
QoS-Oriented Reputation-Aware Query
Scheduling in Data Grids

Rogério Lúıs de Carvalho Costa and Pedro Furtado

University of Coimbra - Departamento de Engenharia Informática
Pólo II, Pinhal de Marrocos, 3030, 290, Coimbra, Portugal

rogcosta@dei.uc.pt, pnf@dei.uc.pt

Abstract. In the last few years, the Grid technology has emerged as
an important tool for many scientific and commercial global organiza-
tions. In grid-based systems, intelligent job scheduling is used to achieve
Service Level Objectives (SLOs) and to provide some kind of Quality
of Service (QoS) differentiation between users or applications. In data
grids, the grid infra-structure is used to provide transparent access to
geographically distributed data, which may be replicated in order to
increase availability and performance. In this work, we deal with QoS-
oriented query scheduling in data grids. Although there exist several
works on job scheduling in Grids, QoS-oriented query scheduling in grid-
based databases is still an open issue. For instance, how can we provide
guarantees against response-time expectations? Our proposal uses a rep-
utation system to answer this problem satisfactorily. We also present
experimental results that prove the benefits of proposed strategies.

1 Introduction

In the last few years, the Grid has emerged as the next generation infra-structure
technology for distributed computing. It is used by a wide range of applications
to provide transparent and coordinated access to distributed shared resources,
including servers, workstation clusters, storage systems and databases. For in-
stance, it can be used as basic infra-structure by global (real and virtual) organi-
zations, which are generating huge volumes of distributed data, in order to enable
geographically distributed users transparently access the distributed database.
Indeed, the term Data Grid is commonly used to identify grid-based systems in
which data is a major actor [1], including situations on which grid-based tools
generate, manage or consume large volumes of data.

Grids are dynamic environments where resource availability and performance
may change over time [2]. Besides that, resources are commonly heterogeneous
and belong to distinct domains, which may have some degree of autonomy. In
fact, local domain controllers may impose constraints on local resource utilization
by remote users [2]. Moreover, in grids, job scheduling is usually QoS-oriented,
which means that it aims at improving the users’ satisfaction by maintaining a
good Quality of Service (QoS) [3]. Service Level Objectives (SLO) are commonly
specified and used to provide some kind of differentiation between jobs or users.

E. Luque, T. Margalef, and D. Beńıtez (Eds.): Euro-Par 2008, LNCS 5168, pp. 489–498, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

490 R.L. de Carvalho Costa and P. Furtado

In this work, we deal with QoS-oriented query scheduling in data grids, where
data replication is commonly used to improve availability and performance [4].
Let’s consider a situation where a query has an SLO specified in terms of an
execution deadline and there are a few data services which already have the
data to execute it. How to choose the best data service to execute a user’s query
according to its SLO and still provide high QoS-levels for other users?

One straightforward approach to schedule one query execution is to choose
the data service that would finish the query execution earlier. But this may
not be the best strategy. It is important to notice that the user’s expectation
is related to the fact that the query should be executed by its deadline and
not as soon as possible. Then, when a large deadline is specified, a good local
resource utilization policy may choose to execute other queries that have tighter
deadlines before (or in parallel with) the one with the large deadline, in order
to increase the system’s SLO fulfillment level. In another scheduling strategy,
one may choose to schedule the query for the slowest site between the ones that
may accomplish the specified deadline. This approach aims at leaving the faster
sites available to execute future queries that may have tighter deadlines than
the current one. But predicting a query execution time is not simple, especially
when a few queries are executed concurrently. Hence, when the prediction is
wrong, the real execution time may be over the predicted time and the deadline
requirement may not be achieved.

In this paper, we consider a grid configuration where the community scheduler
has no total control over each site’s shared resources (like in the hierarchical
and decentralized scheduling models commonly used in the grid [5]). Thus, we
leave to each site’s controller the responsibility to estimate the query execution
time at the site and to indicate if the locally available resources can execute
the submitted query by the specified deadline. This is the first phase in our
scheduling strategy. In the case that more than one data service candidates
itself to execute the query, we use a reputation system to choose the one that
should execute it. Our strategy aims at choosing the data service that has been
more trustworthy in its previous commitments to accomplish specified SLOs.
The use of the reputation system is the second phase of our scheduling strategy.

This work is organized as follows: in the next Section we review some related
work. In Section 3 we detail the proposed reputation-based query scheduling
strategy and identify some performance metrics that can be used to evaluate
QoS-oriented scheduling techniques. Experimental results are presented in Sec-
tion 4. Finally, we draw conclusions and discuss some future work in Section 5.

2 Related Work

In this section we review the concepts and tools involved in grid processing. We
also review query scheduling over the grid and reputation systems.

Grid-based applications are commonly deployed over Grid Resource Manager
GRM) Systems, like Globus Toolkit [6] and Legion [7]. Most of the GRM systems
enable the use of various job scheduling policies.

QoS-Oriented Reputation-Aware Query Scheduling in Data Grids 491

The Globus Toolkit is a tools set that can be used as basic infra-structure to
deploy grid applications. The available tools are related to different aspects like
security, resource reservation, and data replication and movement [8]. Nimrod-G
[9] and Condor-G [10] are examples of job schedulers that work over Globus.

Nimrod-G does economic-based job scheduling, scheduling a job execution for
the node that has the lowest monetary cost. The GRACE (GRid Architecture
for Computational Economy) middleware is used to obtain dynamic informa-
tion on costs and to do auction-inspired negotiations between the scheduler and
other nodes [9]. Condor-G uses the Condor’s [11] ClassAds matchmaking mech-
anism to schedule job execution. In such strategy, jobs’ requirements and nodes’
capabilities are published in ClassAds (Classified Advertisements). An agent is
responsible to do the matchmaking between the job’s ClassAds and the available
nodes’ ClassAds. Globus’ GRAM [12] is used to manage remote job execution.

Legion is a GRM system that aims at creating a virtual machine abstrac-
tion of the available Grid resources. In Legion, every participant is modeled as
an object. Application Class objects are used to instantiate Grid applications.
When instantiation an Application Class object, it is possible to specify execu-
tion requirements, including the job scheduler that should be used to schedule
its execution. Legion has some built-in scheduling mechanisms (e.g. random, and
round-robin [13]) but it also supports user-written job schedulers.

There are also some works on query scheduling over the grid. In [14], the
authors present a distributed query processor called Polar*, that constructs dis-
tributed query execution plans in which distinct plan’s operators are executed
in distinct nodes. Polar* query processor is used in the OGSA-DQP strategy
(Distributed Query Processor based on the Open Grid Services Architecture)
[15,16]. In OGSA-DQP, web services are used to enable the use of Polar* in
a grid environment. Data movement during query execution is used in order
to reduce load imbalance. In [4], the authors argue that doing data movement
during grid query execution may reduce performance. Hence, queries should be
scheduled to nodes that already the necessary data to execute them and data
replication must be done asynchronously with query execution.

The use of reputation systems to schedule job execution in grids is discussed
in more recent works. In [17], the authors present generic functions that may
be used to define reputation values for issues of interest and for grid service
providers. The authors claim that specific equations for each context should be
specified by users. In [18], reputation is used in order to detect malicious nodes
which may present incomplete results for a task in donation grids. Unreliability
and malicious nodes are also considered in works like [19,20].

In this work, we do not consider that a data service can provide an incomplete
result for a query execution. But we consider that a local scheduler may fail to
predict the necessary time to execute a query (intentionally or not), or even the
predicted execution time may not be achieved due to environmental changes.
Therefore, our reputation system is used to measure each service’s prediction
capacity and commitment degree, thus helping the global scheduler to choose
the best site to execute a job according to users’ expectations.

492 R.L. de Carvalho Costa and P. Furtado

Select candidates
to execute the job Query and

QoS
Requirement

Invoke possible
candidates (send query
and QoS requirement)

Community Scheduler

Verify if it can
accomplish the
specified SLO

Data Services

Start
Phase 2

Community Scheduler

Each service
commits itself
or not with
the SLO

Fig. 1. QoS-oriented Reputation-aware scheduling: phase 1 main steps

3 QoS-Oriented Reputation-Based Scheduling

3.1 System Model

Grid systems may assume different architectures. We consider the existence of a
Community Query Scheduler that may not have total control over all available
shared resources in the Grid, but that is responsible to assign query execution
to one of the available Data Services.

A Data Service is any computational resource that is capable to execute
database queries, like a multi-processor database server or a cluster of work-
stations. If a local scheduler is used at a site, then all the resources managed by
the local scheduler (and the scheduler itself) are considered by the Community
Scheduler as a single Data Service. Otherwise, each resource is a Data Service
that may directly interact with the Community Scheduler.

3.2 Two-Phase Reputation-Aware Scheduling Model

Our query scheduling model is divided into two phases. Initially, the services
that are eligible to execute the query according to its deadline are nominated. In
the second phase, a reputation model is used to select the most trustful service
to execute the query.

Phase 1: Invoking Candidates

Phase 1 starts with the incoming of a new query and ends when all invoked data
services answers to the Community Scheduler if they can or cannot accomplish
the SLO. Figure 1 presents the main steps of Phase 1.

Selecting Candidates with the Necessary Requisites: Each submitted
query is sent to the Community Scheduler, which should select the Data Services
that may execute it (the ones that already have replicas of the necessary data).
Such activity is supported by the use of a replica catalog, which is provided by the
underlying GRM System (e.g. Globus provides a Replica Local Service that can
be used by Globus-based implementations of our scheduler). Then, the Scheduler
sends to each selected Data Service the query together with its QoS-requirement.

Each Selected Candidate Declares its Intention to Execute the Job:
Each selected Data Service should estimate if the query can be executed with the
specified SLO. It should estimate a Local Query Execution Time and compare the

QoS-Oriented Reputation-Aware Query Scheduling in Data Grids 493

Verify reputation of
each candidate and

select the most trustful
List of

candidates to
execute the job

(phase 1) Send query for execution
(together with SLO)

Community Scheduler

Execute query

Data Service

Monitor remote query
execution and update

reputation information

Community Scheduler Reputation
information

Fig. 2. QoS-oriented Reputation-aware scheduling: phase 2 main steps

foreseen value with the deadline requirement. Usually, the Local Query Execution
Time includes two main factors: (i) the Awaiting Queue Time, which is the time
that the new query would wait until other already running queries end up and
its execution may begin; and (ii) the Execution Time, which is the necessary
time to effectively execute the query against the database.

Each Data Service may have its own methods to estimate the Local Query Ex-
ecution Time. For instance, the local query scheduler (or time estimator, when
there is no local scheduler) may consider immediately starting the new query,
which increases the system’s multi-programming level as the new query is ex-
ecuted in parallel to the ones that are already executing. This would reduce
the Awaiting Queue Time into zero, but would probably increase the Execution
Time due to multi-query influence. Therefore, the Execution Time of each local
scheduling alternative should be considered. Such estimation is out of this pa-
per’s scope, but some works on estimating query execution time are [21,22,23].

Phase 2: Selecting the Most Trustful Candidate

The Community Scheduler should choose one Data Service to execute the sub-
mitted query between those that had agreed to execute it by the specified SLO.
In order to do that, we use a reputation system which indicates how much the
Community Scheduler may trust in the Data Services’ commitment to accom-
plish the SLO. After scheduling the query execution, the Scheduler must monitor
if the query is executed by its deadline in order to update the reputation infor-
mation about the selected data service. These steps are represented at Figure 2.

The Reputation Model: The reputation value we use for each Data Ser-
vice is scaled to [0, 1]. The larger the value, the greater the confidence that the
Community Scheduler has on the Data Service’s commitment.

We define a Success Factor k (k ∈ {0, 1}) as an indicator if a Data Service
has accomplished a deadline for a given query (k = 1 → the SLO was achieved;
k = 0 → the node failed to accomplished the SLO). Then, for each Data Service
(S), a reputation value R at time j is computed considering the Success Factor
of each time (i) that the node has executed a query, against the number of times

494 R.L. de Carvalho Costa and P. Furtado

(t) it has made itself available to execute the job. Equation 1 represents the
proposed formula for R.

RS,j =
1

∑t
i=1 wi

t∑

i=1

wiki (1)

wi = e(−Δt
λ) (2)

In Equation 1, w is a time discount function used to differentiate old results
from newer ones. We intend to consider newer events as more relevant than older
ones. For a time window (Δt) between the time t when the query i was executed
and the current time, w is computed by Equation 2 (as defined in [24]).

The parameter λ is used to allow the use of different time units and intervals,
as it is defined in [24]. For instance, if the time unit used is minute and a twenty
minute earlier interval should have only 10% of the effect than a new Success
Factor value that was just obtained, then λ = − 20

ln(0.1) .

Updating Reputation Information: In order to update reputation informa-
tion, the Community Scheduler must know if each scheduled query was finished
by its deadline. Then, it monitors remote schedule execution in order to verify the
job finish time. This is done with the aid of the underlying GRM infra-structure
(e.g. Globus’ GRAM can be used in Globus-based systems).

3.3 Performance Metrics

There are several performance metrics that can be used to describe a system per-
formance (e.g. throughput, scalability and response time). We propose here the
use of some intuitive metrics which are specific related to QoS-oriented schedul-
ing. The proposed metrics are used in Section 4 to evaluate our scheduling model.

The first simple metric is the SLO-Achievement Rate (AR) of a workload.
Such metric is computed considering the number of queries executed by their
deadlines (S) and number of queries in the workload (Q). But some queries in
the workload may have so tight deadlines that no data service commits itself to
execute them by their deadlines. The Executed Queries Rate (EQ) is obtained
considering the relation between the number of queries that were executed (N)
and the number of queries in the workload (Q). The latter metric indicates the
rate of queries that had at least one candidate to execute according to the desired
QoS levels. The Breach of Trust Rate (BTR) is obtained considering the relation
between the number of times a commitment to execute a query by its SLO is
broken and the number of times a commitment is done (N). Equations 3, 4 and
5 represents AR, EQ and BTR, respectively.

AR =
S

Q
(3)

EQ =
N

Q
(4)

BTR =
N − S

N
(5)

QoS-Oriented Reputation-Aware Query Scheduling in Data Grids 495

4 Experimental Results

We did several tests to validate our proposals. In this Section we present the
most relevant experimental results.

We compare our reputation-aware scheduling model with two other strate-
gies: (i) Random Scheduling among Candidates (RS) and (ii) First Candidate
Executes the Job (FCEJ). RS and FCEJ are two-phase scheduling. In their first
phase, a list of candidates is generated (just like it is in our reputation-aware
strategy). The main difference is in the scheduling second-phase: in RS, the query
executor is randomly selected among the data services that have claimed that
can execute the query according to its SLO; in FCEJ, the query is scheduled to
the first data service to claim that is capable to finish query execution by its
deadline. The second phase decisions of RS and FCEJ are inspired in scheduling
strategies used in current GRM systems (e.g. Legion).

Our testbed workload is composed by 100 queries, that are constructed using
queries 1, 2, 5, 7, 8, 9, 10, 11, 14 and 18 of TPC-H benchmark [25] with different
parameters. We have simulated a data grid with six data replicas of a 1GB
TPC-H database. Each replica is stored at a SQL Server 2005 DBMS placed at
a different grid site. A data grid with such number of data replicas is already
capable to execute a high number of concurrent queries: in our tests, we varied
the query submission rate from just a few queries per minute up to 1440 queries
per hour. Table 1 briefly describes some relevant hardware parameters of the
experimental environment (Site 1 is used by the Community Scheduler). Local
Query Execution Time at data services is estimated using the method proposed
in [23]. Queries that have no candidates to execute them by their deadlines
are aborted and do not executed (the user should re-submit the query if it is
acceptable to execute the query with a larger deadline).

In the following graphs, we present the measured values for the proposed per-
formance metrics when using the three evaluated scheduling models and different
query submission rates. When using low query submission rates, the three evalu-
ated methods achieved high values for AR (Graph 1). With low submission rates,
all queries have at least one candidate to execute them (Graph 2) and even not so
wise scheduling strategies can lead to high levels of QoS fulfillment. As query sub-
mission rates increase, data services start to execute several queries simultaneously

Table 1. Experimental Environment Description

Site Processor RAM Memory

1 Pentium IV 1.6Ghz 752MB
2 AMD Duron 1.6Ghz 752MB
3 AMD Athlon 1.5Ghz 480MB
4 AMD Athlon 1.5Ghz 736MB
5 AMD Duron 1.4Ghz 752MB
6 AMD Duron 1.6Ghz 496MB
7 Intel Xeon Dual Processor 2.8Ghz 3.87GB

496 R.L. de Carvalho Costa and P. Furtado

Graph 1: SLO-Achievement Rate

0.00

0.20

0.40

0.60

0.80

1.00

360 720 1080 1440

Query Submission Rate (queries / hour)

A
R

Graph 2: Executed Queries Rate

0.00

0.20

0.40

0.60

0.80

1.00

360 720 1080 1440

Query Submission Rate (queries / hour)

E
Q

Graph 3: Breach of Trust Rate

0.00

0.20

0.40

0.60

360 720 1080 1440

Query Submission Rate (queries / hour)

B
TR

Legend:

0.00
0.20
0.40
0.60

360 720 1080 1440

Query Submission Rate
(queries / hour)

B
T

R Reputation-Aware Scheduling

RS

FCEJ

and multi-query influence reduces the service’s capacity to foresee the necessary
time to execute a query, which leads to higher breach of trust rates (Graph 3).

In fact, the heterogeneity of our system and multi-query influence are the
main factors that lead to different BTR values at each node. Multi-query influ-
ence affects in different ways the used data services. When a DBMS executes
several queries concurrently, the concurrency for RAM memory space increases
(especially if the accessed data tables does not fit entirely in available memory),
which may lead to performance degradation (I/O performance can also suffer if
different locations on disk are accessed). Thus, the smaller the RAM memory
available at a data service, the greater the negative impact the service may suffer
from multi-query influence.

The benefits of using the reputation-aware scheduling strategy are specially
noticed when using incoming query rates between 500 and 1000 queries per hour.
With submission rates in such range, the reputation-aware scheduling maintains
the BTR values especially low (Graph 3), while a high number of queries is
executed (Graph 2), leading to a high deadline achievement rates (Graph 1).

When using submission rates higher than 1000 queries per hour, each data ser-
vice would have to execute many queries at the same time (the Awaiting Queue
Time would have to be almost zero in order to achieve specified deadlines),
which greatly increases the query execution time of each of them. Therefore, in
order to avoid such high number of concurrent queries, data services deny to
execute several queries and the number of queries with no candidates to execute
them increases (lower values for EQ in Graph 2). This leads to lower dead-
line achievement rates (Graph 1), but also reduces the BTR values (Graph 3),

QoS-Oriented Reputation-Aware Query Scheduling in Data Grids 497

as a smaller number of concurrent queries are effectively executed at each node
(reducing multi-query influence).

Hence, the proposed reputation-aware scheduling model leads to the best
deadline achievement and breach of trust rates in all studied situations.

5 Conclusions and Future Work

Globally accessible databases are becoming of great importance to a large num-
ber of real and virtual global organizations. Such environment is obtained by
the use of a grid-based infra-structure, which provides transparent access to ge-
ographically distributed databases. In such Data Grids, database replication is
usually done in order to increase availability and performance.

In this work, we present a new query scheduling strategy for the Data Grid.
Our two-phase scheduling strategy is QoS-oriented, which means that it aims
at maximizing the rate of SLO-achievement. In this work, we used execution
deadlines as QoS-requirements, but our strategy may also be used for other types
of QoS-requirements. The first phase of our strategy aims at selecting available
sites to execute the incoming job maintains site autonomy: each site may deny
to the job by the specified deadline. This can be used to implement local-domain
rules. In the second phase, a reputation system to choose between the available
candidates the one that should execute the query. The use of the reputation
system increases the system’s QoS level. We present experimental results that
prove the validity of our proposals. We also identify some performance metrics
that can be used to evaluate QoS-oriented scheduling techniques.

As future work, we plan to experimentally evaluate our scheduling strategy
with other types of QoS-requirements and jobs.

References

1. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The data grid:
Towards an architecture for the distributed management and analysis of large
scientific datasets. J. of Network and Computer Applic. 23, 187–200 (2001)

2. Foster, I.T.: The anatomy of the grid: Enabling scalable virtual organizations. In:
CCGRID, pp. 6–7 (2001)

3. Roy, A., Sander, V.: Gara: a uniform quality of service architecture. Grid resource
management: state of the art and future trends, 377–394 (2004)

4. Ranganathan, K., Foster, I.: Computation scheduling and data replication algo-
rithms for data grids. Grid resource management: state of the art and future trends,
359–373 (2004)

5. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource
management systems for distributed computing. Softw. Pract. Exper. 32(2), 135–
164 (2002)

6. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The
Internat. Journal of Superc. Appl. and High Perf. Computing 11(2), 115–128 (1997)

7. Grimshaw, A.S., Wulf, W.A., Team, T.L.: The legion vision of a worldwide virtual
computer. Commun. ACM 40(1), 39–45 (1997)

498 R.L. de Carvalho Costa and P. Furtado

8. Foster, I.T.: Globus toolkit version 4: Software for service-oriented systems. J.
Comput. Sci. Technol. 21(4), 513–520 (2006)

9. Buyya, R., Abramson, D., Giddy, J.: Nimrod/g: An architecture of a resource
management and scheduling system in a global computational grid. CoRR
cs.DC/0009021 (2000)

10. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-g: A compu-
tation management agent for multi-institutional grids. Cluster Computing 5(3),
237–246 (2002)

11. Tannenbaum, T., Wright, D., Miller, K., Livny,M.: Condor – a distributed job sched-
uler. In: Beowulf Cluster Computing with Linux. MIT Press, Cambridge (2001)

12. Czajkowski, K., Foster, I.T., Karonis, N.T., Kesselman, C., Martin, S., Smith, W.,
Tuecke, S.: A resource management architecture for metacomputing systems. In:
Proc. of the Work. on Job Scheduling Strat. for Parallel Processing, pp. 62–82 (1998)

13. Natrajan, A., Humphrey, M.A., Grimshaw, A.S.: Grid resource management in
legion. Grid resource manag.: state of the art and future trends, 145–160 (2004)

14. Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou,
R.: Distributed query processing on the grid. In: Parashar, M. (ed.) GRID 2002.
LNCS, vol. 2536, pp. 279–290. Springer, Heidelberg (2002)

15. Alpdemir, N.M., Mukherjee, A., Gounaris, A., Paton, N.W., Watson, P., Fer-
nandes, A.A., Fitzgerald, D.J.: Ogsa-dqp: A service for distributed querying on
the grid. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp.
858–861. Springer, Heidelberg (2004)

16. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Watson,
P.: Adapting to changing resource performance in grid query processing. In: DMG,
pp. 30–44 (2005)

17. Silaghi, G., Arenas, A., Silva, L.: A utility-based reputation model for service-
oriented computing. In: Proc. of the CoreGRID Symposium, pp. 63–72 (2007)

18. Sonnek, J., Nathan, M., Chandra, A., Weissman, J.: Reputation-based scheduling
on unreliable distributed infrastructures. In: ICDCS 2006: Proc. of the 26th IEEE
Inter. Conf. on Distributed Computing Systems, p. 30 (2006)

19. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: WWW 2003: Proc. of the 12th Inter.
Conf. on World Wide Web, pp. 640–651 (2003)

20. Singh, A., Liu, L.: Trustme: Anonymous management of trust relationships in
decentralized p2p systems. In: Peer-to-Peer Computing, pp. 142–149 (2003)

21. Spiliopoulou, M., Hatzopoulos, M., Vassilakis, C.: A cost model for the estimation
query execution time in a parallel environment supporting pipeline. Computers
and Artificial Intelligence (4) (1996)

22. Tomov, N., Dempster, E., Williams, M.H., Burger, A., Taylor, H., King, P.J.B.,
Broughton, P.: Analytical response time estimation in parallel relational database
systems. Parallel Comput. 30(2), 249–283 (2004)

23. de Carvalho Costa, R.L., Furtado, P.: A qos-oriented external scheduler. In: SAC
2008: Proceedings of the 2008 ACM symposium on Applied computing, pp. 1029–
1033. ACM, New York (2008)

24. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputa-
tion model for open multi-agent systems. Autonomous Agents and Multi-Agent
Systems 13(2), 119–154 (2006)

25. Transaction processing council benchmarks - (Last Visited in January 2008),
http://www.tpc.org/

http://www.tpc.org/

	QoS-Oriented Reputation-Aware Query Scheduling in Data Grids
	Introduction
	Related Work
	QoS-Oriented Reputation-Based Scheduling
	System Model
	Two-Phase Reputation-Aware Scheduling Model
	Performance Metrics

	Experimental Results
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

