept the input function

is by erroneously marking one of the sets Ij that contains a coordinate with
variation at least η as “variation-free”. To bound the probability of this event
happening, consider a given round in which BT contains at least one of the
coordinates i with variation Vrf (i) ≥ η. By Fact 2.2 (i), the variation of BT
is at least η, so when m ≥ ln(2r/δ)/η, the IndependenceTest accepts BT
with probability at most δ/2r. By the union bound, the probability that one of
the r rounds results in a false “variation-free” marking is at most δ/2. So the
total probability that the algorithm wrongly accepts the function f is at most
δ/2 + δ/2 = δ. ut

The BlockTest algorithm makes 2m queries to f in each round, so the
total query complexity of the algorithm is 2rm = O(k log2(k/δ)/η).



SamplingTest(f , k, l, η, δ)

Additional parameters: r = d128k2 ln(2/δ)/l2e, m = dln(2r/δ)/ηe

1. Initialize the success counter c← 0.
2. For each of r rounds,

2.1. Pick a random subset T ⊆ [n] by including each coordinate independently
with probability 1/k.

2.2. If IndependenceTest(f , T , m) accepts, set c← c+ 1.
3. Accept f if c/r ≥ (1− 1/k)k − l/16k; otherwise reject f .

Fig. 2. The algorithm for the sampling test.

3.2 The Sampling Test

The purpose of the SamplingTest is to accept k-juntas and reject functions
that have a large number of coordinates with non-zero variation.

The SamplingTest, as its name implies, uses a sampling strategy to esti-
mate the number of coordinates with non-negligible variation in a given function
f . The sampling test generates a random subset T ⊆ [n] of coordinates in each
round, and uses the IndependenceTest to determine if f is independent of
the coordinates in T . The test accepts when the fraction of rounds that pass the
independence test is not much smaller than the expected fraction of rounds that
pass the test when f is a k-junta. The details of the algorithm are presented in
Fig. 2.

Proposition 3.3 (Completeness). Fix η > 0, l ∈ [k]. Let f : {0, 1}n → {0, 1}
be a k-junta. Then the SamplingTest accepts f with probability at least 1− δ.

Proof. When f is a k-junta, the probability that the set T in a given round
contains only coordinates i with variation Vrf (i) = 0 is at least (1 − 1/k)k.
When this occurs, the set T also has variation Vrf (T ) = 0. Let t be the number
of rounds for which the set T satisfies Vrf (T ) = 0. By Hoeffding’s bound,

Pr
[
t

r
< (1− 1/k)k − l

16k

]
≤ e−2r·(l/16k)2 ≤ δ/2

when r ≥ 128k2 ln(2/δ)/l2. Every set T with variation Vrf (T ) = 0 always passes
the IndependenceTest, so c ≥ t and the completeness claim follows. ut

Proposition 3.4 (Soundness 1). Fix η > 0, l ∈ [k]. Let f : {0, 1}n → {0, 1}
be a function for which there is a set S ⊆ [n] of size |S| = k + l such that every
coordinate i ∈ S has variation V rf (i) ≥ η. Then the SamplingTest rejects f
with probability at least 1− δ.

Proof. In a given round, the probability that the random set T does not contain
any of the k + l coordinates with large variation is (1 − 1/k)k+l. When l ≤ k,
(1−1/k)l ≤ 1− l/2k, and when k ≥ 2, (1−1/k)k ≥ 1/4. So the probability that



T contains none of the k + l coordinates with large varation is (1 − 1/k)k+l ≤
(1− 1/k)k(1− l/2k) ≤ (1− 1/k)k − l/8k.

Let t represent the number of rounds whose sets T contain no coordinate
with variation at least η. By Hoeffding’s bound,

Pr
[
t

r
> ((1− 1/k)k − l/8k) + l/16k

]
≤ e−2r(l/16k)2 ≤ δ/2

when r ≥ 128k2 ln(2/δ)/l2. By Fact 2.2 (i), every set T that contains one of
the coordinates i with variation Vrf (i) ≥ η also has variation Vrf (T ) ≥ η. By
our choice of m, the probability that the IndependenceTest accepts a set
with variation η is at most δ/2r. By the union bound, the IndependenceTest
correctly rejects all the sets with variation at least η except with probability at
most δ/2.

The sampling test can accept f only if more than a (1− 1/k)k − l/16k frac-
tion of the random sets contain no coordinate with variation η, or if at least one
of those random sets contains such a coordinate but still passes the Indepen-
denceTest. So the proability that the sampling test erroneously accepts f is
at most δ/2 + δ/2 = δ. ut

Proposition 3.5 (Soundness 2). Let η = ε
64Hkk

,4 and let f : {0, 1}n → {0, 1}
be a function for which there exists a set S ⊆ [n] of coordinates satisfying the
following two properties:

(i) Each coordinate i ∈ S has variation Vrf (i) < η, and
(ii) The total variation of the set S is Vrf (S) ≥ ε/2.

Then when l = k, the SamplingTest rejects f with probability at least 1− δ.

The proof of Proposition 3.5 follows very closely the proof of Fischer et
al. [10, Lem. 4.3]. In particular, the proof uses the following Chernoff-like bound.

Lemma 3.6 (Fischer et al. [10, Prop. 3.5]). Let X =
∑l
i=1Xi be a sum

of non-negative independent random variables Xi. If every Xi is bounded above
by t, then for every λ > 0

Pr
[
X < λE[X]

]
< exp

(
E[X]
et

(λe− 1)
)
.

The proof of Proposition 3.5 also makes extensive use of Fischer et al.’s
concept of unique variation [10].

Definition 3.7 (Fischer et al. [10]). The unique variation of the coordinate
i ∈ [n] with respect to the set S ⊆ [n] in the function f : {0, 1}n → {0, 1} is

Urf,S(i) = Vrf ([i] ∩ S)−Vrf ([i− 1] ∩ S).

Furthermore, the unique variation of the set I ⊆ [n] of coordinates with respect
to S in f is Urf,S(I) =

∑
i∈I Urf,S(i).

4 Recall that Hk =
Pk
j=1

1
j

is the kth harmonic number.



Fact 3.8 (Fischer et al. [10]) For any function f : {0, 1}n → {0, 1} and sets
of coordinates S, T ⊆ [n], the following two properties hold:

(i) Urf,S(T ) ≤ Vrf (T ), and
(ii) Urf,S([n]) = Vrf (S).

We are now ready to complete the proof of Proposition 3.5.

Proof (of Proposition 3.5). There are two ways in which the SamplingTest
can accept f . The test may accept f if at least a (1 − 1/k)k − 1/16 fraction
of the random sets T have variation Vrf (T ) < η. Alternatively, the test may
also accept if some of the sets T with variation Vrf (T ) ≥ η pass the Indepen-
denceTest. By our choice of m and the union bound, this latter event happens
with probability at most δ/2. So the proof of Proposition 3.5 is complete if we
can show that the probability of the former event happening is also at most δ/2.

Let t represent the number of rounds where the random set T has variation
Vrf (T ) ≥ η. We want to show that Pr

[
t/r ≥ (1− 1/k)k − 1/16

]
≤ δ/2. In fact,

since (1−1/k)k ≥ 1/4 for all k ≥ 2, it suffices to show that Pr [t/r ≥ 3/16] ≤ δ/2.
In a given round, the expected unique variation of the random set T with

respect to S in f is

E[Urf,S(T )] =
∑
i∈[n]

1
k

Urf,S(i) =
Urf,S([n])

k
=

Vrf (S)
k

≥ ε

2k
,

where the third equality uses Fact 3.8 (ii). By Property (i) of the Proposition,
Urf,S(T ) is the sum of non-negative variables that are bounded above by η. So
we can apply Lemma 3.6 with λ = 1/32Hk to obtain

Pr [Urf (T ) < η] < e
ε

2ekη

“
e

32Hk
−1

”
.

By Fact 3.8 (i) and the fact that e
ε

2ekη

“
e

32Hk
−1

”
< 1/8 for all k ≥ 1, we have that

E[t/r] = Pr [Vrf (T ) < η] < 1/8.

The final result follows from an application of Hoeffding’s inequality and the
choice of r. ut

The SamplingTest algorithm makes 2m queries to f in each round, so the
total query complexity of the algorithm is 2rm = O(k2 log(k/lδ)/l2η).

3.3 The Junta Test

In the previous two subsections, we defined two tests: the BlockTest that
distinguishes k-juntas from functions with k+1 coordinates with large variation,
and the SamplingTest that distinguishes k-juntas from functions that have
some variation distributed over a large number of coordinates. The following
structural Lemma on functions that are ε-far from being k-juntas shows that
these two tests are sufficient for testing juntas.



JuntaTest(f , k, ε)

Additional parameters: δ = 1

3(dlog k1/2e+2)
, τ = ε

64Hk

1. Run BlockTest(f , k, τ/dk1/2e, δ).
2. For l = dk1/2e, d2k1/2e, d4k1/2e, d8k1/2e, . . . , k,

2.1. Run SamplingTest(f , k, l, τ/2l, δ).
3. Run SamplingTest(f , k, k, τ/k, δ).
4. Accept f if all of the above tests accept; otherwise reject f .

Fig. 3. The algorithm for the junta test.

Lemma 3.9. Let f : {0, 1}n → {0, 1} be ε-far from being a k-junta. Then for
any t > 0, f satisfies at least one of the following two properties:

(i) There exists an integer l ∈ [k] such that there are at least k+ l coordinates i
with variation Vrf (i) ≥ ε

tHkl
in f .

(ii) The set S of coordinates i ∈ [n] with variation Vrf (i) < ε
tHkk

has total
variation Vrf (S) ≥ (1− 1/t)ε.

Proof. Let f be a function that does not satisfy the Property (i) of the Lemma.
Define J ⊆ [n] to be the set of the k coordinates in f with highest variation, and
let T be the set of coordinates i ∈ [n] \ J with variation Vrf (i) ≥ ε

tHkk
. Since f

does not satisfy Property (i) of the Lemma, Fact 2.2 (ii) ensures that the variation
of T is bounded by Vrf (T ) ≤ ε

tHk
+ ε

2tHk
+ · · ·+ ε

ktHk
= ε

t . Since S ∪T ⊇ [n] \ J
and any function ε-far from being a k-junta must satisfy Vrf ([n] \ J) ≥ ε, a
second application of Fact 2.2 (ii) shows that f must satisfy Property (ii) of the
Lemma. ut

Lemma 3.9 naturally suggests an algorithm for testing k-juntas: use the
BlockTest (with parameter η = ε/64Hkk) to reject functions that satisfy
Property (i) of the Lemma, and use the SamplingTest (with parameters l = k
and η as above) to reject the functions that satisfy Property (ii) of the Lemma.
This algorithm is equivalent to the non-adaptive algorithm of Fischer et al. [10],
and requires Õ(k2)/ε queries.

We can improve the query complexity of the algorithm by splitting up the
task of identifying functions that satisfy Property (i) of Lemma 3.9 into multiple
tasks for more specific ranges of l. The result of this approach is the JuntaTest
algorithm presented in Fig. 3. With this algorithm, we are now ready to prove
Theorem 1.1.

Theorem 1.1. The property of being a k-junta can be ε-tested by a non-adaptive
algorithm with Õ(k3/2)/ε queries.

Proof. Let us begin by showing that the JuntaTest is a valid algorithm for ε-
testing k-juntas. By Propositions 3.1 and 3.3, k-juntas pass the BlockTest and
each of the SamplingTest instances with probability δ. So by our choice of δ



and the union bound, k-juntas are accepted by the JuntaTest with probability
at least 2/3.

Let f be any function that is ε-far from being a k-junta. If f satisfies Prop-
erty (i) of Lemma 3.9 with parameter t = 64, consider the minimum integer
l′ ∈ [k] for which there is a set S ⊆ [n] of size k + l′ such that every coordinate
i ∈ S has variation Vrf (i) ≥ ε

64Hkl′
. If l′ < dk1/2e, then by Proposition 3.2, the

BlockTest rejects f with probability 1− δ > 2/3. If l′ ≥ k1/2, then by Propo-
sition 3.4, the SamplingTest with the parameter l that satisfies l ≤ l′ ≤ 2l
rejects the function with probability 1− δ > 2/3.

If f satisfies Property (ii) of Lemma 3.9, by Proposition 3.5, the last Sam-
plingTest rejects the function with probability 1− δ > 2/3. Since Lemma 3.9
guarantees that any function ε-far from being a k-junta must satisfy at least one
of the two properties of the Lemma, this completes the proof of soundness of the
JuntaTest.

To complete the proof of Theorem 1.1, it suffices to show that the JuntaT-
est is a non-adaptive algorithm and that it makes only Õ(k3/2)/ε queries to the
function. The non-adaptivity of the JuntaTest is apparent from the fact that
all queries to the input function come from independent instances of the Inde-
pendenceTest. The query complexity of the JuntaTest also follows from the
observation that each instance of the BlockTest or the SamplingTest in the
algorithm requires Õ(k3/2)/ε queries. Since there are a total of O(log k) calls to
those tests, the total query complexity of the JuntaTest is also Õ(k3/2)/ε. ut

4 The Lower Bound

In this section, we show that every non-adaptive algorithm for ε-testing k-juntas
must make at least min

(
Ω̃(k/ε), 2k/k

)
queries to the function.

To prove Theorem 1.2, we introduce two distributions, Dyes and Dno, over
functions that are k-juntas and functions that are ε-far from k-juntas with high
probability, respectively. We then show that no deterministic non-adaptive algo-
rithm can reliably distinguish between functions drawn from Dyes and functions
drawn from Dno. The lower bound on all non-adaptive algorithms for ε-testing
k-juntas then follows from an application of Yao’s Minimax Principle [20].

A central concept that we use extensively in the proof of Theorem 1.2 is
Chockler and Gutfreund’s definition of twins [8].

Definition 4.1. Two vectors x, y ∈ {0, 1}n are called i-twins if they differ ex-
actly in the ith coordinate (i.e., if xi 6= yi and xj = yj for all j ∈ [n] \ {i}). The
vectors x, y are called twins if they are i-twins for some i ∈ [n].

We now define the distributions Dyes and Dno. To generate a function from
the distribution Dno, we first define a function g : {0, 1}k+1 → {0, 1} by setting
the value g(x) for each input x ∈ {0, 1}k+1 independently at random, with
Pr[g(x) = 1] = 6ε. We then extend the function over the full domain by defining
f(x) = g(x[k+1]) for every x ∈ {0, 1}n. The distribution Dyes is defined to be



the uniform mixture distribution over the distributions D(1)
yes,D(2)

yes, . . . ,D(k+1)
yes ,

where the distribution D(i)
yes is defined similarly to the Dno distribution, but over

the set [k + 1] \ {i} instead of [k + 1].
By construction, the functions drawn from Dyes are all k-juntas. The follow-

ing Lemma shows that a function drawn from Dno is ε-far from being a k-junta
with high probability.

Lemma 4.2. When k/2k < ε ≤ 1/12 and k ≥ 3, a function f : {0, 1}n → {0, 1}
drawn from Dno is ε-far from being a k-junta with probability at least 11/12.

Proof. A function f drawn from Dno is ε-far from being a k-junta iff the function
g : {0, 1}k+1 → {0, 1} that was extended to form f is ε-far from being a k-junta.
In turn, g is ε-far from being a k-junta iff for every coordinate i ∈ [k + 1], we
must change the value of g(x) on at least ε2k+1 different inputs x ∈ {0, 1}k+1

to make the function g independent of the ith variable – which is equivalent to
requiring that at least ε2k+1 pairs of i-twins have distinct values in g.

Consider a fixed i ∈ [k+ 1]. Since each value g(x) is generated independently
and takes value g(x) = 1 with probability 6ε, each pair of i-twins has distinct
values with probability 2 ·6ε(1−6ε). Let ti represent the number of i-twins with
distinct values in g. Then when ε ≤ 1/12, E[ti] = 12ε(1− 6ε)2k ≥ 6ε2k, and we
can apply Chernoff’s bound to obtain

Pr
[
ti ≤ ε2k+1

]
≤ e−6ε2k(1−1/3)2/2 = e−ε2

k+2/3 .

The Lemma then follows from the union bound and the conditions that ε > k/2k

and k ≥ 3. ut

Consider any sequence of q queries that a deterministic non-adaptive algo-
rithm may make to a function f . We want to show that when q is small, the
responses observed by the algorithm when f is drawn from Dyes are very similar
to the responses observed when f is drawn from Dno. The following Lemma
provides a first step toward that goal.

Lemma 4.3. Let Q be a set of q queries containing ti i-twins. Let R(i)
yes and

Rno be the distributions of the responses to the queries in Q when the input
function is drawn from D(i)

yes or Dno, respectively. Then the statistical distance
between R(i)

yes and Rno is bounded above by∑
y∈{0,1}q

∣∣R(i)
yes(y)−Rno(y)

∣∣ ≤ 24tiε.

Proof. We apply a hybridization argument. Let the pairs of i-twins in Q be
represented by (α1, β1), . . . , (αti , βti). For j ∈ {0, 1, . . . , ti}, define the response
distribution Hj to be the distribution where each response is independent and
6ε-biased, except for the responses β1, . . . , βj , which are constrained to satisfy
α1 = β1, . . . , αj = βj . Note that H0 = Rno and Hti = R(i)

yes, so∑
y

∣∣R(i)
yes(y)−Rno(y)

∣∣ =
∑
y

∣∣Hti(y)−H0(y)
∣∣ ≤ ti∑

j=1

∑
y

∣∣Hj(y)−Hj−1(y)
∣∣.



The distributions Hj and Hj−1 are nearly identical. The only difference be-
tween the two distributions is that βj is constrained to take the value αj in Hj ,
while it is an independent 6ε-biased random variable in Hj−1. So the statistical
distance between Hj and Hj−1 is twice the probability that βj 6= αj in Hj−1.
Thus,

∑
y

∣∣Hj(y)−Hj−1(y)
∣∣ ≤ 24ε(1− 6ε) < 24ε and the Lemma follows. ut

With Lemma 4.3, we can now bound the statistical distance between the
responses observed when the input function is drawn from Dyes or Dno.

Lemma 4.4. Let Q be a sequence of q queries containing t pairs of twins. Let
Ryes and Rno be the distributions of the responses to the queries in Q when the
input function is drawn from Dyes or Dno, respectively. Then∑

y∈{0,1}q

∣∣Ryes(y)−Rno(y)
∣∣ ≤ 24tε

k + 1
.

Proof. Since Ryes is a mixture distribution over R(1)
yes, . . . ,R(k+1)

yes , then

∑
y

∣∣Ryes(y)−Rno(y)
∣∣ =

∑
y

∣∣∣∣∣
k+1∑
i=1

R(i)
yes(y)
k + 1

−Rno(y)

∣∣∣∣∣ ≤ 1
k + 1

k+1∑
i=1

∑
y

∣∣∣R(i)
yes(y)−Rno(y)

∣∣∣ .
By Lemma 4.3, the above equation is upper bounded by 1

k+1

∑k+1
i=1 24tiε, where ti

represents the number of i-twins in Q. Lemma 4.4 then follows from the fact that
t =

∑k+1
i=1 ti. ut

The previous Lemma bounds the statistical distance between the responses
observed from a function drawn from Dyes or Dno when we have a bound on the
number of twins in the queries. The following Lemma shows that the number of
pairs of twins in a sequence of q queries can not be larger than q log q.

Lemma 4.5. Let {x1, . . . , xq} ⊆ {0, 1}n be a set of q distinct queries to a func-
tion f : {0, 1}n → {0, 1}. Then there are at most q log q pairs (xi, xj) such that
xi and xj are twins.

Proof. A natural combinatorial representation for a query x ∈ {0, 1}n is as a
vertex on the n-dimensional boolean hypercube. In this representation, a pair of
twins corresponds to a pair of vertices connected by an edge on the hypercube.
So the number of pairs of twins in a set of queries is equal to the number of edges
contained in the corresponding subset of vertices on the hypercube. The Lemma
then follows from the Edge-Isoperimetric Inequality of Harper [13], Bernstein [3],
and Hart [14] (see also [7, §16]), which states that any subset S of q vertices in
the boolean hypercube contains at most q log q edges.5 ut

We can now combine the above Lemmas to prove Theorem 1.2.
5 The result of Harper, Bernstein, and Hart is slightly tighter, giving a bound ofPq

i=1 h(i), where h(i) is the number of ones in the binary representation of i.



Theorem 1.2. Any non-adaptive algorithm for ε-testing k-juntas must make at
least min

(
Ω
( k/ε

log k/ε

)
, Ω
(

2k

k

))
queries.

Proof. Let us first consider the case where ε ≥ k/2k. Let A be any non-adaptive
deterministic algorithm for testing k-juntas with q = k/600ε

log k/600ε queries. By
Lemma 4.5, there can be at most q log q = k

600ε pairs of twins in the q queries.
By Lemma 4.4, this means that the statistical distance between the response
distributions Ryes and Rno is at most k

600ε ·
24ε
k+1 <

1
25 . So the algorithm A can

not predict which distribution generated a given input with accuracy greater
than 1

2 + 1
2 ·

1
25 = 26

50 . By Lemma 4.2, a function drawn from Dno fails to be ε-far
from being a k-junta with probability at most 1

12 . So the success rate of A is
at most 26

50 + 1
12 <

2
3 . Therefore, by Yao’s Minimax Principle, any algorithm for

ε-testing k-juntas requires Ω
( k/ε

log k/ε

)
queries.

When ε < k/2k, we can repeat the above argument with ε′ = k/2k instead
of ε. This yields a lower bound of Ω

( k/ε′

log k/ε′

)
= Ω

(
2k

k

)
queries. ut

5 Conclusion

Our results have improved the upper bound for the query complexity for testing
juntas and the lower bound for testing juntas with non-adaptive algorithms. The
results stated in this article are all presented in the context of testing functions
with boolean domains, but we note that the results also generalize to the context
of testing of functions f : Xn → {0, 1} for any finite domain X.

The results also suggest some interesting problems for future work.

Open Problem 5.1 What is the query complexity of the junta testing problem?
In particular, can we ε-tests k-juntas non-adaptively with Õ(k/ε) queries?

Open Problem 5.1 has some relevance to the study of quantum algorithms
in property testing: while Theorem 1.1 improves on all known upper bounds for
the query complexity of classical algorithms for testing juntas, it still does not
match the query complexity of O(k/ε) obtained by Atıcı and Servedio [1] for a
non-adaptive algorithm with access to quantum examples.

Open Problem 5.2 Is there a gap between the query complexity of adaptive
and non-adaptive algorithms for testing juntas?

Gonen and Ron [11] showed that such a gap exists for some property testing
problems in the dense graph model. A positive answer to Open Problem 5.2
would provide an interesting example of a similar gap in the context of testing
function properties.

Open Problem 5.3 Can improved query bounds for testing juntas yield better
bounds for testing other properties of boolean functions?

The work of Diakonikolas et al. [9] strongly suggests a positive answer to
Open Problem 5.3, since the junta test plays a central role in their generic
algorithm for testing many properties of boolean functions.
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