
Directory-Based Metadata Optimizations for
Small Files in PVFS

Bachelorarbeit

Parallele und Verteilte Systeme
Institut für Informatik

Ruprecht-Karls-Universität Heidelberg

Michael Kuhn
Matrikelnummer: 2405219

3. September 2007

Ich versichere, dass ich diese Bachelorarbeit selbstständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

..
Abgabedatum: 3. September 2007

Abstract

In today’s file systems each file is made up of data and metadata. The metadata contains some
information about the associated data, like ownership and permissions of the file.

While this usually is useful, there are situations when the additional overhead of such a design
becomes a problem in terms of performance. This is especially true for cluster file systems,
because due to their design every metadata operation is even more expensive. If a user creates
several thousand temporary files that are going to be deleted soon anyway, it is not necessary
to store detailed information about them.

In this thesis several changes are made to the parallel cluster file system PVFS to better
deal with such cases. To do this, PVFS is altered such that certain unnecessary metadata is
discarded and therefore metadata performance is increased.

Several tests with a large quantity of files are done to measure the benefits of these changes.
The reduction of the metadata overhead halves the time needed for some common file system
operations. The speedup of those operations is also analyzed in detail by visualizing the internal
workflow of PVFS.

Also, additional work that could be done to further increase the metadata performance as well
as possible additions to the actual implementation are presented.

Contents

1 Introduction 6
1.1 File Systems . 6

1.1.1 Local File Systems . 6
1.1.2 Cluster File Systems . 7
1.1.3 Parallel File Systems . 7

1.2 PVFS . 7

2 Motivation 9
2.1 Data-Intensive Workloads . 9
2.2 Metadata-Intensive Workloads . 10
2.3 Optimization Considerations . 10
2.4 Related Work . 11
2.5 Outlook . 11

3 Design 12
3.1 Objects . 12

3.1.1 Metafile Objects . 12
3.1.2 Datafile Objects . 13
3.1.3 Directory Objects . 13
3.1.4 Directory Data Objects . 14
3.1.5 Example Directory Tree . 14

3.2 Metadata Optimizations . 15
3.2.1 Drawbacks . 16
3.2.2 Alternative Optimizations . 17

3.3 File System Operations . 18
3.3.1 File Creation . 18
3.3.2 File Listing . 18
3.3.3 File Removal . 18

4 Implementation 20
4.1 Internals . 20

4.1.1 Architecture . 20
4.1.2 State Machines . 22
4.1.3 Message Pairs . 24

4.2 New Directory Hint: no metafile . 24
4.2.1 Common Infrastructure Modifications 24
4.2.2 Request Protocol Modifications . 25
4.2.3 Server Modifications . 28
4.2.4 Client Modifications . 29
4.2.5 Hint Usage Instructions . 30

4

Contents

4.3 Compatibility with Unrelated State Machines 30
4.3.1 Path Lookup: lookup State Machines 30

4.4 File Creation: create Client State Machine . 31
4.5 File Listing: getattr Client State Machine . 33
4.6 File Removal: remove Client State Machine . 35

5 Benchmarking 37
5.1 Hardware Configurations . 37

5.1.1 Single Machine . 37
5.1.2 Five Machines . 37

5.2 Single Machine . 38
5.2.1 File Creation . 38
5.2.2 File Listing . 38
5.2.3 File Removal . 39

5.3 Five Machines . 41
5.3.1 File Creation . 41
5.3.2 File Listing . 41
5.3.3 File Removal . 42

5.4 Summary . 44

6 Visualization 46
6.1 Dataspace and Key-Value Pairs . 46
6.2 File Creation . 47
6.3 File Listing . 49
6.4 File Removal . 51

7 Summary, Conclusion and Future Work 53
7.1 Summary . 53
7.2 Conclusion . 53
7.3 Future Work . 53

Appendices 55

A Usage Instructions 55
A.1 Installation of PVFS . 55
A.2 Configuration of PVFS . 55
A.3 Starting PVFS . 56
A.4 Running the Benchmark . 56
A.5 Creating Visualization Traces . 56

B Benchmark and Visualization Scripts 57

List of Figures 68

Listings 69

Bibliography 70

5

1 Introduction

In this chapter a definition of file systems is given. It is also described what differentiates
parallel and cluster file systems from traditional local file systems. A special focus lies on
the metadata maintained by those file systems, because the goal of this thesis is to optimize
metadata operations in an already available parallel cluster file system called PVFS1.

1.1 File Systems

File systems are used to store files that are made up of some data and so-called metadata. The
data can be anything, from text to an image or even a video. The metadata contains some
information about this data, usually things like:

• the name of the file the data is associated with (file name)

• the owner of the data (ownership)

• who should be allowed to read or write the data (permissions)

• when the file was created, last modified or accessed (timestamps)

• how much data there is (file size)

Physically, the data is usually stored in form of multiple blocks or extents. While blocks mostly
have a fixed size and the data is split up to fit into such blocks, extents have a dynamic size and
grow as more data should be put into them. Metadata is stored in separate objects, usually
called information nodes or inodes. Files are grouped together in directories. Each directory
can contain files or other directories, thus creating a directory hierarchy populated with files.

1.1.1 Local File Systems

Local file systems are designed to be used on a single disk partition. Volume managers can be
used to group several such partitions together and represent them as one. In any case the whole
underlying storage must be accessible by the file system. This means that local file systems are
usually constrained to one machine. There are possibilities to span local file systems across
several machines, but the details are omitted here.

The file system has access to any data or metadata at any given moment, that is, everything is
available on the local disk. Access times for disk access usually lie between 5 ms and 15 ms,
dependent on the area of the disk that should be accessed. This is due to the fact that the
read/write head of the disk may need to be repositioned. As this is a mechanical operation it
takes some time.

1Parallel Virtual File System – http://www.pvfs.org/

6

http://www.pvfs.org/

1 Introduction

Also, local file systems are usually only accessed by one client at a time. Here, a client is a
process that directly modifies the file system. In the case of a local file system this usually is
the kernel of the operation system.2 Normal user programs just request changes through a
layer on top of the file system.

1.1.2 Cluster File Systems

Cluster file systems are built in such a way that several machines connected by some network
make up one file system. Usually every machine is either a data server or a metadata server,
that is, it only stores objects of the respective type. It is also possible but unusual that each
machine acts as a combined data and metadata server. PVFS – the cluster file system used in
this thesis – employs the former approach.

Every machine only has direct access to its own storage, so no machine has a total overview of
the complete file system. So either the servers have to communicate with each other or clients
must contact multiple servers. In PVFS each client contacts the servers itself for performance
reasons. In any event data has to be sent across the network thus introducing an additional
delay between the request and response. For current Ethernet networks this latency usually
lies between 50 and 500 µs.

If a client wants to read a file, it first has to figure out on which metadata servers the metadata
about this file can be found. Then it must request the data from each data server that holds
data of this particular file. In addition to the disk access times of the servers the client has
to connect via the network to all those servers. This is expensive due to network latency and
bandwidth restrictions.

1.1.3 Parallel File Systems

Parallel file systems can be accessed by multiple remote clients simultaneously. To do this,
some form of concurrency control must be in place. This, however, must not be confused with
ordinary locking, because it is done above the file system layer. Locking can be used to protect
a file against concurrent access, but not the file system itself. Therefore, a mechanism must
be implemented at the file system level to keep the clients from corrupting the file system by
modifying the same part of it at the same time.

1.2 PVFS

PVFS is a parallel cluster file system, which supports multiple data and metadata servers. The
whole file system is made up of several objects, each identified by a unique handle. The concept
of objects is described in detail in chapter 3. Each server is responsible for a so-called handle
range. Because these handle ranges are non-overlapping, each object is managed by exactly
one server. To distribute the load, file data is striped across all available data servers with a
default stripe size of 64 KByte. The first data server is chosen randomly, then a round-robin
scheme is used.

Figure 1.1 shows an example of this data striping. The top part represents a file of size
352 KByte. At the bottom three data servers are drawn. The arrows show how the file data is
striped across all of them.

2Or to be more precise, the file system driver within the kernel.

7

1 Introduction

64 KB 64 KB 64 KB 64 KB 64 KB 32 KB

64 KB64 KB 64 KB64 KB 64 KB 32
KB

Data server 3Data server 2Data server 1

File contents

Figure 1.1: Data striping

File metadata however is not distributed. The metadata for any file is managed by exactly one
metadata server. Which metadata server is responsible is determined by a hashing algorithm.

PVFS offers several features that make it attractive for research:

• Free software, released under the GPL3/LGPL4

• The code base has a manageable size (about 200,000 lines of code)

• MPICH25 is supported

• Easy to install

• Easy to configure

Summary

In contrast to traditional local file systems, no client or server of a cluster file system has a
complete overview of the file system at any point. Therefore communication between them is
required. This communication introduces additional cost for each file system operation. The
goal of thesis is to reduce this additional cost – at least to some extent – in the parallel cluster
file system PVFS, therefore allowing it to perform better in certain scenarios.

3GNU General Public License – http://www.gnu.org/copyleft/gpl.html
4GNU Lesser General Public License – http://www.gnu.org/copyleft/lgpl.html
5An implementation of the Message Passing Interface – http://www-unix.mcs.anl.gov/mpi/mpich2/

8

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www-unix.mcs.anl.gov/mpi/mpich2/

2 Motivation

In this chapter a differentiation between data-intensive and metadata-intensive workloads is
given. For the sake of simplicity it is assumed that there are no additional limits imposed by
the network in terms of bandwidth. Also, some optimization considerations are elaborated.

2.1 Data-Intensive Workloads

If a file system is primarily used to read and write few big files like, for example, multimedia
data this is a data-intensive workload. Metadata normally only has to be read or written once
for each file and in this case this only takes a fraction of the time needed to read or write
the actual data. The bottleneck for this workload is the data servers’ disk bandwidth as it
determines how fast the data can be read from or written to the disk. An illustration of such
data-intensive operations can be found in figure 2.1, where one client reads or writes one large
file and thus only has to contact the metadata server once.

Client

Metadata server

Data server

Figure 2.1: Data-Intensive workload

In data-intensive workloads the disk is the bottleneck. They can be characterized as use cases
where the majority of data sent across the network is actual file data. Since the file system
basically only needs to read or write the data directly to disk, it usually performs at disk speed
with such workloads. One approach to increase performance for such workloads – apart from
simply using more disks – is to balance the data in such a way that each server’s full disk speed
can be used. For an example of such an approach’s implementation, see [Kun07].

9

2 Motivation

2.2 Metadata-Intensive Workloads

However, if a file system is used to access many small files the workload is considered metadata-
intensive. For each access to a file the metadata has to be read or written, so creating, removing
or simply listing a huge amount of files in such a file system can put a lot of stress on the
metadata servers. Since the metadata is needed to deliver the actual data the number of
metadata operations that can be performed in a given time frame also limits the amount of
data that can be processed. An illustration of such metadata-intensive operations can be found
in figure 2.2, where one client reads or writes many small files and thus has to contact the
metadata repeatedly. Since it has to wait for the metadata it can not perform any operations
on the data server in the meantime.

Metadata server

Client

Data server

Figure 2.2: Metadata-Intensive workload

With metadata-intensive workloads the metadata throughput is the bottleneck. They can be
characterized as use cases where a substantial amount of network traffic is due to metadata.
To increase the performance either the time taken for each metadata operation or the total
number of metadata operations done has to be decreased. Since the speed of such operations is
usually dictated by disk and network latency, the reduction of metadata operations needed for
a given task is more feasible.

2.3 Optimization Considerations

There are cases when many small files must be stored in a cluster file system for capacity or
speed reasons. If these files are accessed frequently metadata performance plays an important
role, therefore a reduction of the number of metadata operations should be considered. Also, if
they are only stored temporarily for subsequent processing and deleted afterwards metadata
is not really important. There are also cases when metadata must not be stored, because it
is either available somewhere else – for example, in a database, maybe even with extended

10

2 Motivation

information – or simply not interesting. This can be used to further increase the performance,
because much metadata overhead can be avoided.

2.4 Related Work

Several other approaches can be taken to increase metadata performance, either by focusing on
individual file system operations as in this thesis or by trying to improve the overall scalability.
One such approach for individual file system operations is presented in [DW07], where only
file creation is considered. Multiple strategies to speed up this operation are evaluated. More
general approaches are also possible. In [BMLX03] a combination of hashing and caching of
parent directory permissions is implemented to reduce the communication overhead, while in
[WPBM04] metadata performance is optimized by dynamically partitioning the metadata of
the file system tree into subtrees to distribute the load according to the current workload.

2.5 Outlook

The following chapters introduce the actual optimizations done in this thesis. Optimizations
are done to three basic file system operations, as shown in chapter 3, that is, only individual
file system operations are considered, not the overall metadata design. This chapter also gives
an overview of the internal structure of the file system provided by PVFS. Chapter 4 focuses
on the actual implementation of these optimizations. Finally, the benefits of these changes are
examined in detail. In chapter 5 the actual impact on performance in terms of execution time
is evaluated with a relatively simple benchmark program, which simulates parallel accesses.
Chapter 6 focuses on the impact of these changes on the low-level operations inside the PVFS
server.

Summary

As is described in this chapter, there are fundamental differences between data-intensive and
metadata-intensive workloads. Each of these workloads require different approaches to optimize
performance. In this thesis a reduction of the number of metadata operations paired with
discarding of certain metadata is employed.

11

3 Design

In this chapter the metadata optimizations’ design is explained in an abstract way. To do
this, the internal file system structure of PVFS is presented in detail with a special focus on
the representation of logical file system objects like files and directories. For a more detailed
explanation of the changes necessary to implement these metadata optimizations, see chapter 4.

3.1 Objects

PVFS internally distinguishes several different types of physical objects that can be stored and
in turn combined to make up logical objects like files and directories. In order to identify these
physical objects each one is assigned a unique handle. The most important physical objects
are introduced here. Because there are physical and logical objects with the same name, the
physical objects are always identified by the suffix “object” to ease the differentiation. For
example, a (logical) directory is made up of a (physical) directory object and a (physical)
directory data object.

3.1.1 Metafile Objects

Metafile objects represent logical files. They are used to store file metadata like ownership and
permissions, but also all handles of the datafile objects associated with this particular file. The
total file size is not stored in the metafile object, but computed dynamically by adding up the
respective file sizes of all datafile objects. This is done so that the metafile object does not
have to be modified with each operation that changes the size of the file. In turn however, the
computation of the file size becomes more expensive with the number of data servers, because
in the worst case each one has to be contacted.

Attributes stored for a metafile object:

• POSIX1 metadata

– Owner and group
– Permissions
– Change, access and modify times

• Datafile distribution, datafile handles and datafile count2

1Portable Operating System Interface
2For an explanation of the distribution, see subsection 3.1.3.

12

3 Design

3.1.2 Datafile Objects

Datafile objects are used to store the actual data of files. They are distributed across all data
servers. Metadata like ownership and permissions is not stored with each datafile object but
rather with the metafile object the datafile object is associated with. This is done because each
metafile object can reference multiple datafile objects.

Attributes stored for a datafile object:

• Datafile size (implicitly available through the underlying file system)

3.1.3 Directory Objects

Directory objects represent logical directories. They store directory metadata like ownership
and permissions. They also store the handle of a directory data object which in turn stores
all files within the directory. So-called directory hints can be set on these directory objects.
These hints affect all files within the directory. For example the datafile distribution and the
number of datafile objects that should be allocated for a newly created file in this directory
can be overwritten.

Attributes stored for a directory object:

• POSIX metadata

– Owner and group
– Permissions
– Change, access and modify times

• Directory entry count

• Directory hints

– Distribution name and parameters (dist name and dist params)
– Datafile count (num dfiles)

Directory Hints

The directory hints are currently mostly used to control the distribution of file data across the
data servers. dist name and dist params are used to automatically set a distribution function
for every new file. Distribution functions control the way file data is striped. For example, one
data server could receive twice the amount of data all other data servers receive. This could be
used to balance the load if servers of different capacity are used. The num dfiles hint is simply
used to assign the number of datafile objects that should be used for a file. Normally – if the
file is big enough – one datafile object is created on each data server. This hint can be used to,
for example, force that a file is striped only across 2 data servers. However, directory hints
can be used to influence other behavior concerning the files created within the directory the
directory hint is set on. For example, a new directory hint is used to give the user a possibility
to turn the metadata optimizations on and off.

13

3 Design

3.1.4 Directory Data Objects

Directory data objects store pairs of the form file name: metafile handle to identify all
files within the directory the directory data object is associated with. This indicates that the
file represented by the metafile object with the handle metafile handle is available as the file
called file name within this particular directory. Further information is not stored, because it
is already available from the associated directory object. There exists a one-to-one mapping
between directory objects and directory data objects, that is, each directory object references
exactly one directory data object and each directory data object is associated with exactly one
directory object. This separation is done transparently to the client. If a client requests all
directory entries, both objects are read by the server and returned as one.

Attributes stored for directory data object:

• Directory entries

3.1.5 Example Directory Tree

To illustrate the usage of the presented objects, an example is given in figure 3.1. It shows
all objects and relations between them necessary to build a simple directory tree with only
a single directory that contains one file. The figure represents the current implementation in
PVFS. A directory called testdir exists in the file system’s root directory (/) and contains a
file called testfile. Consequently, this file is accessible as /testdir/testfile.

The numbers behind the object type represent the unique object handles.3 Other information
within the boxes stands for metadata set on the respective object. “UID” and “GID” are
abbreviations for user ID and group ID respectively, two pieces of common metadata that
can be set on any object. “Permissions” stands for the octal representation of the file access
permissions. For example, a value of 0644 means that anyone may read the file, but only the
owner may write it.4 It is noteworthy that this information is not set on the datafile objects at
all, but only on the associated metafile object.

The directory objects and directory data objects are represented as one, because from the
client’s point of view there is only a directory object. Everything that has to do with the
directory data object is done transparently by the server. Also, differentiating between them
would only complicate matters.

As can be seen, this is quite a complex structure for a simple directory that contains a single file.
It is obvious that this structure becomes much more complex when a whole directory hierarchy
contains thousands of files that are striped across multiple servers. The goal of this thesis
is to reduce this complexity for certain use cases. Multiple datafile objects per file and the
indirections caused by the metafile object make up a huge part of this complexity. Therefore, a
feasible approach is to consolidate the metafile object and its datafile objects somehow.

3The handles are made up and not taken from a real world example.
4See man chmod for more information.

14

3 Design

Size: 65536

Datafile (1001)

testfile: 101

Directory (11)

Datafiles: 1001, 1002

Metafile (101)

Size: 2342

Datafile (1002)

/testdir

/testdir/testfile

UID/GID: 100/100
Permissions: 0755

UID/GID: 100/100
Permissions: 0644

Figure 3.1: Normal directory tree

3.2 Metadata Optimizations

The example in figure 3.1 is now used to illustrate the desired metadata optimizations introduced
in this thesis. These metadata optimizations are implemented as a new directory hint, that is,
they can be turned on and off on a per-directory basis.

The metafile object’s purpose is to link together all datafile objects that belong to a particular
file. It is obvious that the metafile object can be omitted if only one datafile object exists. For
small files it is not really necessary to create multiple datafile objects, so in this particular use
case the need for a metafile object can be bypassed. If only one datafile object is created for
each file, the datafile object’s handle can simply be put into the directory data object’s list of
directory entries.

Figure 3.2 shows the same file system tree as figure 3.1, but this time with metadata optimiza-
tions applied. In particular, there now is only one datafile object and no metafile object. As can
be seen, these metadata optimizations affect both the actual file and the directory in which it
is located. Instead of a metafile object that references several datafile objects there now is only
one datafile object that stores all file data. Also, the datafile object’s handle is used instead of
the metafile object’s handle to reference the file in the list of directory entries. It is also worth
mentioning that no common metadata is set on the datafile object at all. Common metadata
like ownership and permissions could be set on the datafile object itself, since this metadata
can be set on every object. This is not done for performance reasons, because another message

15

3 Design

would need to be sent to the appropriate data server to retrieve this information. Setting the
common metadata on the datafile object would, however, make the faking of this metadata
unnecessary, as can be seen in chapter 4.

testfile: 1001

Directory (11)

Datafile (1001)

/testdir

/testdir/testfile

UID/GID: 100/100
Permissions: 0755

Size: 67878

Figure 3.2: Optimized directory tree

With these changes made, however, several problems have to be considered:

1. The limit of one datafile object per file must be enforced, otherwise the file system ends
up corrupt, because the other datafile objects would not be referenced by any metafile
object or directory entry and therefore be lost.

2. The client and server expect a metafile object to be present. This metafile object stores
all metadata of a file, so this information must be faked in some way.

On the other hand, the following advantages become apparent:

1. No metadata server has to be contacted if a file needs to be read or written.

2. Only one data server needs to be contacted for each file. Additionally, the total file size is
available directly, avoiding expensive computation. This even applies to small files, since
the default striping size is only 64 KByte.

3.2.1 Drawbacks

On the other side, this has impact on the file system semantics, because certain metadata is
not stored at all anymore. However, since the metadata optimizations are implemented as a
directory hint, users must explicitly enable them and therefore should know what to expect.
Consequently, if these metadata optimizations are not activated, they do not influence the
normal operation of PVFS in any way. Also, file data is now only stored on one data server,

16

3 Design

which may decrease performance for larger files. Since the metadata optimizations are to be
used with small files, however, this is to be expected. In theory, if the metadata optimizations
are enabled for some files, it could be possible for other users to access and modify these files,
because no ownership information and permissions are available, thus rendering permission
checks useless. Tests with PVFS’s administration tools indicate that this is at least not possible
with these tools. However, the file system can also be accessed by other means. Currently, it is
not known whether these could be used to circumvent access restrictions.

3.2.2 Alternative Optimizations

In this thesis two optimization approaches are combined. On the one hand, a change of the file
system semantics is done by discarding certain metadata. In particular, no POSIX metadata
– that is, ownership information, permissions and timestamps – is available for files that are
created with the metadata optimizations applied. On the other hand, due to the elimination of
the metafile object, less work is needed. This is explained in detail in section 3.3 and chapter 4.

Other possible optimization approaches include client-side caching, relaxed consistency require-
ments and so-called compound operations. Most of these approaches are already implemented
to some extent. Consequently, their impact on metadata performance is mostly known and
therefore they are only presented here briefly.

Client-Side Caching

At the moment client-side caching is used only to store metadata for read operations. Modify-
ing metadata operations are not cached at all and consequently, each modification requires
communication with the metadata server. Details about this can be found in chapter 4. This is
closely related with the consistency requirements of PVFS, because such caching of metadata
could cause the clients’ view of the file system to be inconsistent. However, it could also
dramatically speed up certain use cases. For example, the parallel cluster file system Lustre5

plans to support metadata caching for write operations in the future.

Relaxed Consistency Requirements

Each file system operation is immediately executed on the server such that each client can see
the changes and therefore the clients’ view of the file system is consistent. For example, if all
files in a directory are changed, that means that for every file several messages have to be sent
to the server. It would also be possible to combine all changes into one batch operation and
then send this to the server once. This would decrease communication overhead considerably,
but also have an impact on file system consistency.

Compound Operations

Currently, file system operations access the same object several times. For example, if a new
file is created, a new metafile object is created and then later its attributes are set, as can be
seen in section 3.3. This could be combined into a single operation, such that the server has
not to be contacted multiple times. An implementation of this is presented in [DW07].

5For more information about Lustre, see http://www.lustre.org/ and http://www.clusterfs.com/.

17

http://www.lustre.org/
http://www.clusterfs.com/

3 Design

3.3 File System Operations

Three basic file system operations are adapted to make use of these optimizations. Each of
these operations can be split into several smaller steps that are executed consecutively. A
reduction of the number of these steps increases performance, therefore it is now analyzed
which of these steps can be skipped safely. The actual implementation of these operations and
changes is described in detail in chapter 4.

Even though only these three file system operations are adapted and examined here, all other
common file system operations – like copying or moving a file – work, too. However, these
three are best suited to demonstrate the metadata optimizations, because other file system
operations include additional overhead. For example, when copying a file, obviously the actual
file data has to be transferred as well.

3.3.1 File Creation

The following steps are necessary to create a new file in a directory:

1. Get the directory’s attributes

2. Create the metafile object

3. Create the datafile objects

4. Set the metafile object’s attributes

5. Create a directory entry for the file

To implement the metadata optimizations steps two and four are skipped. Also, it is enforced
that only one datafile object is created. The handle of this single datafile object is used instead
of the metafile object’s handle for the directory entry.

3.3.2 File Listing

The following steps are necessary to list the metadata of a file:

1. Get the metafile object’s attributes

2. Get the file size of each datafile object

Since there is no metafile object anymore, step one is skipped. Also, only one datafile object
exists and therefore only one data server has to be contacted to request the file size. The
metadata usually stored as the metafile object’s attributes is faked.

3.3.3 File Removal

The following steps are necessary to remove a file from a directory:

1. Remove the file’s directory entry

2. Get the metafile object’s attributes

18

3 Design

3. Remove the datafile objects

4. Remove the metafile object

Again, as there is no metafile object step four is skipped. Step two can not be skipped, because
it is needed to determine if a file was created with the no metafile hint set or not.

Summary

As shown in this chapter, the elimination of the metafile object offers several opportunities for
performance improvement within the specific file system operations. In the course of this thesis
the following three basic operations are inspected closely and adapted to take advantage of the
changes described in this chapter:

1. File creation – creating all necessary data structures to represent a file

2. File listing – requesting and showing all metadata available for a given file

3. File removal – destroying all data structures associated with a file

Chapter 4 gives an in-depth look at the changes made to the PVFS source code to implement
the metadata optimizations. The actual improvements of these changes are also evaluated by
using benchmarks and visualization in chapter 5 and chapter 6.

19

4 Implementation

To implement the changes outlined in chapter 3 several changes to PVFS are necessary. They
are explained in detail in this chapter, as well as some fundamental PVFS internals. An
important goal is to keep the changes minimal to ease future development. All these changes
are implemented on top of the modified version of PVFS that is also used in [Kun07]. However,
a port to the official version of PVFS should be relatively easy.

4.1 Internals

4.1.1 Architecture

PVFS uses the layered architecture shown in figure 4.1.1 It is split into a client and a server
side, each made up of several layers. These layers abstract the functionality provided by the
layers beneath them. All communication between the layers is done in a non-blocking way, that
is, all functions called return immediately and can later be checked for completion.

Application

BMI

System Interface
acache ncache

User Level Interface

Flow

Main

BMI Trove

Flow

...Kernel-VFS

Job

Job

S
e
rv

e
r

C
lie

n
t

MPI-IO

DiskNetwork

Server
Client

Client

Figure 4.1: PVFS’s layered architecture

1The figure is taken from [Kun07] with the author’s permission.

20

4 Implementation

This split and the most important of these layers are now described. For more in-depth
information about this architecture, see [Kun07] and the documentation in the PVFS source
package.

Server

Each instance of the server side – that is, each server process – can either act as a data server, a
metadata server or both. Usually only one of these server processes is started on a machine and
several of them make up a file system, thus distributing the file system across several machines,
as described in chapter 1. The server runs three threads to parallelize the work:

• One thread manages all BMI communication.

• One thread manages all Trove I/O.

• The main thread handles all the remaining work.

Client

A client is a process that accesses and possibly manipulates a file system provided by the server
processes. Each client has direct access to the file system, either through one of the high-level
“User Level Interfaces” or by directly using the “System Interface”.

BMI

The Buffered Message Interface provides a network-independent interface for both the clients
and the servers to communicate with each other. BMI currently supports TCP, Myrinet and
InfiniBand.

Trove

The Trove layer handles everything related to actual I/O2 to and respectively from the underlying
persistent storage. This layer also provides a storage-independent interface. Currently only one
module is available, which writes data to files in an underlying local file system and metadata
to a Berkeley database. For example, this independence can be used to eliminate disk latency
by using the RAM instead of the disk and thus ease profiling. For more information on this
particular use case, see [Kun06].

System Interface

All changes made in this thesis mainly take place in this layer. This has the advantage that
all higher layers automatically benefit from the changes. This layer provides an API3 and
a corresponding library called libpvfs that is used by the “User Level Interface”. On this
layer all clients access the file system independently. If desired, advanced implementations can
be done in the “User Level Interface”. Direct use of the libpvfs library should be avoided,
because it provides only a very low-level interface and is quite tedious to use.

2Input/Output
3Application Programming Interface – Basically a set of functions abstracting the provided functionality.

21

4 Implementation

User Level Interface

This layer is used to abstract access to the file system even further by extending the functionality
provided by the libpvfs library. There are currently two commonly used implementations of
this layer: a module for ROMIO and a kernel module for Linux. ROMIO is the I/O component
of MPICH2 and provides a high-level interface for parallel I/O with, for example, collective file
system operations. The kernel module on the other hand enables PVFS to be accessed via the
POSIX API for I/O.

acache

The attribute cache stores the metadata of files and directories for a limited amount of time.
Consequently, the server does not need to be contacted repeatedly if the metadata of a specific
file or directory is needed multiple times.

ncache

The name cache stores mappings between file names and their corresponding object handles.
Consequently, a file name does not need to be resolved repeatedly if a file or directory is
accessed multiple times.

4.1.2 State Machines

In PVFS file system operations are implemented as state machines. These state machines
consist of several states and transitions between them. A given state machine is in only one
state at a time. In each state either a specific function or another so-called nested state machine
is executed. For example, the operations and individual steps in section 3.3 are represented by
state machines and their states respectively.

Both can return a value to the calling state machine that determines which transition will be
taken. This concept is elaborated with the example client state machine in listing 4.1. Server
state machines work slightly differently, but are omitted here, because the changes in this
chapter are mainly done to client state machines.

Listing 4.1: Example client state machine

1 machine my state machine
2 {
3 s t a t e i n i t
4 {
5 run my sm init ;
6 s u c c e s s => cleanup ;
7 default => some state ;
8 }
9

10 s t a t e some state
11 {
12 jump my other state machine ;
13 default => cleanup ;

22

4 Implementation

14 }
15
16 s t a t e c leanup
17 {
18 run my sm cleanup ;
19 default => terminate ;
20 }
21 }

The state machine’s name is given after the machine keyword. In case of a nested state machine,
state would be preceded by nested. A set of named states follows, each introduced by state.
The first line specifies which function or nested state machine is executed in this particular
state. The run statement executes a function, while jump executes a nested state machine.
For each state several transitions of the form return value => new state can be given. If no
return value matches, the default transition is used. The default transition must be given
last, because the first matching transition is used.
The state machine begins in the init state and ends if it reaches the terminate state.

Functions run in each state are defined as in listing 4.2.

Listing 4.2: Example client state function for initialization

1 stat ic int my sm init (PINT cl ient sm ∗sm p , j o b s t a t u s s ∗ j s p)
2 {
3 j s p−>e r r o r c o d e = 0 ;
4
5 return 1 ;
6 }

The return value that defines the transition is stored in js p->error code, with success being
an alias for 0. The return value of the function itself determines the next action of the state
machine. If 1 is returned, the transition to the next state is taken, while a 0 signals that the
state machine should be terminated.

Listing 4.3: Example client state function for cleanup

1 stat ic int my sm cleanup (PINT client sm ∗sm p , j o b s t a t u s s ∗ j s p)
2 {
3 j s p−>op complete = 1 ;
4
5 return 0 ;
6 }

In the example from listing 4.1 the init state calls the my sm init function, which in turns
sets js p->error code to 0 – which equals success. Therefore the transition to some state is
used. This state calls a nested state machine called my other state machine. After the nested
state machine completes, the transition to the cleanup state is used regardless of the return

23

4 Implementation

value of my other state machine. The function my sm cleanup from listing 4.3 is called. It
sets js p->op complete to 1, indicating that this state machine is finished. It then returns 0,
causing the state machine to be terminated.

4.1.3 Message Pairs

The PVFS client communicates with the server via so-called message pairs, that is, a request
sent by the client and a response sent back by the server. These message pairs are handled by
a special nested state machine called pvfs2 msgpairarray sm that is used both by the client
and the server. On the client this state machine sends a request and waits for a response from
the server. In case an error occurs, the request is sent again. For instance this might happen if
the server crashes during the processing of the request.

4.2 New Directory Hint: no metafile

To be able to control the metadata optimizations per directory a so-called directory hint is
added. This directory hint can be set on any directory and influences files and directories
created inside it. The directory hint is called no metafile and is available as the extended
attribute user.pvfs2.no metafile. Without this directory hint being set PVFS behaves as if
no changes were made.

To introduce this new directory hint changes to several areas of PVFS must be made. There
is some common infrastructure that needs to be modified to support a new directory hint.
Also, the directory hint must be introduced to the client and the server, as well as the Request
Protocol. Finally, it is also shown how the hint can be used.

4.2.1 Common Infrastructure Modifications

To introduce a new directory hint it has to be added at several places. First, the name of the
new hint must be defined in src/common/misc/pvfs2-internal.h which contains all directory
hints interpreted by PVFS. An excerpt from this file is shown in listing 4.4.

Listing 4.4: Excerpt from src/common/misc/pvfs2-internal.h

1 . . .
2
3 /∗ Optiona l x a t t r s have ” user . p v f s 2 .” as a p r e f i x ∗/
4 #define SPECIAL DIST NAME KEYSTR ” dist name \0”
5 #define SPECIAL DIST NAME KEYLEN 21
6 #define SPECIAL DIST PARAMS KEYSTR ” dis t params \0”
7 #define SPECIAL DIST PARAMS KEYLEN 23
8 #define SPECIAL NUM DFILES KEYSTR ” num df i l e s \0”
9 #define SPECIAL NUM DFILES KEYLEN 22

10 #define SPECIAL METAFILE HINT KEYSTR ” meta hint \0”
11 #define SPECIAL METAFILE HINT KEYLEN 21
12 #define SPECIAL NO METAFILE KEYSTR ” n o m e t a f i l e \0”
13 #define SPECIAL NO METAFILE KEYLEN 23
14

24

4 Implementation

15 . . .

The key string has to be manually terminated with \0. The key length can be computed
by concatenating the prefix and the key string including the terminating \0, in this case
user.pvfs2.no metafile\0, which has length 23.

For an explanation of the other directory hints, see chapter 3.

4.2.2 Request Protocol Modifications

The hint then has to be added to the PVFS directory hint structure that stores all
possible directory hints for a given directory. This structure can be found in the file
src/proto/pvfs2-attr.h. An excerpt is given in listing 4.5.

Listing 4.5: Excerpt from src/proto/pvfs2-attr.h

1 /∗ extended h i n t a t t r i b u t e s f o r a d i r e c t o r y o b j e c t ∗/
2 struct PVFS di rec tory h int s
3 {
4 u i n t 3 2 t d i s t name l en ;
5 /∗ what i s the d i s t r i b u t i o n name? ∗/
6 char ∗dist name ;
7 /∗ what are the d i s t r i b u t i o n parameters ? ∗/
8 u i n t 3 2 t d i s t pa ra ms l en ;
9 char ∗ dis t params ;

10 /∗ how many d f i l e s ought to be used ∗/
11 u i n t 3 2 t d f i l e c o u n t ;
12 /∗
13 ∗ I f t h i s h i n t i s s e t to any v a l u e not e q u a l to 0 ,
14 ∗ e x a c t l y one d a t a f i l e and no m e t a f i l e w i l l be c r e a t e d
15 ∗ f o r new f i l e s in t h i s d i r e c t o r y .
16 ∗/
17 u i n t 3 2 t n o m e t a f i l e ;
18 } ;
19 typedef struct PVFS di rec tory h int s PVFS directory hint ;

The PVFS directory hint structure is actually part of a larger structure called
PVFS diretory attr which in turn is again part of a larger structure called PVFS object attr.
PVFS object attr is used to store the attributes for all available objects. These structures are
shown in listing 4.6. The PVFS object attr structure stores common metadata like owner,
group, perms, atime, mtime and ctime that can be set on any object. objtype is used to
differentiate between object types, which can be any of PVFS TYPE NONE, PVFS TYPE METAFILE,
PVFS TYPE DATAFILE, PVFS TYPE DIRECTORY, PVFS TYPE SYMLINK or PVFS TYPE DIRDATA as
defined in include/pvfs2-types.h. The union u stores the object-specific attributes. For
example, if objtype is set to PVFS TYPE DIRECTORY, u.dir.hint would be used to store the
directory hints.

25

4 Implementation

Listing 4.6: Excerpt from src/proto/pvfs2-attr.h

1 /∗ a t t r i b u t e s s p e c i f i c to d i r e c t o r y o b j e c t s ∗/
2 struct PVFS d i r e c to ry a t t r s
3 {
4 PVFS size d i r en t count ;
5 PVFS directory hint h int ;
6 } ;
7 typedef struct PVFS d i r e c to ry a t t r s PVFS directory att r ;
8
9 . . .

10
11 /∗ g e n e r i c a t t r i b u t e s ; a p p l i e s to a l l o b j e c t s ∗/
12 struct PVFS object attr
13 {
14 PVFS uid owner ;
15 PVFS gid group ;
16 PVFS permissions perms ;
17 PVFS time atime ;
18 PVFS time mtime ;
19 PVFS time ctime ;
20 u i n t 3 2 t mask ; /∗ i n d i c a t e s which f i e l d s are c u r r e n t l y v a l i d

↪→ ∗/
21 PVFS ds type objtype ; /∗ d e f i n e d in pvfs2−t y p e s . h ∗/
22 union
23 {
24 PVFS meta f i l e at t r meta ;
25 PVFS data f i l e a t t r data ;
26 PVFS directory att r d i r ;
27 PVFS symlink attr sym ;
28 }
29 u ;
30 } ;

To make PVFS actually transfer the new directory hint between client and server the en-
coding/decoding functions of the affected structure – that is, PVFS directory hint – has to
be adapted. These are semi-automatically created by using the endecode macros defined in
src/proto/endecode-funcs.h, as shown in listing 4.7.

Listing 4.7: Excerpt from src/proto/pvfs2-attr.h

1 #ifde f PINT REQPROTO ENCODE FUNCS C
2 e n d e c o d e f i e l d s 9 (PVFS directory hint ,
3 u int32 t , d i s t name len ,
4 skip4 , ,
5 s t r i ng , dist name ,
6 u int32 t , d i s t params l en ,
7 skip4 , ,

26

4 Implementation

8 s t r i ng , dist params ,
9 u int32 t , d f i l e c o u n t ,

10 skip4 , ,
11 u int32 t , n o m e t a f i l e)
12 #endif

The endecode fields 9 macro accepts a variable type – in this case PVFS directory hint
– and 9 fields – one variable type and one variable per field – and in turn creates two inline
functions, one to encode the 9 given fields and another one to decode them again. The resulting
functions are shown in listing 4.8.

Listing 4.8: Automatically generated encode/decode functions

1 stat ic i n l i n e void
2 encode PVFS directory h int
3 (char ∗∗pptr , const PVFS directory hint ∗x)
4 {
5 encode u in t32 t (pptr , &x−>d i s t name l en) ;
6 encode sk ip4 (pptr , &x−>) ;
7 e n c o d e s t r i n g (pptr , &x−>dist name) ;
8 encode u in t32 t (pptr , &x−>d i s t pa ra ms l en) ;
9 encode sk ip4 (pptr , &x−>) ;

10 e n c o d e s t r i n g (pptr , &x−>dis t params) ;
11 encode u in t32 t (pptr , &x−>d f i l e c o u n t) ;
12 encode sk ip4 (pptr , &x−>) ;
13 encode u in t32 t (pptr , &x−>n o m e t a f i l e) ;
14 }
15
16 stat ic i n l i n e void
17 decode PVFS directory h int
18 (char ∗∗pptr , PVFS directory hint ∗x)
19 {
20 decode u in t32 t (pptr , &x−>d i s t name l en) ;
21 decode sk ip4 (pptr , &x−>) ;
22 d e c o d e s t r i n g (pptr , &x−>dist name) ;
23 decode u in t32 t (pptr , &x−>d i s t pa ra ms l en) ;
24 decode sk ip4 (pptr , &x−>) ;
25 d e c o d e s t r i n g (pptr , &x−>dis t params) ;
26 decode u in t32 t (pptr , &x−>d f i l e c o u n t) ;
27 decode sk ip4 (pptr , &x−>) ;
28 decode u in t32 t (pptr , &x−>n o m e t a f i l e) ;
29 }

encode PVFS directory hint from listing 4.8 takes a filled PVFS directory hint struc-
ture and encodes the contained information into a string, that is, a char array.
decode PVFS directory hint does the opposite: it reads a string and fills a given

27

4 Implementation

PVFS directory hint structure with the decoded information. It should be noted that
the other encode/decode functions used for uint32 t, skip4 and string are predefined in
src/proto/endecode-funcs.h.

Additionally, the new directory hint must be considered when copying objects’ attributes.
To do this, the function PINT copy object attr must be changed, as shown in listing 4.9.
This functions decides which fields of the structure should be copied by looking at the mask
field of the src structure. Both src and dest are PVFS object attr structures. If the
PVFS ATTR DIR HINT bit is set in mask all directory hints are copied from src to dest.

Listing 4.9: Excerpt from src/common/misc/pint-util.c

1 i f (src−>mask & PVFS ATTR DIR HINT)
2 {
3 dest−>u . d i r . h int . d f i l e c o u n t =
4 src−>u . d i r . h int . d f i l e c o u n t ;
5 dest−>u . d i r . h int . n o m e t a f i l e =
6 src−>u . d i r . h int . n o m e t a f i l e ;
7
8 . . .
9 }

4.2.3 Server Modifications

The get-attr server state machine must also be modified to send the no metafile direc-
tory hint back to the client. First it has to be added to the list of directory hints in
src/server/pvfs2-server.h, as shown in listing 4.10. Also, the total number of directory
hints has to be corrected by incrementing NUM SPECIAL KEYS.

Listing 4.10: Excerpt from src/server/pvfs2-server.h

1 /∗ o p t i o n a l ; user−s e t t a b l e keys ∗/
2 enum
3 {
4 DIST NAME KEY = 0 ,
5 DIST PARAMS KEY = 1 ,
6 NUM DFILES KEY = 2 ,
7 NO METAFILE KEY = 3 ,
8 NUM SPECIAL KEYS = 4 , /∗ not an index ∗/
9 METAFILE HINT KEY = 4 ,

10 } ;

Listing 4.11 and listing 4.12 show the changes needed in the get-attr server state machine.
The directory hint’s name as an extended attribute and length have to be added to the
Trove Special Keys array, as shown in listing 4.11. These changes cause the directory hint to
be read by Trove.

28

4 Implementation

Listing 4.11: Excerpt from src/server/get-attr.sm

1 PINT se rve r t rove keys s Trove Spec ia l Keys [] =
2 {
3 {” user . pvf s2 . dist name ” , SPECIAL DIST NAME KEYLEN} ,
4 {” user . pvf s2 . d i s t params ” , SPECIAL DIST PARAMS KEYLEN} ,
5 {” user . pvf s2 . num df i l e s ” , SPECIAL NUM DFILES KEYLEN} ,
6 {” user . pvf s2 . n o m e t a f i l e ” , SPECIAL NO METAFILE KEYLEN} ,
7 {” user . pvf s2 . meta hint ” , SPECIAL METAFILE HINT KEYLEN} ,
8 } ;

Listing 4.12 shows a shortened version of the conversion process needed because the directory
hint’s value is returned as a string – that is, a char array. It must be converted to an integer
with the strtol function before it gets sent back to the client. It can also be seen that the
directory hint is set to 0 if it could not be read or an error occurs while converting. Therefore
any value not equal to 0 can be interpreted as a set directory hint. s op->resp.getattr.attr
contains the PVFS object attr structure that gets sent back to the client.

Listing 4.12: Excerpt from src/server/get-attr.sm

1 long int n o m e t a f i l e = 0 ;
2
3 i f (s op−>u . g e t a t t r . e r r a r r a y [NO METAFILE KEY] == 0)
4 {
5 char ∗ endptr = NULL;
6 . . .
7 n o m e t a f i l e = s t r t o l (s op−>v a l a [NO METAFILE KEY] . bu f f e r ,

↪→ &endptr , 10) ;
8 i f (∗ endptr != ’ \0 ’ | | n o m e t a f i l e < 0)
9 {

10 n o m e t a f i l e = 0 ;
11 }
12 . . .
13 }
14
15 s op−>re sp . u . g e t a t t r . a t t r . u . d i r . h int . n o m e t a f i l e = n o m e t a f i l e ;

4.2.4 Client Modifications

To avoid the need of having to set the no metafile directory hint on each created directory the
hint is inherited from the parent directory, that is, the hint is set on a newly created directory
if and only if it is already set on its parent directory. This is done in the mkdir client state
machine, as shown in listing 4.13. sm p->getattr.attr contains the attributes of the parent
directory. As can be seen, if the no metafile directory hint is set to any value but 0 the
directory hint is also set on the newly created directory. A value of 0 means that the directory
hint is not set at all. This is done to make it easier to create whole directory hierarchies with
directory hints. All other directory hints are inherited, too.

29

4 Implementation

Listing 4.13: Excerpt from src/client/sysint/sys-mkdir.sm

1 i f (sm p−>g e t a t t r . a t t r . u . d i r . h int . n o m e t a f i l e != 0)
2 {
3 goss ip debug (GOSSIP CLIENT DEBUG, ”mkdir : s e t t i n g

↪→ n o m e t a f i l e \n”) ;
4
5 . . .
6 }

4.2.5 Hint Usage Instructions

The now introduced directory hint can now, for example, be set with the pvfs2-xattr command.
To set it on the directory /pvfs2/testdir the full command looks as follows:

$ pvfs2-xattr -s -k user.pvfs2.no_metafile -v 1 /pvfs2/testdir

It can be unset by providing a value of 0:

$ pvfs2-xattr -s -k user.pvfs2.no_metafile -v 0 /pvfs2/testdir

It is also possible to mount a PVFS volume as a normal file system via a kernel module. Then
the normal command line tools for extended attributes can be used to set the hints, too.4

However, this is out of the scope of this thesis.

4.3 Compatibility with Unrelated State Machines

To work with the changes described in the previous sections several changes to seemingly
unrelated state machines must be made. The adaptions necessary for each state machine are
explained in this section.

4.3.1 Path Lookup: lookup State Machines

The lookup client and server state machines resolve a path incrementally. Therefore, a given
path is split up into so-called path segments. For example, the path /testdir/testfile would
be processed in the following way:

1. The root’s (/) attributes are fetched.
It is determined that this is a directory, so the directory entries are read and searched for
testdir.

2. The directory’s (/testdir) attributes are fetched
It is determined that this is a directory, so the directory entries are read and searched for
testfile.

3. The file’s (/testdir/testfile) attributes are fetched.
It is determined that this is a file, so the lookup ends here.

4See man getfattr and man setfattr.

30

4 Implementation

However, the lookup state machines expects the last segment – that is, testfile – to be
a metafile object and aborts otherwise. This must be prevented, therefore several changes
are needed. These are shown in listing 4.14 and listing 4.15. In both cases a new case for
datafile objects is introduced. This is done by an appropriate handling of the object type
PVFS TYPE DATAFILE. Without this change, if a datafile object is encountered during path
lookup the client aborts without sending a request to the server and the server itself simply
crashes because of a failed assert statement.

Listing 4.14 shows the change for the lookup client state machine. As can be seen, datafile
objects are just handled like metafile objects. This is possible, because nothing special is done
if a metafile object is encountered, but rather just some generic tests. The new handling for
datafile objects in the lookup server state machine is shown in listing 4.15. Again, datafile
objects are handled just like metafile objects, in fact the code is a slightly modified version of
the metafile object handling code.

Listing 4.14: Excerpt from src/client/sysint/sys-lookup.sm

1 switch (cur seg−>s e g a t t r . objtype)
2 {
3 case PVFS TYPE DIRECTORY:
4 j s p−>e r r o r c o d e = LOOKUP TYPE DIRECTORY;
5 break ;
6 case PVFS TYPE DATAFILE:
7 case PVFS TYPE METAFILE:
8 j s p−>e r r o r c o d e = LOOKUP TYPE METAFILE;
9 break ;

10
11 . . .

Listing 4.15: Excerpt from src/server/lookup.sm

1 i f (a p−>objtype == PVFS TYPE DATAFILE)
2 {
3 goss ip debug (GOSSIP SERVER DEBUG, ” ob j e c t i s a d a t a f i l e ; ”
4 ” h a l t i n g lookup and sending response \n”) ;
5
6 j s p−>e r r o r c o d e = STATE ENOTDIR;
7 return 1 ;
8 }

4.4 File Creation: create Client State Machine

In its original form, the create client state machine does the following to create a new file in a
given directory:

1. Get the parent directory’s attributes

31

4 Implementation

• Amongst other things, get the directory hints

2. Create the metafile object

3. Create the datafile objects

4. Set the metafile object’s attributes

• Set the datafile objects’ handles

5. Create a directory entry for the new file

• Insert the metafile object’s handle into the directory data object

Since the parent directory’s hints are read in the first step, they can be used to decide the
further action based on whether the no metafile directory hint is set or not. To force the
creation of only one datafile object the existing code to request an arbitrary number of datafile
objects is modified, as shown in listing 4.16. Independent of the requested number of datafile
objects the limit is set to 1, thus ensuring that the file system remains in a consistent state.
This does not limit the file size, but only the striping factor. It must be noted that all file data
ends up on a single data server and therefore this probably is only feasible for small files.

Listing 4.16: Excerpt from src/client/sysint/sys-create.sm

1 i f (at t r−>u . d i r . h int . n o m e t a f i l e != 0)
2 {
3 /∗
4 ∗ Always c r e a t e on ly one d a t a f i l e .
5 ∗/
6 sm p−>u . c r e a t e . n u m d a t a f i l e s = 1 ;
7 }

To decide whether or not to skip a state the attributes of the parent directory are checked, as
shown in listing 4.17. New transitions are added to the state machine, such that the newly
introduced error code of CREATE SHORTCUT causes the state machine to skip this particular
state. This is used to skip the states that create the metafile object and set the metafile object’s
attributes.

Listing 4.17: Excerpt from src/client/sysint/sys-create.sm

1 i f (sm p−>g e t a t t r . a t t r . u . d i r . h int . n o m e t a f i l e != 0)
2 {
3 /∗
4 ∗ Skip t h i s s t a t e .
5 ∗/
6 j s p−>e r r o r c o d e = CREATE SHORTCUT;
7 return 1 ;
8 }

32

4 Implementation

To keep the changes as small as possible the existing code that inserts the metafile object’s
handle as a new directory entry is reused. However, the metafile object’s handle is simply set
to the datafile object’s handle such that it gets used instead. This is shown in listing 4.18.

Listing 4.18: Excerpt from src/client/sysint/sys-create.sm

1 i f (sm p−>g e t a t t r . a t t r . u . d i r . h int . n o m e t a f i l e != 0)
2 {
3 /∗
4 ∗ We s e t m e t a f i l e h a n d l e so the d a t a f i l e h a n d l e g e t s i n s e r t e d

↪→ i n t o
5 ∗ the d i r e c t o r y .
6 ∗/
7 sm p−>u . c r e a t e . m e t a f i l e h a n d l e =

↪→ sm p−>u . c r e a t e . d a t a f i l e h a n d l e s [0] ;
8 }

If the hint is set, all steps involving the metafile object are skipped, that is, steps two and four.
The resulting process looks like this:

1. Get the parent directory’s attributes

• Amongst other things, get the directory hints

2. Create the datafile object

3. Create a directory entry for the new file

• Insert the datafile object’s handle into the directory

As can be seen, two of of a total of five steps are skipped. Instead of the metafile object’s
handle the datafile object’s handle can be used, since it is ensured that only one datafile object
is created.

4.5 File Listing: getattr Client State Machine

The getattr client state machine is a nested state machine that requests the attributes of a
given object from the server and returns them to the calling state machine. Therefore it has
the potential to make many operations “just work” even with the completely different situation
of a missing metafile object. It is modified to fake the attributes of a metafile object in case
the attributes of a file created with the no metafile directory hint is requested. The only
information known about the datafile object on the server side is its handle and its size, all
other information must therefore be faked. This information includes:

• Common metadata

– Ownership
– Permissions
– Access, modification and change time

33

4 Implementation

• Metafile object-specific attributes

– Distribution function and parameters
– The datafile objects’ handles
– Number of datafile objects

With some additional effort it would also be possible to selectively set some metadata on the
datafile object and fake the remaining metadata. To do this, the setattr call in the create
client state machine must be adapted to set only the desired metadata. However, as already
mentioned, this is not done here for performance reasons.

The getattr client state machine takes different actions based on the object type. If a
datafile object’s attributes are returned it simply does nothing. However, the code in list-
ing 4.19 causes it to fake the attributes of a metafile object if required. The attributes
may only be faked if a metafile object’s attributes are actually requested, because it is per-
fectly legal to request a datafile object’s attributes to determine the datafile object’s size.
sm p->getattr.req attrmask stores which attributes are requested. If all possible attributes
of a metafile object are requested with PVFS ATTR META ALL, it can be assumed that a metafile
object’s attributes are requested. Therefore the attributes may then be faked. The common
metadata is faked in such a way that the file appears to belong to the user and group with ID
0, that is, root. The permissions are set to -rw-rw-rw-5, which means that anyone may read
or write the file. The different times are all set to 0, that is, the beginning of the Unix epoch.6

It is important to mention that this is only used for display purposes and the like and is not
the actual metadata set on the datafile object.

Listing 4.19: Excerpt from src/client/sysint/sys-getattr.sm

1 switch (at t r−>objtype)
2 {
3 . . .
4
5 case PVFS TYPE DATAFILE:
6 /∗
7 ∗ I f a m e t a f i l e was reques ted , t h i s i s p r o b a b l y a f i l e

↪→ c r e a t e d
8 ∗ with n o m e t a f i l e .
9 ∗/

10 i f (sm p−>g e t a t t r . req attrmask & PVFS ATTR META ALL)
11 {
12 /∗
13 ∗ Manually f i l l out a l l d e t a i l s f o r a m e t a f i l e .
14 ∗/
15 PINT SM DATAFILE SIZE ARRAY INIT(

↪→ &sm p−>g e t a t t r . s i z e a r r a y , 1) ;
16 sm p−>g e t a t t r . s i z e a r r a y [0] = attr−>u . data . s i z e ;
17

5See man chmod for detailed information.
61970-01-01 00:00:00Z

34

4 Implementation

18 attr−>owner = 0 ;
19 att r−>group = 0 ;
20 att r−>perms = 0666 ;
21 att r−>atime = 0 ;
22 att r−>mtime = 0 ;
23 att r−>ctime = 0 ;
24
25 attr−>mask |= PVFS ATTR COMMON ALL | PVFS ATTR META ALL

↪→ | PVFS ATTR DATA ALL;
26 attr−>objtype = PVFS TYPE METAFILE;
27
28 attr−>u . meta . d f i l e c o u n t = 1 ;
29 att r−>u . meta . d f i l e a r r a y = mal loc (s izeof (PVFS handle)) ;
30 att r−>u . meta . d f i l e a r r a y =

↪→ memset (att r−>u . meta . d f i l e a r r a y , 0 ,
↪→ s izeof (PVFS handle)) ;

31 att r−>u . meta . d f i l e a r r a y [0] =
↪→ sm p−>g e t a t t r . o b j e c t r e f . handle ;

32 att r−>u . meta . d i s t =
↪→ PINT dis t c reate (PVFS DIST BASIC NAME) ;

33 att r−>u . meta . d i s t s i z e = PVFS DIST BASIC NAME SIZE ;
34 }
35 return 0 ;
36
37 . . .

4.6 File Removal: remove Client State Machine

In its original form, the client remove state machine does the following to remove a file from a
given directory:

1. Remove the file’s directory entry

• Remove the metafile object’s handle from the directory

2. Get the metafile object’s attributes

• The datafile objects’ handles are needed

3. Remove the datafile objects

4. Remove the metafile object

Because of the changes to the getattr client state machine, attributes of a metafile object are
returned even if the file was created with the no metafile directory hint set. However, if the
returned metafile object’s handle equals the handle of its only datafile object, the removal of
the metafile object can be skipped, as shown in listing 4.20. Because these handles are globally
unique it is ensured that they indeed refer to the same object. A new transition is added to

35

4 Implementation

the state machine, such that the newly introduced error code of REMOVE SHORTCUT causes the
state machine to skip the metafile object’s removal.

Listing 4.20: Excerpt from src/client/sysint/remove.sm

1 i f (sm p−>o b j e c t r e f . handle ==
↪→ sm p−>g e t a t t r . a t t r . u . meta . d f i l e a r r a y [0])

2 {
3 /∗
4 ∗ The m e t a f i l e ’ s handle e q u a l s the d a t a f i l e ’ s handle .
5 ∗ Skip t h i s s t a t e .
6 ∗/
7 j s p−>e r r o r c o d e = REMOVE SHORTCUT;
8 return 1 ;
9 }

After these changes, the resulting process looks like this:

1. Remove the file’s directory entry

• Remove the datafile object’s handle from the directory

2. Get the datafile object’s attributes

• Returns metafile object’s faked attributes

3. Remove the datafile object

As can be seen, one of a total of four steps is skipped. Step two can not be skipped, because it
is not known beforehand whether the file was created with no metafile or not.

Summary

The changes introduced due to the implementation of the metadata optimizations are kept
minimal. Existing code and infrastructure is re-used as much as possible to ease future
development and reduce the chance of incompatibilities. All in all, the code changes are
relatively straightforward. However, the initial familiarization with the code is more challenging,
because it involves reading a lot of debug output and comments in the code are sometimes
lacking.

36

5 Benchmarking

To measure the benefits of the changes described in the previous chapters a relatively simple
benchmark program is designed. The program creates, lists and removes a big amount of files
in a relatively flat directory hierarchy. For details on this program, see appendix B.

To simulate several different environments the number of concurrently accessing clients and the
underlying storage are varied. Moderate load is simulated by only one client accessing the file
system, while five concurrent clients simulate heavy load. The clients are independent instances
of the benchmark program. To observe the influence of disk latency, PVFS’s storage space is put
into a normal directory on an ext3 partition and in RAM, that is, its own tmpfs partition. This
is especially important as PVFS – in its default configuration – forces metadata modifications
to disk.1 Consequently, disk latency plays an important role in the overall performance.

5.1 Hardware Configurations

To test if the metadata optimizations work well in different environments, two basic config-
urations are tested. One configuration uses only a single machine, therefore eliminating any
influence of the network. The other configuration uses multiple machines, thus network latency
as well as disk latency influence the performance.

5.1.1 Single Machine

The clients, data and metadata server all run on the same machine with an Intel Core 2 Duo
2.4 GHz, 2 GByte RAM and a SATA disk.

5.1.2 Five Machines

Five machines from the cluster of the workgroup “Parallel and Distributed Systems” are used.
Two machines act as data servers, another two as metadata servers and a fifth machine is used
for the clients. Each machine is equipped with two Intel Xeon 2.0 GHz, 1 GByte RAM, an ATA
disk and a 1 GBit/s network interface.

1For more information, see man sync and man fsync.

37

5 Benchmarking

5.2 Single Machine

5.2.1 File Creation

The benchmark program creates 100 child directories in a single parent directory and populates
each with 500 files. Only the time needed to create these 50,000 files is measured, the directories
are created before the actual benchmark starts. To exclude the influence of the io client state
machine, files of size 0 are created.

Figure 5.1a shows the time each client needs to create 50,000 files, once with and once without
the no metafile directory hint set. PVFS’s storage space is put in a normal directory on
an ext3 partition. In figure 5.1b the same values as in the last one are shown, except that
PVFS’s storage space is put on its own tmpfs partition, thus removing any latencies the disk
introduces.

1 client 5 clients
0

50

100

150

200

250

300

350

400

450

500

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(a) On disk

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(b) On tmpfs

Figure 5.1: File creation

As can be seen in figure 5.1a, if only one client writes to the file system and the no metafile
directory hint is set, the time needed to create the 50,000 files decreases to about 60% of the
time needed to create them without the hint. However, if five clients work concurrently the
time decreases to about 35% of the original. This is probably due to the fact that metadata
writes are by default synchronous. However, these are exactly the operations that are skipped if
no metafile is set and thus the server can process more requests in parallel instead of waiting
for the slow disk.

In figure 5.1b the speedup with five concurrent clients is less drastic, because no disk seek times
could be avoided.

5.2.2 File Listing

The program lists the files in each directory such that details like permissions, ownership etc.
are shown, too. This is done so that the client has to contact each data file’s server, because

38

5 Benchmarking

otherwise only the names would need to be fetched from the metadata server. In particular the
-l flag of pvfs2-ls is used.2

Figure 5.2a shows the time each client needs to list the 50,000 files, once with and once without
the no metafile directory hint set. PVFS’s storage space is put in a normal directory on
an ext3 partition. In figure 5.2b the same values as in the last one are shown, except that
PVFS’s storage space is put on its own tmpfs partition, thus removing any latencies the disk
introduces.

1 client 5 clients
0

5

10

15

20

25

30

35

40

45

50

55

60

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(a) On disk

1 client 5 clients
0

5

10

15

20

25

30

35

40

45

50

55

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(b) On tmpfs

Figure 5.2: File listing

As can be seen in 5.2a, if only one client reads from the file system and the no metafile
directory hint is set, the time needed to list the 50,000 files decreases to about 60% of the time
needed to list them without the hint. With five concurrent clients the time decreases to about
55% of the original.

In figure 5.2b for some reason the single client takes longer than in the previous case. The time
for five concurrent clients is nearly identical, however.

5.2.3 File Removal

The program removes all files and directories such that the file system is in the same state as
before the benchmark was started. Only the time needed to remove the 50,000 files is measured,
the directories are removed after the actual benchmark ends.

Figure 5.3a shows the time each client needs to remove the 50,000 files, once with and once
without the no metafile directory hint set. PVFS’s storage space is put in a normal directory
on an ext3 partition. In figure 5.3b the same values as in the last one are shown, except that
PVFS’s storage space is put on its own tmpfs partition, thus removing any latencies the disk
introduced.

2Compare the output of ls and ls -l on any Unix system to see the difference.

39

5 Benchmarking

1 client 5 clients
0

50

100

150

200

250

300

350

400

450

500

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(a) On disk

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

120

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(b) On tmpfs

Figure 5.3: File removal

As can be seen in figure 5.3a, if only one client at a time is running and the no metafile
directory hint is set, the time needed to remove the 50,000 files decreases to about 65% of the
time needed to remove them without the hint. However, if five clients run concurrently the
time decreases to about 50% of the original. This is probably due to the fact that metadata
writes are by default synchronous. However, these are exactly the operations that are skipped if
no metafile is set and thus the server can process more requests in parallel instead of waiting
for the slow disk.

In figure 5.3b for the first time there is no speedup to be gained by increasing the client
concurrency, but rather a slight slowdown.

40

5 Benchmarking

5.3 Five Machines

5.3.1 File Creation

The program works as described in subsection 5.2.1.

Figure 5.4a shows the time each client needs to create 50,000 files, once with and once without
the no metafile directory hint set. PVFS’s storage space is put in a normal directory on
an ext3 partition. In figure 5.4b the same values as in the last one are shown, except that
PVFS’s storage space is put on its own tmpfs partition, thus removing any latencies the disk
introduces.

1 client 5 clients
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(a) On disk

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

Normal

no_metafile
T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(b) On tmpfs

Figure 5.4: File creation

As can be seen in figure 5.4a, if only one client writes to the file system and the no metafile
directory hint is set, the time needed to create the 50,000 files decreases to about 50% of
the time needed to create them without the hint. This is even better than with only one
machine, where the network is not used at all. However, if five clients work concurrently the
time decreases to about 40% of the original. This is slightly slower than with one machine
and therefore there is less speedup to be gained by increasing client concurrency. The speedup
increase is probably due to the fact that metadata writes are by default synchronous. However,
these are exactly the operations that are skipped if no metafile is set and thus the server
can process more requests in parallel instead of waiting for the slow disk. Since this time
the network is used, it can be seen that disk latency still plays an important role in terms of
performance, even with the additional network latency.

In figure 5.4b the speedup with five concurrent clients is less drastic, because no disk seek times
could be avoided.

5.3.2 File Listing

The program works as described in subsection 5.2.1.

41

5 Benchmarking

Figure 5.5a shows the time each client needs to list the 50,000 files, once with and once without
the no metafile directory hint set. PVFS’s storage space is put in a normal directory on
an ext3 partition. In figure 5.5b the same values as in the last one are shown, except that
PVFS’s storage space is put on its own tmpfs partition, thus removing any latencies the disk
introduces.

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(a) On disk

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(b) On tmpfs

Figure 5.5: File listing

As can be seen in figure 5.5a, if only one client reads from the file system and the no metafile
directory hint is set, the time needed to list the 50,000 files decreases to about 50% of the time
needed to list them without the hint. With five concurrent clients the time increases to about
55% of the original. This is one of the rare cases where an increase in client concurrency does
not improve the speedup. Since only metadata reads are needed for this file system operation
and therefore no slow metadata writes could be skipped, there are no huge performance gains
possible by reducing the impact of disk latency. In contrast to metadata writes, these metadata
reads can be sped up by using the file system cache. The optimized version only does one
metadata read instead of two metadata reads and since they usually are fast because of caching,
network latency outweighs the benefits of the one skipped metadata read.

In figure 5.5b the times are nearly identical to the ones in figure 5.5a.

5.3.3 File Removal

The program works as described in subsection 5.2.3.

Figure 5.6a shows the time each client needs to remove the 50,000 files, once with and once
without the no metafile directory hint set. PVFS’s storage space is put in a normal directory
on an ext3 partition. In figure 5.6b the same values as in the last one are shown, except that
PVFS’s storage space is put on its own tmpfs partition, thus removing any latencies the disk
introduced.

42

5 Benchmarking

1 client 5 clients
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(a) On disk

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Normal

no_metafile

T
im

e
 n

e
e
d
e
d
 (

in
 s

e
co

n
d
s)

(b) On tmpfs

Figure 5.6: File removal

As can be seen in figure 5.6a, if only one client at a time is running and the no metafile
directory hint is set, the time needed to remove the 50,000 files decreases to about 60% of the
time needed to remove them without the hint. This is even better than with only one machine,
where the network is not used at all. However, if five clients run concurrently the time decreases
to about 40% of the original. This is significantly faster than with one machine and therefore
there is more speedup to be gained by increasing client concurrency. The speedup increase is
probably due to the fact that metadata writes are by default synchronous. However, these are
exactly the operations that are skipped if no metafile is set and thus the server can process
more requests in parallel instead of waiting for the slow disk. Since this time the network is
used, it can be seen that disk latency still plays an important role in terms of performance,
even with the additional network latency.

In figure 5.6b the speedup with five concurrent clients is less drastic, because no disk seek times
could be avoided.

43

5 Benchmarking

5.4 Summary

Figure 5.7 shows an overview of the efficiency of the metadata optimizations as measured in
section 5.2 with a single machine. For each operation – that is, creation, listing and removal
– the percentage of time needed for completion with the no metafile hint set in comparison
to the time needed without it is shown. Also, for each operation the efficiencies for a varying
number of concurrent clients and underlying file systems are shown in detail.

Creation Listing Removal
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 client, disk

5 clients, disk

1 client, tmpfs

5 clients, tmpfs

R
a
ti

o
 o

f
n

o
_m

e
ta

fi
le

 t
o
 n

o
rm

a
l

Figure 5.7: Efficiency of the optimized file system operations

As can be seen in figure 5.7, almost all operations benefit from an increase in concurrency. This
is especially true for the creation operation where each client is almost twice as fast if five of
them are running at the same time. The benefit is less pronounced on tmpfs partitions, since
in this case there are no slow synchronous disk operations that could be skipped. The listing
operation also does not benefit from any disk-related savings, but only from one less message
pair per file, so the speedup here is lower. As shown in chapter 3 and chapter 4 about half
of the work in each of the three file system operations is skipped, therefore the performance
gains are within expected boundaries or – as is the case with file creation – even surpass the
expectations.

Figure 5.8 shows an overview of the efficiency of the metadata optimizations as measured in
section 5.3 with five machines. The values are shown in the same way as in figure 5.7.

44

5 Benchmarking

Creation Listing Removal
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 client, disk

5 clients, disk

1 client, tmpfs

5 clients, tmpfs

R
a
ti

o
 o

f
n

o
_m

e
ta

fi
le

 t
o
 n

o
rm

a
l

Figure 5.8: Efficiency of the optimized file system operations

As can be seen in figure 5.8, this time only disk-bound operations benefit from an increase in
the concurrency, because of network effects that are not present in the local benchmarks. As
in the local case, the benefit is less pronounced on tmpfs partitions, since in this case there
are no slow synchronous disk operations that could be skipped. As shown in chapter 3 and
chapter 4 about half of the work in each of the three file system operations is skipped, therefore
the performance gains are within expected boundaries or – as is the case with file removal –
even surpass the expectations.

Figure 5.7 and figure 5.8 show that the metadata optimizations reduce the time needed for
any of the affected operations – that is, file creation, listing and removal – to about 50–60%,
independent of the underlying file system. These improvements are also independent of the used
hardware configuration and software environment. Especially, the speedup is approximately
the same regardless of the use of the network. The disk-bound operations – that is, file creation
and removal – especially benefit from these optimizations. If the underlying file system is on
disk – which should be the normal case – an increase in client concurrency even reduces the
time needed to 30–40%. Therefore the optimizations are especially useful for parallel access
from multiple clients.

To measure the impact of the metadata optimizations from the server’s point of view, the
low-level operations of the server are visualized in chapter 6. This is done using a toolkit for
parallel I/O visualization.

45

6 Visualization

A tracing facility within the PVFS server can be used to log internal operations like network
communication or disk access. This is used in this chapter to visualize the impact of the
metadata optimizations on the server.

To do this, an as of yet unreleased version of PIOViz1 is used. PIOViz is a compilation of
MPICH2, PVFS, several patches and a build system to automatically create an environment
suitable for parallel I/O visualization. The version of PVFS shipped with PIOViz is updated
to include the metadata optimizations.

Client operations can be traced, too, but at the moment the tracing is only implemented for
programs that are using ROMIO to communicate with the PVFS server. For details on this,
see [Kre06]. Since the PVFS client library is used directly for this visualization, no client traces
are available.

6.1 Dataspace and Key-Value Pairs

In the following sections the low-level actions of the PVFS server performed for each file system
operation are shown. These actions are performed by the Trove I/O layer. Trove can operate
on the so-called dataspace and key-value pairs. The dataspace stores actual data of a logical
file, that is, datafile objects. Key-value pairs are used to store everything else, most notably
object attributes like common metadata, directory hints and so on. Functions that operate
on the dataspace are prefixed by TROVE DSPACE, while functions to modify key-value pairs are
prefixed by TROVE KEYVAL.

1Parallel Input/Ouput Visualization. An environment for advanced visualization of parallel I/O using MPICH2
and PVFS.

46

6 Visualization

6.2 File Creation

Figure 6.1 shows the operations needed on the server to create one file in a directory without
the no metafile directory hint set.

Figure 6.1: File creation without no metafile

The following are the steps needed:

1. Read the parent directory’s attributes

– TROVE DSPACE GETATTR: Read attributes
– TROVE KEYVAL READ: Read directory data object’s handle
– TROVE KEYVAL READ LIST: Read directory hints

2. Create the metafile object

– TROVE DSPACE CREATE: Create metafile object

3. Create the datafile objects

– TROVE DSPACE CREATE: Create datafile objects
– TROVE KEYVAL WRITE: Write parent handle

4. Write the metafile object’s attributes

– TROVE KEYVAL WRITE: Write datafile objects’ handles
– TROVE KEYVAL WRITE: Write distribution
– TROVE DSPACE SETATTR: Write attributes

5. Create a directory entry for the new file

– TROVE KEYVAL READ: Read directory data object’s handle
– TROVE KEYVAL WRITE: Write new directory entry
– TROVE DSPACE SETATTR: Write attributes

It is obvious that steps 2 and 4 can be completely skipped, because no metafile object is created.
A more detailed explanation of the steps is given in the description of figure 6.2.

Figure 6.2 shows the same just for a directory with the no metafile directory hint set.

47

6 Visualization

Figure 6.2: File creation with no metafile

The following are the steps needed after optimization:

1. Read the parent directory’s attributes

– TROVE DSPACE GETATTR: Read attributes
– TROVE KEYVAL READ: Read directory data object’s handle
– TROVE KEYVAL READ LIST: Read directory hints

3. Create the datafile object

– TROVE DSPACE CREATE: Create datafile object
– TROVE KEYVAL WRITE: Write parent handle

5. Create a directory entry for the new file

– TROVE KEYVAL READ: Read directory data object’s handle
– TROVE KEYVAL WRITE: Write new directory entry
– TROVE DSPACE SETATTR: Write attributes

Note: In steps 2 and 3 the TROVE DSPACE CREATE call is not visible, because it currently does
not get logged.

In step 1 it is not really necessary to read the directory data handle, because it is only needed
to work with the directory entries. Since the directory entries are left untouched here, this
substep could be skipped to increase performance.

In step 3 the writing of the parent handle is an addition of the load balancing code introduced
in [Kun07]. Since it probably is useless in the case of no existing metafile object and also takes
a considerable amount of time, it could also be skipped to increase performance.

In steps 4 and 5 no further improvements are possible.

Summary

As can be seen in figure 6.1 and figure 6.2 all actions that apply to the metafile object are
skipped. Also, two additional starting points for further optimizations could be identified,
namely the reading of the directory data object’s handle and the writing of the datafile object’s
parent handle.

48

6 Visualization

6.3 File Listing

Figure 6.3 shows the operations needed on the server to list a directory without the no metafile
directory hint set. The directory contains only one file.

Figure 6.3: File listing without no metafile

The following are the steps needed:

1. Lookup the metafile object’s handle

• TROVE DSPACE GETATTR: Read attributes
• TROVE KEYVAL READ: Read directory data object’s handle
• TROVE KEYVAL READ: Read metafile object’s handle
• TROVE DSPACE GETATTR: Read attributes

2. Read the directory’s attributes

• TROVE KEYVAL READ: Read directory data object’s handle
• TROVE KEYVAL GET HANDLE INFO: Read directory entry count

3. Read the directory’s attributes

• TROVE KEYVAL READ: Read directory data object’s handle
• TROVE KEYVAL GET HANDLE INFO: Read directory entry count
• TROVE KEYVAL READ LIST: Read directory hints

4. List all files in the directory

• TROVE KEYVAL READ: Read directory data object’s handle
• TROVE KEYVAL ITERATE: Read all files from the directory data object

5. Read the metafile object’s attributes

• TROVE KEYVAL READ: Read metafile hints
• TROVE KEYVAL READ: Read datafile objects’ handles

6. Read the datafile object’s attributes

49

6 Visualization

It is obvious that step 5 can be completely skipped, because no metafile object is created. A
more detailed explanation of the steps is given in the description of figure 6.4.

Figure 6.4 shows the same just for a directory with the no metafile directory hint set.

Figure 6.4: File listing with no metafile

The following are the steps needed after optimization:

1. Lookup the metafile object’s handle

• TROVE DSPACE GETATTR: Read attributes
• TROVE KEYVAL READ: Read directory data object’s handle
• TROVE KEYVAL READ: Read metafile object’s handle
• TROVE DSPACE GETATTR: Read attributes

2. Read the directory’s attributes

• TROVE KEYVAL READ: Read directory data object’s handle
• TROVE KEYVAL GET HANDLE INFO: Read directory entry count

3. Read the directory’s attributes

• TROVE KEYVAL READ: Read directory data object’s handle
• TROVE KEYVAL GET HANDLE INFO: Read directory entry count
• TROVE KEYVAL READ LIST: Read directory hints

4. List all files in the directory

• TROVE KEYVAL READ: Read directory data object’s handle
• TROVE KEYVAL ITERATE: Read all files from the directory data object

6. Read the datafile object’s attributes

• TROVE KEYVAL READ: Read parent handle

Note: Steps 1 and 2 are only executed once for each directory, so their impact on performance
is negligible if the directory contains more files.

In step 2 it is not really necessary to read the directory’s attributes. This is done basically only
to determine the object type. This step could be skipped to improve performance.

50

6 Visualization

In steps 3, 4 and 5 no further optimizations are possible.

In step 6 the parent handle of the datafile object’s is read when no metafile is set. This is
probably due to the fact that a different mask is used to read the datafile object’s attributes
and could be avoided to increase performance.

Summary

As can be seen in figure 6.3 and figure 6.4 the single step that applies to the metafile object
is skipped. Also, two additional starting points for further optimizations could be identified,
namely the redundant reading of the directory’s attributes and the reading of the datafile
object’s parent handle.

6.4 File Removal

Figure 6.5 shows the operations needed on the server to remove one file in a directory without
the no metafile directory hint set.

Figure 6.5: File removal without no metafile

The following are the steps needed:

1. Remove the file’s directory entry

– TROVE KEYVAL READ: Read directory data object’s handle
– TROVE KEYVAL REMOVE: Remove directory entry
– TROVE DSPACE SETATTR: Write attributes

2. Read the metafile object’s attributes

– TROVE KEYVAL READ: Read hints
– TROVE KEYVAL READ: Read datafile objects’ handles
– TROVE KEYVAL READ: Read distribution

3. Remove the datafile objects

– TROVE DSPACE REMOVE: Delete datafile objects

4. Remove the metafile object

51

6 Visualization

– TROVE DSPACE REMOVE: Delete metafile object

It is obvious that step 4 can be completely skipped, because no metafile object must be removed.
A more detailed explanation of the steps is given in the description of figure 6.6.

Figure 6.6 shows the same just for a directory with the no metafile directory hint set.

Figure 6.6: File removal with no metafile

The following are the steps needed after optimization:

1. Remove the file’s directory entry

– TROVE KEYVAL READ: Read directory data object’s handle
– TROVE KEYVAL REMOVE: Remove directory entry
– TROVE DSPACE SETATTR: Write attributes

2. Read the datafile object’s attributes

3. Remove the datafile object

– TROVE DSPACE REMOVE: Delete datafile object

Note: In step 1 the TROVE KEYVAL REMOVE call is not visible, because it currently does not get
logged.

In step 2 the datafile object’s size is not read, because it already is read by the so-called
prelude server state machine that runs beforehand to check permissions and such.

In step 3 no further improvements are possible.

Summary

As can be seen in figure 6.5 and figure 6.6 the single step that applies to the metafile object is
skipped. However, no additional starting points for further optimizations could be identified.

52

7 Summary, Conclusion and Future Work

In this chapter several possible additions to the current implementation are presented. Also,
future work that could be done to improve metadata performance is evaluated.

7.1 Summary

In cluster file systems metadata operations can be very expensive. However, there are use
cases where metadata is not necessary. For example, several thousand temporary files may
be created, processed and deleted afterwards. To speed up metadata performance in such
cases several modifications to the parallel cluster file system PVFS are made. By reducing the
complexity of common metadata operations considerable speedups can be achieved.

7.2 Conclusion

While the metadata optimizations described and implemented in this thesis do not offer a
speedup of several orders of magnitude, the time needed for some common file system operations
could be reduced to about 50%. This achievement is quite satisfying, considering the relatively
small amount of changes made. Also, since about 50% of the work in each affected file system
operation is skipped, this improvements are well within expected boundaries. Together with
other improvements that could be implemented in the future they could offer users of PVFS
the possibility of tuning metadata operations and thus metadata performance to fit their needs.

On the other hand, these metadata optimizations change the file system semantics, because
certain metadata is simply not stored. However, because they must be explicitly enabled and
do not influence the normal operation of PVFS, this is not much of a concern.

7.3 Future Work

To fully integrate the changes, several other changes would need to be made. For example,
the pvfs2-fs-dump tool currently crashes if it encounters a file created with the no metafile
hint set. Another example would be the error states of each affected state machine. Currently
the error handling works, but could be improved to take the no metafile directory hint into
account. For example, if an error occurs in the remove client state machine the metafile object
and all associated datafile objects are deleted again. Since there is no metafile object, the
server does nothing. However, an additional message pair is needed to contact the server and
wait for its response. This step could be skipped completely.

It would also be interesting to do benchmarks with even more concurrent clients to see if this
increases the efficiency of the optimizations even further. Varying the number of data servers
and metadata servers could also prove to be interesting, because the metadata optimizations

53

7 Summary, Conclusion and Future Work

reduce the load on the metadata servers. This load reduction is simply due to the fact that
there are no more metafile objects, which would otherwise be managed by the metadata servers.

Also, the actual implementation is based on the modified version of PVFS from [Kun07]. This
version in turn is based on the last official PVFS release version, which is already some months
old. The reason for this is that the modified version offers enhanced tracing capabilities used
for visualization. To enable wider testing or even integration into PVFS the implementation
would need to be updated to the current development version, which features a significant
number of changes.

The inefficiencies identified in chapter 6 could be eliminated to further improve metadata
performance slightly. However, since these are minor inefficiencies the performance gain
probably would be negligible.

Because the size of a file is not stored explicitly, but rather computed on the fly, metadata
performance is not optimal if the file size is requested frequently. Since the default striping size
is set to a mere 64 KByte, even a small file of size 1 MByte is striped across 16 data servers, if
available.1 So to compute the size of this file, 16 data servers have to be contacted, resulting in
16 message pairs. For use cases with read-mostly access patterns caching of the file size could
thus greatly improve metadata performance.

116 · 64 KByte = 1 MByte

54

A Usage Instructions

In this appendix all necessary commands are given to compile, install, configure and use the
modified PVFS version developed in this thesis. Additionally, instructions on how to run the
benchmarks and create the visualization traces are given.

A.1 Installation of PVFS

Modified PVFS

The following commands install the modified version of PVFS used for the benchmarks in
chapter 5.

$ tar xvjf pvfs-no_metafile.tar.bz2
$ cd pvfs-no_metafile
$ mkdir build install
$ cd build
$../configure --prefix="${PWD}/../install"
$ make
$ make install
$ cd ../install
$ export PATH="${PWD}/bin:${PWD}/sbin:${PATH}"

Modified PIOViz

The following commands install a full PIOViz environment – using the modified version of
PVFS – as used for the visualization in chapter 6.

$ tar xvjf pioviz-no_metafile.tar.bz2
$ cd pioviz-no_metafile
$ mkdir install
$ echo "PREFIX=\"${PWD}/install\"" >> config.rc
$ make env
$ cd install
$ export PATH="${PWD}/bin:${PWD}/sbin:${PATH}"

A.2 Configuration of PVFS

The following commands configure PVFS in such a way that it may be used for benchmarks
and visualization.

$ cd pvfs-no_metafile/no_metafile
$ pvfs2-genconfig --protocol tcp --tcpport 6666 \

55

A Usage Instructions

--ioservers localhost --metaservers localhost \
--storage "${PWD}/pvfs2" --logfile "${PWD}/pvfs2.log" \
--quiet fs.conf server.conf

$ sed -i -e "/^<\/Defaults>$/i \\\\tMpeLogFile ${PWD}/pvfs2" fs.conf
$ echo tcp://localhost:6666/pvfs2-fs /pvfs2 pvfs2 defaults,noauto 0 0 \
> pvfs2tab

A.3 Starting PVFS

$ killall pvfs2-server
$ pvfs2-server fs.conf server.conf-localhost -r
$ pvfs2-server fs.conf server.conf-localhost -f
$ pvfs2-server fs.conf server.conf-localhost

A.4 Running the Benchmark

It is advisable to restart the PVFS server between each run of the benchmark. This can be
done as described in appendix A.3.

The source code of these shell scripts can be found in appendix B.

$./run-single-client.sh normal 1
$./run-single-client.sh no_metafile 1
$./run-multiple-clients.sh normal 1
$./run-multiple-clients.sh no_metafile 1

A.5 Creating Visualization Traces

The source code of this shell script can be found in appendix B.

$./run-visualization.sh normal 1
$./run-visualization.sh no_metafile 1

56

B Benchmark and Visualization Scripts

This appendix contains the source code of all benchmark and visualization scripts. The
pvfs2-benchmark and pvfs2-visualization tools are needed to use them. These are packaged
with the modified version of PVFS.

run-single-client.sh

The script from listing B.1 runs one benchmark client as used in chapter 5. It expects two
arguments:

1. Mode of operation (normal or no metafile)

2. Run identifier (used as part of the output file name to differentiate between different
runs)

It first creates a directory within PVFS. If the no metafile mode is used, the no metafile
directory hint is set on this directory. Afterwards the stresstest script (see listing B.4) is run to
use this directory as its root directory. The output of the stresstest script is stored in a text
file.

Listing B.1: Script to run a single client

1 #!/ bin / bash
2
3 set −x
4
5 d i e ()
6 {
7 echo ”$@” >&2
8 exit 1
9 }

10
11 usage ()
12 {
13 d i e ”Usage : ${0##∗/} mode run”
14 }
15
16 [−z ”${1}”] && usage
17 [−z ”${2}”] && usage
18
19 MODE=”${1}”
20 RUN=”${2}”

57

B Benchmark and Visualization Scripts

21
22 [! −f pv f s2tab] && die ” pvfs2tab not found”
23
24 ROOT=”$ (awk ’{ pr in t $2 ; } ’ pv f s2tab | head −n 1) ”
25
26 [−z ”${ROOT}”] && ” pvfs2tab malformed”
27
28 pvfs2−mkdir ”${ROOT}/ d i r ”
29
30 [”${MODE}” = ” n o m e t a f i l e ”] && pvfs2−xat t r −s −k

↪→ user . pv f s2 . n o m e t a f i l e −v 1 ”${ROOT}/ d i r ”
31
32 . / s t r e s s t e s t . sh ”${ROOT}/ d i r ” 2> ” pvfs−${MODE}−${RUN} . tx t ”

58

B Benchmark and Visualization Scripts

run-multiple-clients.sh

The script from listing B.2 runs five concurrent benchmark clients as used in chapter 5. It
expects two arguments:

1. Mode of operation (normal or no metafile)

2. Run identifier (used as a part of the output file name to differentiate between different
runs)

It first creates five directories within PVFS. If the no metafile mode is used, the no metafile
directory hint is set on each of these directories. Afterwards the stresstest script (see listing B.4)
is run for each directory to use each it as its root directory. This script is run in the background
such that all five stresstests run in parallel. The output of the stresstest scripts is stored in
text files.

Listing B.2: Script to run five clients concurrently

1 #!/ bin / bash
2
3 set −x
4
5 d i e ()
6 {
7 echo ”$@” >&2
8 exit 1
9 }

10
11 usage ()
12 {
13 d i e ”Usage : ${0##∗/} mode run”
14 }
15
16 [−z ”${1}”] && usage
17 [−z ”${2}”] && usage
18
19 MODE=”${1}”
20 RUN=”{2}”
21
22 [! −f pv f s2tab] && die ” pvfs2tab not found”
23
24 ROOT=”$ (awk ’{ pr in t $2 ; } ’ pv f s2tab | head −n 1) ”
25
26 [−z ”${ROOT}”] && die ” pvfs2tab malformed”
27
28 pvfs2−mkdir ”${ROOT}/ d i r a ” ”${ROOT}/ d i rb ” ”${ROOT}/ d i r c ”

↪→ ”${ROOT}/ d i rd ” ”${ROOT}/ d i r e ”
29

59

B Benchmark and Visualization Scripts

30 [”${MODE}” = ” n o m e t a f i l e ”] && pvfs2−xat t r −s −k
↪→ user . pv f s2 . n o m e t a f i l e −v 1 ”${ROOT}/ d i r a ”

31 [”${MODE}” = ” n o m e t a f i l e ”] && pvfs2−xat t r −s −k
↪→ user . pv f s2 . n o m e t a f i l e −v 1 ”${ROOT}/ d i rb ”

32 [”${MODE}” = ” n o m e t a f i l e ”] && pvfs2−xat t r −s −k
↪→ user . pv f s2 . n o m e t a f i l e −v 1 ”${ROOT}/ d i r c ”

33 [”${MODE}” = ” n o m e t a f i l e ”] && pvfs2−xat t r −s −k
↪→ user . pv f s2 . n o m e t a f i l e −v 1 ”${ROOT}/ d i rd ”

34 [”${MODE}” = ” n o m e t a f i l e ”] && pvfs2−xat t r −s −k
↪→ user . pv f s2 . n o m e t a f i l e −v 1 ”${ROOT}/ d i r e ”

35
36 . / s t r e s s t e s t . sh ”${ROOT}/ d i r a ” 2> ” pvfs−${MODE}−${RUN}−1. txt ” &
37 . / s t r e s s t e s t . sh ”${ROOT}/ d i rb ” 2> ” pvfs−${MODE}−${RUN}−2. txt ” &
38 . / s t r e s s t e s t . sh ”${ROOT}/ d i r c ” 2> ” pvfs−${MODE}−${RUN}−3. txt ” &
39 . / s t r e s s t e s t . sh ”${ROOT}/ d i rd ” 2> ” pvfs−${MODE}−${RUN}−4. txt ” &
40 . / s t r e s s t e s t . sh ”${ROOT}/ d i r e ” 2> ” pvfs−${MODE}−${RUN}−5. txt ” &
41
42 wait

60

B Benchmark and Visualization Scripts

run-visualization.sh

The script from listing B.3 runs one visualization client as used in chapter 6. It expects two
arguments:

1. Mode of operation (normal or no metafile)

2. Run identifier (usually a number from an increasing sequence)

It first creates a directory within PVFS. If the no metafile mode is used, the no metafile
directory hint is set on this directory. Afterwards the visualization script (see listing B.5) is
run to use this directory as its root directory. The output of the visualization script is stored
in a text file.

Listing B.3: Script to run the visualization script
1 #!/ bin / bash
2
3 set −x
4
5 d i e ()
6 {
7 echo ”$@” >&2
8 exit 1
9 }

10
11 usage ()
12 {
13 d i e ”Usage : ${0##∗/} mode run”
14 }
15
16 [−z ”${1}”] && usage
17 [−z ”${2}”] && usage
18
19 MODE=”${1}”
20 RUN=”${2}”
21
22 [! −f pv f s2tab] && die ” pvfs2tab not found”
23
24 ROOT=”$ (awk ’{ pr in t $2 ; } ’ pv f s2tab | head −n 1) ”
25
26 [−z ”${ROOT}”] && die ” pvfs2tab malformed”
27
28 pvfs2−mkdir ”${ROOT}/ d i r ”
29
30 [”${MODE}” = ” n o m e t a f i l e ”] && pvfs2−xat t r −s −k

↪→ user . pv f s2 . n o m e t a f i l e −v 1 ”${ROOT}/ d i r ”
31
32 . / v i s u a l i z a t i o n . sh ”${ROOT}/ d i r ” 2> ” pvfs−${MODE}−${RUN} . tx t ”

61

B Benchmark and Visualization Scripts

stresstest.sh

The script from listing B.4 runs different tests to measure the performance of the three modified
file system operations as shown in chapter 5. It expects one argument:

1. Root directory

In the first step, 100 directories are created. This is done outside of the actual benchmark,
because it is not relevant. Afterwards each of these directories is populated with 500 empty
files, which are then listed and finally removed. For each of these three operations the time
needed is measured. At the end all directories are removed. Again, this is done outside of the
actual benchmark.

Listing B.4: Stresstest script

1 #!/ bin / bash
2
3 usage ()
4 {
5 echo ”Usage : ${0##∗/} root ”
6 exit 1
7 }
8
9 [−z ”${1}”] && usage

10
11 ROOT=”${1}”
12
13 MKDIR=” pvfs2−s t r e s s t e s t −mkdir”
14 TOUCH=” pvfs2−s t r e s s t e s t −touch ”
15 LS=” pvfs2−s t r e s s t e s t − l s ”
16 RM=” pvfs2−s t r e s s t e s t −rm”
17 REAL RM=” pvfs2−rm”
18
19 l i s t f i l e s ()
20 {
21 echo ” L i s t i n g f i l e s . . . ” >&2
22
23 ”${LS}” ”${ROOT}”
24
25 echo >&2
26 }
27
28 l i s t f i l e s l o n g ()
29 {
30 echo ” L i s t i n g f i l e s (long) . . . ” >&2
31
32 ”${LS}” − l ”${ROOT}”
33

62

B Benchmark and Visualization Scripts

34 echo >&2
35 }
36
37 c r e a t e d i r s ()
38 {
39 echo ” Creat ing d i r s . . . ” >&2
40
41 ”${MKDIR}” ”${ROOT}”
42
43 echo >&2
44 }
45
46 c r e a t e f i l e s ()
47 {
48 echo ” Creat ing f i l e s . . . ” >&2
49
50 ”${TOUCH}” ”${ROOT}”
51
52 echo >&2
53 }
54
55 remove d i r s ()
56 {
57 echo ”Removing d i r s . . . ” >&2
58
59 for ((i = 0 ; i < 100 ; i++))
60 do
61 ”${REAL RM}” ”${ROOT}/${ i }”
62 done
63
64 echo >&2
65 }
66
67 r e m o v e f i l e s ()
68 {
69 echo ”Removing f i l e s . . . ” >&2
70
71 ”${RM}” ”${ROOT}”
72
73 echo >&2
74 }
75
76 c r e a t e d i r s
77 time c r e a t e f i l e s
78 time l i s t f i l e s > /dev/ n u l l
79 time l i s t f i l e s l o n g > /dev/ n u l l
80 time r e m o v e f i l e s

63

B Benchmark and Visualization Scripts

81 remove d i r s

64

B Benchmark and Visualization Scripts

visualization.sh

The script from listing B.5 creates visualization traces for the three modified file system
operations as shown in chapter 6. It expects one argument:

1. Root directory

Only one file is created, listed and finally removed. Before doing each of these three operations
the tracing of server activity is enabled. Afterwards the tracing is deactivated and the log file
sent through several processing steps.

Listing B.5: Visualization script

1 #!/ bin / bash
2
3 usage ()
4 {
5 echo ”Usage : ${0##∗/} root ”
6 exit 1
7 }
8
9 [−z ”${1}”] && usage

10
11 ROOT=”${1}”
12
13 TOUCH=” pvfs2−v i s u a l i z a t i o n−touch ”
14 LS=” pvfs2−v i s u a l i z a t i o n− l s ”
15 RM=” pvfs2−v i s u a l i z a t i o n−rm”
16
17 t r a c e b e g i n ()
18 {
19 pvfs2−set−eventmask −m ”${ROOT}” −a a l l −o a l l
20 }
21
22 t race end ()
23 {
24 OPERATION=”${1}”
25
26 pvfs2−set−eventmask −m ”${ROOT}” −a none −o none
27
28 mv ”/tmp/ pvfs2 . c l og2 ” ”${OPERATION} . c l og2 ”
29
30 clog2TOslog2 ”${OPERATION} . c l og2 ”
31
32 ProcessToGradient −o ”${OPERATION}− f i n a l . s l o g2 ” −g ”PC: . ∗ ”

↪→−m zero ”${OPERATION} . s l o g2 ”
33 mv ”${OPERATION}− f i n a l . s l o g2 ” ”${OPERATION}−tmp . s l og2 ”

65

B Benchmark and Visualization Scripts

34 EventToState −o ”${OPERATION}− f i n a l . s l o g2 ” −j
↪→ ” s t a r t=SM−State (s t a r t) ; end=SM−State (end) ;
↪→ f i n a l=SM−State ; j o i n=rank ; j o i n=c id ; j o i n=smp” −j
↪→ ” s t a r t=BMI (s t a r t) ; end=BMI
↪→ (end) ; f i n a l=BMI; j o i n=op ; j o i n=j i d ” −j ” s t a r t=Job
↪→ (s t a r t) ; end=Job (end) ; f i n a l=Job ; j o i n=op ; j o i n=j i d ” −j
↪→ ” s t a r t=Trove wr i t e (s t a r t) ; end=Trove wr i t e
↪→ (end) ; f i n a l=Trove wr i t e ; j o i n=op ; j o i n=j i d ” −j
↪→ ” s t a r t=Trove read (s t a r t) ; end=Trove read
↪→ (end) ; f i n a l=Trove read ; j o i n=op ; j o i n=j i d ”
↪→ ”${OPERATION}−tmp . s l og2 ”

35 mv ”${OPERATION}− f i n a l . s l o g2 ” ”${OPERATION}−tmp . s l og2 ”
36 Slog2ToCompositeSlog2 −o ”${OPERATION}− f i n a l . s l o g2 ” −i do rde r

↪→ ”${OPERATION}−tmp . s l og2 ”
37 mv ”${OPERATION}− f i n a l . s l o g2 ” ”${OPERATION}−tmp . s l og2 ”
38 Slog2ToCompositeSlog2 −o ”${OPERATION}− f i n a l . s l o g2 ” −pcorder

↪→ ”${OPERATION}−tmp . s l og2 ”
39 mv ”${OPERATION}− f i n a l . s l o g2 ” ”${OPERATION}−tmp . s l og2 ”
40 CompositeSlog2ToLineIDMap −o ”${OPERATION}− f i n a l . s l o g2 ”

↪→ ”${OPERATION}−tmp . s l og2 ”
41 mv ”${OPERATION}− f i n a l . s l o g2 ” ”${OPERATION}−tmp . s l og2 ”
42 Slog2ToArrowSlog2 −o ”${OPERATION}− f i n a l . s l o g2 ”

↪→ ”${OPERATION}−tmp . s l og2 ”
43 rm ”${OPERATION}−tmp . s l og2 ”
44 }
45
46 l i s t f i l e ()
47 {
48 echo ” L i s t i n g f i l e . . . ” >&2
49
50 t r a c e b e g i n
51
52 ”${LS}” ”${ROOT}”
53
54 t race end l s
55
56 echo >&2
57 }
58
59 l i s t f i l e l o n g ()
60 {
61 echo ” L i s t i n g f i l e (long) . . . ” >&2
62
63 t r a c e b e g i n
64
65 ”${LS}” − l ”${ROOT}”
66

66

B Benchmark and Visualization Scripts

67 t race end l s l
68
69 echo >&2
70 }
71
72 c r e a t e f i l e ()
73 {
74 echo ” Creat ing f i l e . . . ” >&2
75
76 t r a c e b e g i n
77
78 ”${TOUCH}” ”${ROOT}/ f i l e ”
79
80 t race end touch
81
82 echo >&2
83 }
84
85 r e m o v e f i l e ()
86 {
87 echo ”Removing f i l e . . . ” >&2
88
89 t r a c e b e g i n
90
91 ”${RM}” ”${ROOT}/ f i l e ”
92
93 t race end rm
94
95 echo >&2
96 }
97
98 c r e a t e f i l e
99 l i s t f i l e > /dev/ n u l l

100 l i s t f i l e l o n g > /dev/ n u l l
101 r e m o v e f i l e

67

List of Figures

1.1 Data striping . 8

2.1 Data-Intensive workload . 9
2.2 Metadata-Intensive workload . 10

3.1 Normal directory tree . 15
3.2 Optimized directory tree . 16

4.1 PVFS’s layered architecture . 20

5.1 File creation . 38
5.2 File listing . 39
5.3 File removal . 40
5.4 File creation . 41
5.5 File listing . 42
5.6 File removal . 43
5.7 Efficiency of the optimized file system operations 44
5.8 Efficiency of the optimized file system operations 45

6.1 File creation without no metafile . 47
6.2 File creation with no metafile . 48
6.3 File listing without no metafile . 49
6.4 File listing with no metafile . 50
6.5 File removal without no metafile . 51
6.6 File removal with no metafile . 52

68

Listings

4.1 Example client state machine . 22
4.2 Example client state function for initialization 23
4.3 Example client state function for cleanup . 23
4.4 Excerpt from src/common/misc/pvfs2-internal.h 24
4.5 Excerpt from src/proto/pvfs2-attr.h . 25
4.6 Excerpt from src/proto/pvfs2-attr.h . 26
4.7 Excerpt from src/proto/pvfs2-attr.h . 26
4.8 Automatically generated encode/decode functions 27
4.9 Excerpt from src/common/misc/pint-util.c 28
4.10 Excerpt from src/server/pvfs2-server.h . 28
4.11 Excerpt from src/server/get-attr.sm . 29
4.12 Excerpt from src/server/get-attr.sm . 29
4.13 Excerpt from src/client/sysint/sys-mkdir.sm 30
4.14 Excerpt from src/client/sysint/sys-lookup.sm 31
4.15 Excerpt from src/server/lookup.sm . 31
4.16 Excerpt from src/client/sysint/sys-create.sm 32
4.17 Excerpt from src/client/sysint/sys-create.sm 32
4.18 Excerpt from src/client/sysint/sys-create.sm 33
4.19 Excerpt from src/client/sysint/sys-getattr.sm 34
4.20 Excerpt from src/client/sysint/remove.sm 36
B.1 Script to run a single client . 57
B.2 Script to run five clients concurrently . 59
B.3 Script to run the visualization script . 61
B.4 Stresstest script . 62
B.5 Visualization script . 65

69

Bibliography

[BMLX03] Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Lan Xue. Efficient
Metadata Management in Large Distributed Storage Systems. In Proceedings of
the 20th IEEE / 11th NASA Goddard Conference on Mass Storage Systems and
Technologies, San Diego, CA, April 2003.

[DW07] Ananth Devulapalli and Pete Wyckoff. File Creation Strategies in a Distributed
Metadata File System. In Proceedings of IPDPS ’07, Long Beach, CA, March
2007.

[KKK+07] Stephan Krempel, Michael Kuhn, Julian Kunkel, Christian Lohse, and Thomas
Ludwig. Analysis of the MPI-IO Optimization Levels, 2007.

[Kre06] Stephan Krempel. Tracing the Connections Between MPI-IO Calls and their Corre-
sponding PVFS2 Disk Operations. Bachelor’s Thesis, Ruprecht-Karls-Universität
Heidelberg, March 2006.

[Kun06] Julian Kunkel. Performance Analysis of the PVFS2 Persistency Layer. Bachelor’s
Thesis, Ruprecht-Karls-Universität Heidelberg, February 2006.

[Kun07] Julian Kunkel. Towards Automatic Load Balancing of a Parallel File System with
Subfile Based Migration. Master’s Thesis, Ruprecht-Karls-Universität Heidelberg,
2007.

[Tea] PVFS Development Team. Parallel Virtual File System.
http://www.pvfs.org.

[WPBM04] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and Ethan L. Miller. Dynamic
Metadata Management for Petabyte-scale File Systems. In Proceedings of SC ’04,
Pittsburgh, PA, November 2004.

70

http://www.pvfs.org

	Introduction
	File Systems
	Local File Systems
	Cluster File Systems
	Parallel File Systems

	PVFS

	Motivation
	Data-Intensive Workloads
	Metadata-Intensive Workloads
	Optimization Considerations
	Related Work
	Outlook

	Design
	Objects
	Metafile Objects
	Datafile Objects
	Directory Objects
	Directory Data Objects
	Example Directory Tree

	Metadata Optimizations
	Drawbacks
	Alternative Optimizations

	File System Operations
	File Creation
	File Listing
	File Removal

	Implementation
	Internals
	Architecture
	State Machines
	Message Pairs

	New Directory Hint: no_metafile
	Common Infrastructure Modifications
	Request Protocol Modifications
	Server Modifications
	Client Modifications
	Hint Usage Instructions

	Compatibility with Unrelated State Machines
	Path Lookup: lookup State Machines

	File Creation: create Client State Machine
	File Listing: getattr Client State Machine
	File Removal: remove Client State Machine

	Benchmarking
	Hardware Configurations
	Single Machine
	Five Machines

	Single Machine
	File Creation
	File Listing
	File Removal

	Five Machines
	File Creation
	File Listing
	File Removal

	Summary

	Visualization
	Dataspace and Key-Value Pairs
	File Creation
	File Listing
	File Removal

	Summary, Conclusion and Future Work
	Summary
	Conclusion
	Future Work

	Appendices
	Usage Instructions
	Installation of PVFS
	Configuration of PVFS
	Starting PVFS
	Running the Benchmark
	Creating Visualization Traces

	Benchmark and Visualization Scripts
	List of Figures
	Listings
	Bibliography

