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Abstract. Scientific and mathematical parallel libraries offer a high level of ab-
straction to programmers. However, it is still difficult to select the proper pa-
rameters and algorithms to maximize the application performance. This work 
proposes a performance model for dynamically adjusting applications written 
with the PETSc library. This model is based on historical performance informa-
tion and data mining techniques. Finally, we demonstrate the validity of the 
proposed model through real experimentations. 
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1   Introduction 

Parallel processing has become attractive with the increase in processor speed and 
reduction in cost per computation unit. However, writing applications and developing 
software to solve mathematical problems using the parallel processing programming 
techniques, such as MPI[1] and  PVM[2] is not easy, because of the complexity of the 
algorithms required to solve such problems, and the need for an elevated level of 
experience in writing high performance applications. 

Mathematical and scientific libraries are helpful tools that provide many pre-
implemented algorithms to solve mathematical problems. However, as there is no 
unique solution for all linear systems, many algorithms are usually provided to solve 
different problems. However, the performance of these algorithms depends on the 
nature of the problem to be solved.  

Moreover, this performance may vary dynamically during the execution depending 
on the input data and the parameters of the solvers. For instance, in a PETSc[3] linear 
solver application the time needed to solve a tri-diagonal 10000x10000 matrix using 
the Richardson KSP and the Jacobi PC and a sparse memory data structure is more 
than 14 minutes, while the time needed to solve the same matrix using the Chevychev 
KSP, the block jacobi preconditioner, and dense memory data structure needs only 15 
seconds. Consequently, the need for dynamic models that can help the developer to 
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choose between this huge set of library parameters and system configuration is in 
increase, as obtaining the best performance in such application is a key issue.  

This work, aims to build intelligent performance models for parallel mathematical 
applications, based on a historical knowledgebase of performance behavior informa-
tion, that can switch between the available mathematical algorithms, such as KSP 
solvers and preconditioners, and system specific parameters, such as the number of 
processors, automatically in order increase the application’s performance. 

To achieve this objective, we have developed a performance model for the PETSc 
mathematical library, which depending on the problem type, input data, and environ-
mental parameters, chooses the most suitable solving parameter set: solving algo-
rithm, preconditioner, and data structure to represent the problem data. 

In this paper, we will first analyze PETSc applications in order to highlight the per-
formance problems of this library, then we will discuss the proposed performance 
model and explain each one of its three components, subsequently we will validate 
our model by real case experiments followed by the related efforts and conclusions. 

2   Performance Analysis for PETSc Applications 

Mathematical libraries were developed to provide encapsulated and pre-implemented 
algorithms for the linear system solvers, which provide high level APIs that let the 
programmer to reuse these algorithms in the development of scientific applications 
without concerning neither about the communication policies between the processors 
nor the inner details of the algorithms. 

In particular, PETSc or Portable Extensible Toolkit for Scientific computations is a 
suite of data structures and routines that provide the building blocks for the imple-
mentation of large-scale application codes on parallel (and serial) computers. It uses 
BLAS[4][5] and LAPACK[6] as a mathematical Kernel and Message Passing Inter-
face (MPI) for the communications between the computation nodes. It is organized 
hierarchically, as shown in Figure 1-a, and provides an expanded tool for parallel 
linear equation solvers, nonlinear equation solvers, and time integrators. 

PETSc provides many algorithms that could be used to solve parallel problems; for 
example, it provides a large set of Krylov subspace methods and preconditioners and 
it has many types of data structures representation, as seen in Figure 1-b, which shows 
some of PETSc numerical components. 

 

 
                                  (a)                                                                            (b)                         

Fig. 1. (a) PETSc level of abstraction. (b) PETSc Numerical Components. 
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In order to build a performance model for a parallel mathematical library we stud-
ied the behavior of applications written with this library and the effects of both the 
input data provided by the user and the algorithms’ parameters provided by the li-
brary. Therefore, we executed all the possible cases for different types of input data, 
using every possible data representation, and solving each case using different Krylov 
Subspace Solvers and Preconditioners. The results were surprisingly diverse and var-
ied; that means, the time needed to solve a matrix depends on the nature of the matrix, 
how it was represented in memory, and on both the KSP and the PC used to solve this 
problem. For instance, Figure 2 shows the execution time in seconds for a 
10000x10000 Around-Diagonal matrix that was executed on 12 KSP and three differ-
ent Preconditioners. 

 

Fig. 2. Around-Diagonal 10000x10000 matrix execution times 

From the execution results we can notice that the matrix solving time depends on 
the way the matrix was stored in memory. It can be seen in the example that the 
sparse representation had nearly the least execution time, while the dense representa-
tion has a very long execution time. Nevertheless, the variance between the KSPs and 
PCs also affects in a very significant way the problem execution behavior. 

3   Performance Model 

Implementing and developing a performance model for predicting the performance of 
an application is not trivial, especially when it considers the application as a black-
box and it has to apply tuning actions dynamically for such applications.  

To solve an Ax=b problem using PETSc a series of steps should be followed when 
implementing the system. First, a suitable way should be used to represent the data in 
memory and to decide how to distribute these data across the processors. Then the 
solver and preconditioner used for solving the problem should be chosen, taking into 
consideration that these solver and preconditioner should be compatible with each 
other as well as with the input data category and representation. 

The proposed performance model consists of three main modules or parts which 
cooperate between each other to achieve our goals: 
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- The pattern recognition engine that helps to summarize and categorize the input 
data characteristics and information. 

- The knowledgebase that contains information about the historical executions’ 
input data patterns and performance behavior. The pattern recognition engine is re-
sponsible for classifying the input data, and comparing between them and the data 
patterns in the historical knowledgebase. 

- The data mining engine that collects all the classifications derived by the pattern 
recognition engine, the input data, and the system environment parameters and be-
havior in order to find the performance problems and predict the  possible best 
solving algorithms and its correspondent PETSc parameters. 

3.1   The Pattern Recognition Engine 

Several matrix types exist, depending on the problem nature, and there is no definite 
way to classify them or to categorize all matrix types. However, several proposals 
classify matrices depending on the distribution of the nonzero and the main diagonal. 
Consequently, we have classified the matrices into six main types: 

- Diagonal matrix, which has all the nonzero entries in its main diagonal. 
- Tri-diagonal matrix, which has all the nonzero entries in its three main diagonals. 
- Around-diagonal matrix, which has all, or the majority, of the nonzero entries in 

and around the main diagonal of the matrix 
- Upper triangular matrix, or Lower triangular matrix which has all, or the majority, 

of the nonzero entries either above or below the main diagonal correspondently. 
- Distributed matrix, which have the nonzero entries distributed randomly in the 

matrix and not only around the diagonal. 
- Zero-diagonal matrix, which is a special case where the matrix main diagonal en-

tries are zeros. 

The Pattern Recognition Engine functionality is divided into three stages: 

- Pattern Creation Stage 
- Density Calculation Stage 
- Structural Analysis Stage. 

3.1.1   Pattern Creation Stage 
The pattern has the format of a 10x10 matrix; each entry represents one of the hun-
dred sub matrices that construct the main matrix and contains a structure of statistics 
that belongs to the corresponding sub-matrix, such as, the number of nonzero entries 
in the sub-matrix and the percentage of these entries with respect to its total number 
of values. In order to create the matrix pattern a number of steps should be followed 
(Figure 3 illustrates the pattern creation process): 

- Divide the matrix into sub matrices and calculate the size and the dimension of 
each sub-matrix which will be 10% of the total dimension and 1% of the total size 

- Divide each sub-matrix into four triangular parts that help to clarify the diagonal 
data and increase the results accuracy.  

- Compute the number of nonzero values in each sub-matrix 
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Fig. 3. Pattern creation process for a 4x4 pattern 

- Compute the percentage of the nonzero values in each sub-matrix with respect to 
the sub matrix total size. 

The main diagonal is a critical important factor at the time of recognizing the ma-
trix because it has a huge impact on the matrix solving process. Thus, in the pattern 
creation phase a copy of the main diagonal entries and its related statistics, such as, 
the number of nonzero entries and their percentage are being saved separately from 
the matrix Pattern blocks. 

3.1.2   Density Calculation Stage 
The matrix pattern shows the number and the percentage of the nonzero entries in 
each of its pattern blocks, these percentages represent the matrix density. The matrix 
density is a relative characteristic, hence, the computation of such aspect needs tech-
niques which may integrate some image processing and mathematical statistics algo-
rithms. As far as the input matrix and the knowledgebase matrices share the same 
pattern size of 10x10 blocks each one divided into four triangular parts, the density 
factor will be the sum of the distances between each triangular part in the input matrix 
pattern and its equivalent in each knowledgebase pattern. 

The distance will be calculated using a special case of the Minkowski Distances[7] 
of order λ when λ=1 and it is called the City-Block distance or Manhattan distance, 
expression 1 shows the Manhattan general case. 

 

(1) 

The results should be normalized to values between 0 and 1 according to expres-
sion 2, where zero means both matrices share the same density, and one means that 
they have a very different density. 

 
(2) 

This stage helps in identifying the density and the ratio of the nonzero entries in a 
matrix, but what happens if two matrices have the same density and a very different 
data distribution? 
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3.1.3   The Structural Analysis Stage 
The main objective of this stage is to characterize the distribution of the data in the 
matrix without concerning about the data density or size; the only factor that affects 
this stage is the presence or the absence of a nonzero entry in the pattern blocks. 

The structural analysis phase uses a data masking technique when comparing be-
tween matrices, it means that when receiving the input matrix pattern from the pattern 
creation stage it masks each block in the input pattern with the correspondent block in 
the knowledgebase patterns, converting its value to 1 if both values are equal or both 
contain a nonzero entry, and to 0 if one of the values is zero and the other contains at 
least a nonzero entry. Jaccard’s Coefficient[7] (expression 3) is used to calculate the 
Fitness between the knowledgebase patterns and the input matrix pattern. 

 
(3) 

Consequently, the expression becomes 

 (4) 

Matrix similarity value will vary between 0 and 1, zero means both matrices share 
the same structure while one means they are totally different. 

It can be noticed that each of the previous mechanisms classifies the matrix from 
different perspective, and spotlights different characteristics of the matrix data that 
cannot be seen by the other. A full image about the data distribution and density is 
been gotten by combining both pattern recognition strategies 

Next, the diagonal density distance is calculated by computing the absolute differ-
ence between input matrix diagonal density and the knowledgebase matrices diagonal 
density. 

After combining the three values by an equally likely weight summation where the 
sum will be a real value between 0 and 3 where zero means both matrices are identi-
cal and three represents completely different matrices. 

3.2   The Knowledgebase 

As the model depends on previous performance knowledge, a historical knowledge-
base which contains the performance information about previous executions of linear 
algebraic problem applications has been built. It contains the behavioral information 
of a huge number of pre-planned executions of different types of input data with 
nearly all the possible parameters, providing different data representations, different 
Krylov subspace solvers, and different Preconditioners, executed on different number 
of processors.  

Then a reference patterns list was built and saved in the historical knowledgebase. 
These patterns correspond to the matrices which the knowledgebase had been created 
upon their performance behavior. Table 1 summarizes the input matrices, their sizes 
and their correspondent patterns and the parameters on which they were executed. 
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Table 1. The Knowledgebase creating execution parameters 

Input Matrix No. 
Processors 

Matrix
Size 

Memory 
Representations KSP Solvers  Preconditioners  

Diagonal
Tri-Diagonal 
Distributed 

Zero-Diagonal 
Lower-Triangular 
Around-Diagonal 

1
8
16 
32 

1000 
10000 
20000 

Sparse
Dense

Block Sparse 
Block Diagonal 

BiCGStab
BiCGStab(L) 

BiConjugate Gradient 
Conjugate Gradient 
Conj. Grad. Squared 

Chebychev 
Conjugate Residuals 

FGMRES
GMRES
LSQR

Richardson 
TFQMR

Jacobi
Bjacobi
ASM

 

3.3   The Data Mining Engine 

The pattern recognition engine makes wide steps in finding the most suitable solving 
parameters by recognizing the data and summarizing its characteristics. After recog-
nizing and classifying the input matrix by the pattern recognition engine, the data 
mining engine takes the control, and starts searching for the most suitable solving 
parameter set from the knowledgebase, as the following: 

- After receiving the recommended matrix pattern from the pattern recognition en-
gine, the data mining engine starts searching for the solver parameter set from the 
knowledgebase excluding all the matrix patterns cases, but the recommended one. 

- It uses the City-Block (Manhattan) distance algorithms to calculate the distances 
between the input data factors, and the knowledgebase off-pattern factors such as, 
the real size of the matrix and the number of processors in the application commu-
nication world. 

- Then, the solver prediction component chooses the proper configuration according 
to the distance factors and the least execution time. 

- If the solving process did not reach a correct solution within this configuration set, 
the last step will be repeated until reaching the result excluding the used options. 

4   Model Assessment 

To examine our model we built a simple linear algebraic solver application based on 
PETSc library, this application contains only solvers and data related essential PETSc 
calls.  Moreover, we built a tool that controls the application execution, meets the 
functionality of the model and passes the suitable solver, Preconditioner and data 
representation to the application by changing the parameters of the PETSc routines 
calls dynamically. 

The experiments were performed on different matrices obtained from Matrix Mar-
ket[8] web site a component of the NIST project[9], which provides access to a re-
pository of test data for use in comparative studies of algorithms for numerical linear 
algebra. The SHERMAN5 matrix is an example of the matrices where the model was 
experimented. 
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Table 2. SHERMAN5 Pattern Recognition Engine results 

Knowledgebase
Pattern 

City Block 
(Manhattan) distance Fitness Diagonal

Density 
Overall 
Distance 

Tri-Diagonal 0.14433 0.283262 0 0.427592 
Around-Diagonal 0.599593 0.481973 0 1.081566 
Lower Triangular 0.35347 0.688525 0.5 1.541994 

Distributed 1 0.6733 0 1.6733 
Zero-diagonal 0.111314 0.555957 1 1.667271 

Diagonal 0.09817 0.4 0 0.49817 
 

The SHERMAN5 is a matrix that represents a fully implicit black oil model from 
the oil reservoir simulation challenge matrices, it is a 3312x3312 matrix, contains 
20793 nonzero entries and 3312 nonzero diagonal entries matrix. 

Firstly, we applied the pattern recognition phase which results are shown in Table 2. 
It can be seen that the most similar matrix in the knowledgebase to the SHERMAN5 
matrix was the Tri-Diagonal matrix with a 0.43 overall distance. 

At the same time the Data Mining Engine specified the 1000x1000 matrix and the 
8 processors execution world as searching criteria for the solving parameter set and 
the final recommended results were: sparse as memory representation, Jacobi as pre-
conditioner, and the chebychev as the recommended Krylov subspace solver.  

Upon our proposal both matrices may share similar behavior according to the input 
parameters. Consequently, to validate these results we made executions of all the 
possible solution cases for SHAREMAN5 matrix, comparing their solving times to 
the same cases of the corresponding Tri-diagonal. Accordingly, by looking at the 
performance behavior for the SHAREMAN5 matrix on 8 processors environment, in 
Figure 4, it can be found that the model predicted case may not be the most optimal 
solution, nevertheless, it remains one of the “best” solutions. 

At the same time by comparing between SHERMAN5 graph and the Tri-diagonal 
graph, in Figure 5, it can be noticed that both graphs are not identical; however, most 
of the Tri-diagonal matrix valid parameters are included in the SHAREMAN5 matrix 
possible solution, which shows the robustness of the solution predicting process.  

 

 

Fig. 4. Execution behavior of SHAREMAN5 3312x3312 matrix on 8 processors 
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Fig. 5. Execution behavior of Tri-Diagonal 1000x1000 matrix on 8 processors 

5   Related Efforts 

The importance of parallel programming grew as well as the searching for better per-
formance, a number of investigation lines where lunched to accomplish this objective. 
ATLAS[10] is an Automatic Tuning Linear Algebra Software project for the auto-
matic generation and optimization of numerical software for processors with deep 
memory hierarchies and pipelined functional units. It is an implementation of the 
“Automated Empirical Optimization of Software” AEOS paradigm, that provide 
many ways of doing a required operation, and uses empirical timing in order to 
choose the best method for a given operation.  

More limited ATLAS like functionality was included in PHiPAC[11], and more 
dynamic solutions are provided by SANS[12] Self-Adapting Numerical Software and 
SALSA[13] Self-Adapting Large-scale Solver Architecture. SANS is a collaborative 
effort between different projects that deals with the optimization of software at differ-
ent levels in relation to the execution environment and helps to build a common 
framework on which these projects can possibly coexist. While SALSA aims to assist 
applications in finding suitable linear and nonlinear system solvers based on analysis 
of the application-generated data based on a database of performance results that can 
tune the heuristics over time. 

6   Conclusions 

From the study of the performance information of the mathematical libraries it was 
noticed that the performance of the application may vary dynamically according to 
the input data and the solving environment. In this work we defined a performance 
model for automatic and dynamic tuning of mathematical applications based on his-
torical performance information.  

Thus, we have developed triple component model consisting of: pattern recogni-
tion engine that classifies and characterizes the problem, a historical knowledgebase 
that was filled with plenty of PETSc’s library performance information for a wide set 
of data, and the data mining engine which dives into the knowledgebase in order to 
get the recommended configuration and tuning points in the application.  

Recommended solution 
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Additionally, we planned real case problems in order to validate the model making 
a full execution for all the possible parameters and the results were optimistic. More-
over, it was noticed that the knowledgebase can be adapted by including more per-
formance information for different types of problems. 
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