Guest-Aware Priority-Based Virtual Machine
Scheduling for Highly Consolidated Server*

Dongsung Kim!, Hwanju Kim!, Myeongjae Jeon?,
Euiseong Seo?, and Joonwon Lee!

1 CS Department, Korea Advanced Institute of Science and Technology
{dskim,hjukim,mjjeon}@camars.kaist.ac.kr, joon@cs.kaist.ac.kr
2 Pennsylvania State University
euiseong@cse.psu.edu

Abstract. The use of virtualization is rapidly expanding from server
consolidation to various computing systems including PC, multimedia
set-top box and gaming console. However, different from the server en-
vironment, timeliness response for the external input is an essential prop-
erty for the wuser-interactive applications. To provide timeliness
scheduling of virtual machine this paper presents a priority-based
scheduling scheme for virtual machine monitors. The suggested schedul-
ing scheme selects the next task to be scheduled based on the task pri-
orities and the I/O usage stats of the virtual machines. The suggested
algorithm was implemented and evaluated on Xen virtual machine mon-
itor. The results showed that the average response time to I/O events is
improved by 5~22% for highly consolidated environment.

Keywords: Xen, Credit scheduler, Virtual Machine, Virtualization.

1 Introduction

The operating system virtualization is resurrected as a key technology for server
consolidation, which reduces the cost for management and deployment. As blos-
soming in performance aspects [1l2], the use of virtualization has expanded grad-
ually into various fields such as multimedia, game, and interactive applications
[BI45]. Although diverse workloads have become feasible in the virtualized en-
vironment, contemporary virtual machine monitors (VMMs) generally focus on
fairness of VMs and the improvement of 1/O throughput. Therefore, latency-
sensitive applications would preform poorly in the virtualized environment.
The scheduling turn-around time for each VM could be considerable under
highly consolidated environment. Since VMM typically has lack of knowledge
about guest-level tasks, the status and priorities of tasks, which run on each
guest kernel, can not be considered when VMM chooses the next VM to be

* This work was supported by KOSEF grant funded by the Korea government(MOST)
(No. R01-2006-000-10724-0) and also partially funded by the MIC, Korea, under the
ITRC support program supervised by the ITTA.

E. Luque, T. Margalef, and D. Benitez (Eds.): Euro-Par 2008, LNCS 5168, pp. 285294 2008.
© Springer-Verlag Berlin Heidelberg 2008

286 D. Kim et al.

scheduled. Such CPU allocation mechanism can increase the response time of a
latency-sensitive application with a high priority. As more VMs are consolidated
on a physical machine, larger performance degradation occurs and consequently
results in unsatisfactory quality of service [6].

This paper introduces a priority-based VM scheduling algorithm to reduce
scheduling latency of a VM that requires timeliness response. In our scheme,
VMM allocates CPU to each VM based on the guest-level task information,
which is provided by each guest kernel. VMM prioritizes VMs by using the col-
lected information about priorities and status of guest-level tasks in each VM.
Our algorithm preferentially treats the VMs that run latency-sensitive applica-
tions in response to I/O by inspecting 1/O pending status. The proposed algo-
rithm is implemented and evaluated on Xen, which is a virtualization software
widely used by many VM researchers.

The rest of this paper is organized as follows. Section 2 briefly describes re-
lated work and Xen architecture especially focusing on credit scheduler and I/0O
handling mechanism. Section 3 demonstrates the mechanism on how VMM uses
information of guest-level tasks and proposes the priority-based VM scheduling
algorithm. Section 4 evaluates our mechanism in terms of performance and fair-
ness compared with the credit scheduler. Finally, section 5 summarizes the paper
and presents the future work.

2 Related Work

2.1 Xen Virtual Machine Monitor

Xen is an open source virtual machine monitor based on para-virtualization,
which makes a guest operating system aware of underlying virtualization layer
through kernel modification [2]. The para-virtualization achieves large perfor-
mance improvement by optimizing a guest operating system to virtualized archi-
tecture. In Xen architecture, a VM is referred to as a domain and the privileged
VM, called domain0, controls other guest domains.

Credit scheduler, which is the default scheduler in Xen 3.0, manages CPU
allocation for VMs based on credit value set by predefined weight of each VM
[7]. The calculated credit is assigned to each VM every 30ms and is consumed
proportional to the processing time of the VM; this consumption is conducted
at the granularity of a tick interval (10ms).

Credit scheduler has three priorities: BOOST(0), UNDER(-1), and OVER(-
2). Two priorities (UNDER and OVER) are exclusively determined based on
the remaining credit of a virtual CPU, which belongs to a VM. If the remaining
credit of a virtual CPU is larger than zero, the virtual CPU has the priority of
UNDER; otherwise, the virtual CPU has the priority of OVER. To guarantee
fairness, a virtual CPU with UNDER priority is preferentially scheduled than
those with OVER priority. When a virtual CPU with UNDER priority is woken
by an event such as I/O completion, it acquires BOOST, which is the highest
priority; this mechanism makes I/O-bound VMs be scheduled earlier than others.
Although credit scheduler guarantees fairness, it results in a large response time

Guest-Aware Priority-Based Virtual Machine 287

of a latency-sensitive task with high priority since credit scheduler does not
consider the priorities of individual tasks inside each VM.

Xen introduces isolated driver domain(IDD) to allow specific domains to ac-
cess hardware directly. To do this, IDD includes native device drivers and con-
ducts I/O operations on behalf of all guest domains [8]. A guest domain has
virtual device driver, called a frontend driver, which communicates with a back-
end driver in an IDD. Xen uses shared I/O descriptor rings and event channels
to communicate between an IDD and guest domains. I/O descriptor ring is a
circular queue of I/O descriptor with producer/consumer pointers and is shared
between an IDD and a guest domain. A virtual interrupt is delivered via an
event channel for notification of I/O requests and completions.

2.2 Purpose-Specific Virtual Machine Scheduling

In addition to the fairness support of VM scheduling, there have been researches
on VM scheduling optimization for specific workloads.

Govindan et al. [6] proposed a communication-aware scheduling algorithm
to deal with the problem of VM scheduler on highly consolidated hosting plat-
form. They showed that current VM schedulers do not consider communication
behavior of VMs and thus result in degraded response time. Communication-
aware scheduling algorithm takes into account network communication patterns
when VMM chooses a VM to be scheduled. This algorithm preferentially sched-
ules I/O-intensive VMs by using heuristic methods on the basis of the amount of
I/0 operations. This mechanism, however, could not improve the response time
of the VM that has latency-sensitive tasks with high priority because it does not
consider guest-level priority.

Cherkasova et al. [O[I0] analyzed three CPU schedulers of Xen(BVT, sEDF,
and credit) by measuring I/O throughput for different scheduling parameters.
Their experiments demonstrate the performance impact of CPU allocation for
domain0, which hosts I/O on behalf of guest domains. They show that frequent
interventions of domain0 degrade I/O throughput because they incurs several
domain switches and prevents guest domains from batching I/O requests. This
work illustrates challenging issues related to VM scheduling mechanism for varied
workloads.

Ongaro et al. [7] has explored the impact of VMM scheduling on 1/O per-
formance where different types of applications are run concurrently in multiple
domains. Through various experiments, they improved I/O performance of Xen
by optimizing the credit scheduler and alleviating the unfairness of event pro-
cessing mechanism. The optimized credit scheduler sorts domains in run queue
based on remaining credits so that short-running I/O domains are preferentially
scheduled. It reduces the variance in the delivery of events by preventing the
driver domain from tickling the scheduler when an virtual interrupt occurs. Their
technique, however, cannot address a mixed domain, which include both I/0-
and CPU-bound tasks. Our approach preferentially can schedule the latency-
sensitive tasks, which is not even related to I/O or is in the mixed domain, by
considering guest-level priority.

288 D. Kim et al.

3 Guest-Aware Priority-Based Scheduling

3.1 Motivation

Since multiple guest domains share a single underlying hardware, a physical
interrupt is not delivered to a corresponding domain immediately. A physical in-
terrupt is received by VMM first and then is delivered to a destination domain.
In the case of I/O interrupt, VMM forwards the received interrupt to domain0,
which then is scheduled and notifies the target domain of the interrupt. Due
to this procedure, the time when the target domain receives an I/O event de-
pends on the status of the run queue of VMM. Domain0 is not guaranteed to
be scheduled instantly after an interrupt, and furthermore several domains can
be placed on the run queue between domainO and the target domain. The tar-
get domain should wait until preceded domains finish their execution when it
runs a latency-sensitive task with CPU-bound tasks simultaneously. Therefore,
a latency-sensitive application in the target domain suffers low responsiveness,
especially for highly consolidated server system.

This paper addresses the problem where current VM scheduler manages run
queue without considering guest-level tasks. We propose the algorithm that as-
signs effective priority based on guest-level tasks. Our algorithm modifies the
original run queue management that is simply sorted by credit-based priority. In
our scheme, VMM dynamically re-assigns finer grain priorities than the original
credit scheduler to guest domains based on the information about guest-level
tasks in the run queue and wait queue. In addition, VMM infers which domain
waits for I/O events by using the status of shared I/O descriptor rings in do-
main0.

3.2 Design

Our priority-based scheduling algorithm adopts an intrusive approach in that
guest domains explicitly expose their local information to VMM. In this ap-
proach, a guest kernel is modified to inform VMM of the priority and status
of its tasks using shared variables. Based on the information, the priority of a

Ce-
RX ™ Hasns

Doml Dom2 Dom3 Dom4

Doml : (5)(block),(10)
VMM Dom2: (23)

Dom3: (7)
Dom4: (20) (block),(25)

Fig. 1. Xen scheduling scheme

Guest-Aware Priority-Based Virtual Machine 289

guest domain is simply taken as the highest priority of tasks in the run queue
of the guest domain. Figure [l shows the snapshot of guest domains and tasks
of each guest domain in run queue and wait queue; the number in each task
shows the priority of the task. First, we just use a simple approach by taking
domain’s priority as the priority of the highest active task in it. In this figure,
dom1’s priority is 10, which is the same as the highest priority of tasks in the
run queue of doml, and others are assigned similarly; smaller value is higher
priority. Dom3 has the highest priority and will be scheduled first according to
the simple approach.

This approach, however, has a limitation because it does not consider the tasks
in wait queue. For example, since dom1 has a task with the highest priority, 5, in
its wait queue, it should be scheduled earlier than dom3 if the event for which the
task waits is pending at that time. To solve the above limitation, we take account
of both run queue and wait queue of a guest domain to choose next VM to be
scheduled. For this, a guest domain also has to expose the highest priority of the
task that is on block state and is not included in run queue. In our approach, VMM
inspects the status of shared descriptor rings to check whether 1/0 is pending with
respect to the domain that has the blocked task with the highest priority. Hence, in
the case of the above example, our mechanism makes dom1 scheduled in advance
of others if corresponding I/0O is pending at scheduling time.

The mechanism that inspects pending 1/0 and blocked tasks induces a prob-
lem if the pending I/O is unrelated with the blocked task of a guest domain
scheduled by our algorithm. For this reason, it needs to correlate pending I1/0
with a blocked task exactly. The exact relation, however, can incur significant
computational overhead due to the inspection of process-related clues from pend-
ing I/0. In case of TCP/IP networking, for example, VMM should examine al-
most all network packets including control packets such as ICMP or ARP to
find a port number. Moreover, a guest domain should export port mapping of
blocked tasks.

We propose a probabilistic method to relate pending I/O with the blocked
task in the guest domain. This method makes a guest domain inform VMM of
the list of recently woken tasks by 1/O completion. As with LRU (Least Recently
Used) mechanism, the VMM regards these tasks in this list as active tasks, which

Wait queue

History

Dom 1

Per-domain list

Fig. 2. Probabilistic method for relation between 1/O and blocked tasks

290 D. Kim et al.

shared_info(2)

Guest-aware priority
allocation module

Credit scheduler

Fig. 3. System design

are likely to be involved with the I/O in near future. Figure [shows that two
tasks,1 and 5, are recently woken by I/O while five tasks currently reside in wait
queue of doml. The per-domain list of doml maintains task 1 and 5 and can
be referenced by VMM. When VMM prioritizes a guest domain, it checks both
pending I/O and the per-domain list that maintains active I/O tasks. Only if
pending I/0 exists and the blocked task with high priority is within this list, the
priority of blocked task is reflected to the effective priority of the guest domain.

3.3 Assumption

First, we assume that our VM system works in the trusted environment. In other
words, there are no malicious users who intentionally raise the priority of its own
task. The intentional priority boost can result in the performance degradation
of other guest domains. Though VMM can detect and restrict malicious priority
boosting, we left this as a policy issue.

Second, the exposed guest-level priorities should be coordinated by the unified
scale since each operating system has its own priority system. In this paper, we
only propose the way to scale priority systems of three prominent operating
systems: Linux, FreeBSD, and Windows XP. The priority translation module
have not yet implemented.

3.4 Implementation

Our implementation is based on Xen 3.0.4 and para-virtualized Linux 2.6.16.
We modified a Linux kernel to share guest-level task information with VMM
via the data structure shared between a guest kernel and VMM. As shown in
figure Bl we introduce an additional structure which is called task info. The
shared structure contains information about runnable and blocked tasks with

Guest-Aware Priority-Based Virtual Machine 291

the highest five priorities. To relate pending I/O with blocked tasks, the shared
structure also stores task IDs, which are recently woken by I/O. Since do-
main0 can access shared I/O descriptor rings for all guest domains, domain0
exposes pending I/O information to VMM via shared structure. The number of
pending I/0 is calculated by using producer/consumer pointers in the shared
rings.

We use hierarchical priority scheme to support CPU fairness. In this scheme,
the scheduler basically manages run queue in the original manner by three pri-
orities of credit scheduler. When the scheduler chooses a guest domain to be
scheduled next, an effective priority is decided on the basis of guest-level task
information only if the selected guest domain has UNDER priority. Such mecha-
nism prevents a guest domain with the highest priority task from monopolizing
CPU resource. More importantly, this mechanism does not compromise CPU
fairness of credit scheduler.

4 Evaluation

4.1 Evaluation Environment

We used Xen hosted server with pentium 4 2.4GHz CPU and 1.5G RAM for ex-
periments. A client machine, which is used for measurement of network response
time, has Pentium 4 2.4GHz CPU and 1G RAM. We allocated 256 MB memory
to domain 0, and 128MB to each guest domain. The weights of all domains are
equally fixed for fair sharing. In our experiment, the number of domain varies
from four to eight. We evaluate our scheduling algorithm in two approaches:
GAPS-RO (Guest-Aware Priority-based Scheduling - Run queue Only), a sim-
ple method that reflects the highest priority of tasks in run queue only, and
GAPS(Guest-Aware Priority-based Scheduling), a method that considers tasks
in both run queue and wait queue as well as pending I/O in domain0.

4.2 Scheduling Latency

A physical interrupt is delivered to the target domain through the VMM and do-
main0 as described in the above background section. Since network or disk I/0
is batched and requires I/O processing, it is difficult to measure pure scheduling
latency for repeated experiments; scheduling latency means the elapsed time un-
til the target domain is scheduled just after a corresponding interrupt occurs. We
implement vlatdriver, a simple split driver consisting of frontend and backend,
to exactly measure scheduling latency using a virtual interrupt. After generating
a virtual interrupt, vlatdriver records timestamps at VMM, the backend driver
in domain0, and the frontend driver in the target domain.

We run five guest domains with CPU-intensive tasks; one’s priority is higher
than others for each experiment. Figure [shows the average latency and the
lowest 10% latency as worst case for credit scheduler and GAPS. The result

292 D. Kim et al.

140

120 —

100 —

80 —

Scheduling latency {(ms)

M credit

0 T mGAPS

AVG lower 10% AVG

Fig. 4. Scheduling latency

demonstrates that scheduling latency is reduced for both the average and the
worst case.

The scheduling latency of GAPS is more reduced compared with credit sched-
uler in the worst case than the average. Our algorithm preferentially schedules
the domain with the highest effective priority when the domain is given UNDER
priority; on the other hand, credit scheduler executes each domain in the round-
robin manner in case where all domains are CPU-intensive. Therefore, GAPS
decreases scheduling latency by reducing the waiting time until scheduling the
domain with high priority.

4.3 I/0 Response Time

We measure I/O response time through a ping-pong test in simple server/client
environments; a client stressfully sends small requests to the server. Each guest
domain runs a CPU-intensive task. Only doml also contains a server daemon
with the highest priority. The priority of the CPU-intensive task in dom?2 is
higher than those of all CPU-intensive tasks in other domains, but is lower than
that of the server daemon in Doml. The experiment with this configuration
evaluates the difference between GAPS-RO and GAPS. GAPS-RO preferentially
schedules dom2 because the server daemon in doml is I/O-intensive and thus
almost resides in wait queue waiting for a client’s request. In GAPS, on the other
hand, dom1 with the server daemon is likely to be scheduled earlier than dom?2
by considering pending I/O and blocked tasks.

Figure [l shows the response time of a client for credit scheduler, GAPS-RO,
and GAPS as the number of guest domains increases. Both GAPS-RO and
GAPS achieve lower response time than credit scheduler. In addition, GAPS re-
duces more response time than GAPS-RO since GAPS strives to schedule dom1
in advance of others. As the number of guest domains increases, the improvement
in response time is larger. Consequently, our scheduler accomplishes low respon-
siveness of latency-sensitive applications on high consolidated environment.

Guest-Aware Priority-Based Virtual Machine 293

Response time

(us)
1800

1600

1400
1200

W credit
GAPS-RO
u GAPS

1000

800 -
600
400
200

0
4 5 6 7 # of Domains

Fig. 5. Average I/O response time

Table 1. CPU fairness: The consumed CPU for each domain is normalized on the
basis of dom1

Dom1 Dom2 Dom3 Dom4

Credit scheduler 1 1 0999 1
GAPS 1 1 0.998 0.994

4.4 Fairness Guarantee

We evaluate that our scheduling algorithm does not compromise CPU fairness
supported by credit scheduler. Four guest domains run CPU-intensive tasks,
and only dom1 additionally runs server daemon with the highest priority similar
to the above experiment. The dom4’s task has the lowest priority to show the
possibility of starvation.

Table [l shows the CPU allocation for each guest domain. The CPU allocation
is calculated from the consumed credit of each guest domain during the exper-
iment. All results are normalized by that of doml. Although dom4 has slightly
less CPU allocation than others for our scheduler, this difference is negligible.
Our scheduling algorithm, therefore, still guarantees CPU fairness and incurs
no starvation of the guest domain including the lowest priority task. However,
we do not address I/O fairness, which is not considered in the original credit
scheduler.

5 Conclusion and Future Work

Although virtualization technologies have advanced in terms of high degree of
consolidation, the absence of support for latency-sensitive workload could be an
obstacle to services that need good quality of responsiveness. To address this
problem, we introduce a guest-aware priority-based scheduling, which runs on
Xen-based system, to preferentially schedule high-priority and latency-sensitive

294 D. Kim et al.

tasks. Our mechanism guarantees CPU fairness because it is implemented over
the credit scheduler of Xen.

In this paper, the proposed mechanism is achieved by the intrusive way for
VMs to send information of guest-level information to VMM. The intrusive ap-
proach has some drawbacks. First, this approach requires guest kernel modifi-
cations. This requirement cannot be applied to closed-source operating systems
such as Windows. Second, the guest-level information could be untrusted be-
cause the information is explicitly informed by guest domains; the intrusive way
can impede VM isolation in the untrusted environment.

As future work, we are developing the non-intrusive mechanism for reducing
the response time of latency-sensitive tasks. To support responsiveness without
kernel modifications, we should determine a VM that has latency-sensitive tasks
by inferring from I/O behavior and scheduling pattern. By this approach, we
will achieve the responsiveness as well as fairness while preserving VM isolation.

References

1. Sugerman, J., Venkitachalam, G., Lim, B.H.: Virtualizing i/o devices on vmware
workstation’s hosted virtual machine monitor. In: Proc. of the USENIX Annual
Technical Conf., Berkeley, CA, USA, pp. 1-14. USENIX Association (2001)

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, 1., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pp.
164-177. ACM, New York (2003)

3. Neumann, D., Kulkarni, D., Kunze, A., Rogers, G., Verplanke, E.: Intel Virtual-
ization Technology in embedded and communications infrastructure applications.
10(3) (August 2006)

4. VMware: http://www.vmware.com

5. Lin, B., Dinda, P.A.: Vsched: Mixing batch and interactive virtual machines us-
ing periodic real-time scheduling. In: SC 2005, p. 8. IEEE Computer Society, Los
Alamitos (2005)

6. Govindan, S., Nath, A.R., Das, A., Urgaonkar, B., Sivasubramaniam, A.: Xen
and co.: communication-aware cpu scheduling for consolidated xen-based hosting
platforms. In: VEE 2007: Proceedings of the 3rd international conference on Virtual
execution environments, pp. 126-136. ACM, New York (2007)

7. Ongaro, D., Cox, A.L., Rixner, S.: Scheduling i/o in virtual machine monitors.
In: VEE 2008: Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pp. 1-10. ACM, New York (2008)

8. Fraser, K., Hand, S., Neugebauer, R., Pratt, A.W.I., Williamson, M.: Safe hardware
access with the xen virtual machine monitor. In: Proc. of Workshop on Operating
System and Architectural Support for the on demand IT Infrastructure (2004)

9. Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three cpu schedulers in
xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42-51 (2007)

10. Cherkasova, L., Gupta, D., Vahdat, A.: When virtual is harder than real: Resource
allocation challenges in virtual machine based it environments. Technical Report
HPL-2007-25 (February 2007)

http://www.vmware.com

	Guest-Aware Priority-Based Virtual Machine Scheduling for Highly Consolidated Server
	Introduction
	Related Work
	Xen Virtual Machine Monitor
	Purpose-Specific Virtual Machine Scheduling

	Guest-Aware Priority-Based Scheduling
	Motivation
	Design
	Assumption
	Implementation

	Evaluation
	Evaluation Environment
	Scheduling Latency
	I/O Response Time
	Fairness Guarantee

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

