Skip to main content

The Complexity of Distinguishing Markov Random Fields

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5171))

Abstract

Markov random fields are often used to model high dimensional distributions in a number of applied areas. A number of recent papers have studied the problem of reconstructing a dependency graph of bounded degree from independent samples from the Markov random field. These results require observing samples of the distribution at all nodes of the graph. It was heuristically recognized that the problem of reconstructing the model where there are hidden variables (some of the variables are not observed) is much harder.

Here we prove that the problem of reconstructing bounded-degree models with hidden nodes is hard. Specifically, we show that unless NP = RP,

  • It is impossible to decide in randomized polynomial time if two models generate distributions whose statistical distance is at most 1/3 or at least 2/3.

  • Given two generating models whose statistical distance is promised to be at least 1/3, and oracle access to independent samples from one of the models, it is impossible to decide in randomized polynomial time which of the two samples is consistent with the model.

The second problem remains hard even if the samples are generated efficiently, albeit under a stronger assumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman, N.: Infering cellular networks using probalistic graphical models. Science (2004)

    Google Scholar 

  2. Kasif, S.: Bayes networks and graphical models in computational molecular biology and bioinformatics, survey of recent research (2007), http://genomics10.bu.edu/bioinformatics/kasif/bayes-net.html

  3. Felsenstein, J.: Inferring Phylogenies. Sinauer, New York (2004)

    Google Scholar 

  4. Semple, C., Steel, M.: Phylogenetics. Mathematics and its Applications series, vol. 22. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  5. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.A.: A few logs suffice to build (almost) all trees (part 1). Random Structures Algorithms 14(2), 153–184 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Mossel, E.: Distorted metrics on trees and phylogenetic forests. IEEE Computational Biology and Bioinformatics 4, 108–116 (2007)

    Article  Google Scholar 

  7. Daskalakis, C., Mossel, E., Roch, S.: Optimal phylogenetic reconstruction. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (STOC 2006), pp. 159–168 (2006)

    Google Scholar 

  8. Abbeel, P., Koller, D., Ng, A.Y.: Learning factor graphs in polynomial time and sampling complexity. Journal of Machine Learning Research 7, 1743–1788 (2006)

    MathSciNet  Google Scholar 

  9. Bresler, G., Mossel, E., Sly, A.: Reconstruction of Markov random fields from samples: Some easy observations and algorithms. These proceedings (2008), http://front.math.ucdavis.edu/0712.1402

  10. Wainwright, M.J., Ravikumar, P., Lafferty, J.D.: High dimensional graphical model selection using ℓ1-regularized logistic regression. In: Proceedings of the NIPS (2006)

    Google Scholar 

  11. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov chain Approach. In: Progress in Theoretical Computer Science. Birkhäuser, Basel (1993)

    Google Scholar 

  12. Luby, M., Vigoda, E.: Fast convergence of the Glauber dynamics for sampling independent sets. Random Struct. Algorithms 15(3–4), 229–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Even, S., Selman, A.L., Yacobi, Y.: The complexity of promise problems with applications to public-key cryptography. Information and Control 61, 159–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldreich, O.: Foundations of cryptography (Basic tools). Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity, or All languages in NP have zero-knowledge proof systems. Journal of the Association for Computing Machinery 38(3), 691–729 (1991)

    MATH  MathSciNet  Google Scholar 

  19. Impagliazzo, R., Yung, M.: Direct minimum-knowledge computations (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51. Springer, Heidelberg (1988)

    Google Scholar 

  20. Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

    Google Scholar 

  21. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero knowledge. In: Proc. 2nd Israel Symp. on Theory of Computing and Systems, pp. 3–17. IEEE Computer Society Press, Los Alamitos (1993)

    Chapter  Google Scholar 

  22. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. Journal of the ACM 50(2), 196–249 (2003)

    Article  MathSciNet  Google Scholar 

  23. Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system and a hierarchy of complexity classes. Journal of Computer and System Sciences 36, 254–276 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bogdanov, A., Mossel, E., Vadhan, S. (2008). The Complexity of Distinguishing Markov Random Fields. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics