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Abstract. The present work studies an approach to exploit the local-
ity properties of an inherently cache-efficient algorithm for matrix mul-
tiplication in a parallel implementation. The algorithm is based on a
blockwise element layout and an execution order that are derived from a
Peano space-filling curve. The strong locality properties induced in the
resulting algorithm motivate a parallel algorithm that replicates matrix
blocks in local caches that will prefetch remote blocks before they are
used. As a consequence, the block size for matrix multiplication and the
cache sizes, and hence the granularity of communication, can be chosen
independently. The influence of these parameters on parallel efficiency is
studied on a compute cluster with 128 processors. Performance studies
show that the largest influence on performance stems from the size of
the local caches, which makes the algorithm an interesting option for all
situations where memory is scarce, or where existing cache hierarchies
can be exploited (as in future manycore environments, e.g.).

1 Introduction

Space-filling curves have become a quite well-established tool for parallelisation
in scientific computing, which is mainly a result of their strong locality proper-
ties. In matrix computations, recursive and block-recursive approaches – which
includes approaches based on space-filling curves, Morton order, and similar –
can exploit such locality properties to obtain cache-efficient algorithms (see [4]
for an overview). In [1,2], we introduced a block-recursive algorithm for ma-
trix multiplication based on Peano space-filling curves, where the Peano curve’s
locality properties lead to an inherently cache-efficient multiplication scheme
with a highly local access pattern to memory. The present paper addresses the
question about how these locality properties can be used to obtain an efficient
parallel implementation of matrix multiplication. The key idea of the presented
approach is to add local software caches to replicate remote matrix blocks on
the local processors, and thus turn an inherently cache-efficient algorithm into
one that also scales well in a parallel implementation.

Existing parallel algorithms for matrix multiplication, such as PUMMA[3],
SUMMA[5], or SRUMMA[7], are typically based on substructuring the involved
matrices into smaller blocks. These blocks not only define the distribution of
the matrices to several processing units, they also determine the data units
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that need to be transfered between the processors and, together with the par-
allel block layout, the resulting communication pattern. Prefetching of remote
blocks, however, and overlapping communication with computation is restricted
to double-buffering techniques in those approaches.

In contrast, the presented cache-oriented approach exploits the algorithm’s
strong locality properties for efficient prefetching and communication hiding. The
size of the prefetched matrix blocks can be chosen independent of the amount
of additional local memory to hold copies of remote matrix blocks, and indepen-
dent of the dimension of the sequentially executed block multiplications (which
also has a strong influence on achievable performance). In addition, the resulting
algorithm can be tuned for specific applications – for example when memory is
short and the amount of additional local memory is therefore the limiting factor
– or for specific hardware, such as for latency and bandwidth of the communica-
tion. In a parallel work[6], we showed that a hardware-oriented implementation
of our Peano algorithm achieves excellent performance on multicore platforms.
Hence, the present study also aims at estimating the capability of the Peano
multiplication for future manycore processors with 10–100 cores.

2 Matrix Multiplication Using Peano Curves

To compute the product of two n × n-matrices, as in C = C + AB, we need to
perform the update cij = cij + aikbkj for all triples (i, j, k) ∈ {1, . . . , n}3. Due to
commutativity, we can execute the updates in any sequence we find appropriate;
i.e. we may choose any 3D-traversal of the index space {1, . . . , n}3. Similarly,
we may choose any suitable 2D-traversal of the index spaces of the matrices,
{1, . . . , n}2, as a storage scheme to map the matrix elements to a contiguous
sequence of memory addresses. In [1], we have shown that using a Peano curve
for both the 3D- and the 2D-traversal, i.e. the sequence of element updates and
the order of the matrix elements, leads to an inherently local scheme for matrix
multiplication. For the simple example of multiplying two 3 × 3-matrices,

⎛
⎝

a0 a5 a6
a1 a4 a7
a2 a3 a8

⎞
⎠

⎛
⎝

b0 b5 b6
b1 b4 b7
b2 b3 b8

⎞
⎠ =

⎛
⎝

c0 c5 c6
c1 c4 c7
c2 c3 c8

⎞
⎠ , (1)

where the element indices indicate the order in which the elements are stored in
memory, this leads to the execution order given in figure 1. Note that the update
operations on the elements cr are computed in an inherently local order – from
each operation to the next, the involved matrix elements are either reused or
one of their direct neighbours in memory is accessed.

Figure 2 illustrates how the Peano element order is extended to store larger
matrices. We use 2D iterations of a Peano curve, which is described by a nested-
recursive scheme of four block-numbering patterns: P , Q, R, and S. Starting
from the initial pattern P , the four block patterns are recursively combined and
lead to a contiguous storage scheme of matrix blocks. The recursion is stopped
once the matrix blocks become smaller than a given block size. On these atomic
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c0 += a0b0 c3 += a8b3 → c4 += a7b3 c7 += a1b6 → c8 += a2b6
↓ ↑ ↓ ↑ ↓

c1 += a1b0 c2 += a8b2 c5 += a6b3 c6 += a0b6 c8 += a3b7
↓ ↑ ↓ ↑ ↓

c2 += a2b0 c1 += a7b2 c5 += a5b4 c5 += a0b5 c7 += a4b7
↓ ↑ ↓ ↑ ↓

c2 += a3b1 c0 += a6b2 c4 += a4b4 c4 += a1b5 c6 += a5b7 c8 += a8b8
↓ ↑ ↓ ↑ ↓ ↑

c1 += a4b1 → c0 += a5b1 c3 += a3b4 → c3 += a2b5 c6 += a6b8 → c7 += a7b8

Fig. 1. Optimal execution order for the 3 × 3-multiplication given in equation (1)
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Fig. 2. Recursive construction of the Peano element order

blocks, standard column-major order is used, such that standard library routines
(dgemm, e.g.) can be used for the sequential atomic block multiplications. Hence,
the resulting hybrid numbering scheme is applicable to matrices of arbitrary size,
including non-square matrices, if non-square atomic blocks are allowed.

The basic multiplication scheme for 3×3-matrices, as given in figure 1, extends
to a block-recursive scheme for larger matrices, if we replace the matrix elements
in (1) by matrix blocks numbered according to the Peano order. Equation (2)
shows such a blockwise matrix multiplication. Each matrix block is named with
respect to its numbering pattern and indexed with the name of the global matrix
and the position within the storage scheme:

⎛
⎝

PA0 RA5 PA6
QA1 SA4 QA7
PA2 RA3 PA8

⎞
⎠

⎛
⎝

PB0 RB5 PB6
QB1 SB4 QB7
PB2 RB3 PB8

⎞
⎠ =

⎛
⎝

PC0 RC5 PC6
QC1 SC4 QC7
PC2 RC3 PC8

⎞
⎠ . (2)

The block operations are executed following the scheme given in figure 1, start-
ing with PC0 +=PA0PB0, QC1 +=QA1PB0, PC2 +=PA2PB0, etc. For block mul-
tiplications such as QC1 +=QA1PB0, where matrices are numbered according to
alternate numbering patterns, schemes analogous to that in figure 1 are derived,
where one, two, or all three of the indices of the three involved matrices are
traversed in inverse order. The resulting eight recursive multiplication schemes
can thus be combined into a single recursive procedure, where the three index
traversal directions are given as parameters – cf. figure 5 in section 4 for a rough
sketch or [1] for the full algorithm.
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3 Exploiting the Peano Algorithm’s Locality Properties

The resulting Peano algorithm for matrix multiplication has excellent locality
properties, which are illustrated by its memory access pattern plotted in figure 3.
In [1], we quantified these locality features by proving the following properties:

P1. The element traversal of all three involved matrices can be achieved entirely
by index increments and decrements: after an element is accessed, the next
access will be either to itself or to its direct left or right neighbour.

P2. Any sequence of k3 floating point operations is executed on only O(k2) con-
tiguous elements in each matrix. Vice versa, on any block of k2 contiguous
elements, at least O(k3) operations are performed. Hence, we can precisely
predict how much computing time is spent on any given block of memory.

P3. As a result, a machine that only operates on a working memory consisting of
M lines of L elements each, such as a cache memory or a replicated block
of memory within a parallel computer, will require only O

(
n3/(L

√
M)

)
transfer operations to load matrix elements into the working memory –
which is asymptotically optimal.

Property P1 motivates to use the model of a parallel, multi-tape Turing machine
to describe the adopted approach to efficiently parallelise the Peano algorithm.
Hence, let’s consider the model of a parallel Turing machine with three tapes to
store the matrices A, B, and C, and with several processing units that simulta-
neously access the shared Turing tapes via their respective read-write-heads (as
illustrated in figure 4). Property P1 then guarantees that all read-write-heads
will only move to directly neighbouring elements on the tapes.

To let our Turing machine more closely resemble real-world parallel comput-
ers, we allow each Turing unit to replicate a section of each matrix tape in some
kind of local memory. Property P2 then guarantees that each Turing unit will
spend a guaranteed amount of computing time within these replicated sections
of memory. As at least O(k3) operations will be executed, the units can precisely
estimate when the end of the replicated section will be reached, and can thus
issue a timely relocation of the replicated section (i.e. a prefetch of elements).

Finally, property P3 gives an estimate on how often the local copies of the
Turing tapes have to be updated. Hence, if the tapes are stored in the distributed
memory of a parallel computer, property P3 is a precise estimate of the required
number of communication operations.

4 Parallelisation and Implementation

The parallel implementation of the Peano algorithm closely follows this idea of
a multi-tape Turing machine. The Global Arrays toolkit [9] and the underly-
ing ARMCI library [8] are used for distributed storage of the matrices and for
communication. Each involved matrix is stored as a global array, which is evenly
distributed to all available processes and takes the role of a Turing tape. Each
processor holds a tape cache (as in figure 4) that is implemented to replicate a
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Fig. 3. Locality of data access during the Peano multiplication; the diagram shows
the accessed memory locations within matrices A, B, and C throughout the 729 sub-
sequent element operations of a 9 × 9 matrix multiplication. The grey boxes indicate
one parallel partition when using the work-oriented partitioning (dotted box) or the
owner-computes partitioning (dashed boxes) – see also section 4.

Turing Unit 1 Turing Unit 3Turing Unit 2

B

C

A

Fig. 4. Parallel Turing machine with several control units; each unit controls three
heads that write to the three tapes jointly used to store the matrices. The highlighted
parts of the matrix tapes are replicated in some local memory of the Turing units.

part of the global array in local memory. The tape caches are organised into four
cache lines that hold a given number of atomic matrix blocks.

Two read caches replicate matrix blocks of A and B. The currently accessed
cache line and its two (cyclic) neighbours always hold a contiguous section of the
respective global array. The fourth block, in the meantime, prefetches one of the
adjacent cache lines, using the phsA and phsB parameters to anticipate the next
accessed block. As in the SRUMMA approach[7], non-blocking communication
ensures that explicit prefetching into the tape cache and block multiplications
on other tape cache lines are performed in parallel.

In addition, a write cache accumulates block products that have to be added
to the result matrix C. A tape cache line that is accessed for the first time is
initialised with zeros. At the same time, the least recently used cache line is
written back to distributed memory by initiating a non-blocking operation that
accumulates the intermediate result to the respective block of the result matrix
(using ARMCI’s non-blocking accumulate call NGA NbAcc).

The tape cache mechanism is not only responsible for saving communication
operations; it also encapsulates all communication operations and hides them

NGA_NbAcc
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peanomult(int phsA, int phsB, int phsC, int dim) {
if ((dim <= BLOCKSIZE) && /* block mult. in local task list */ ){

// manage read and write access to matrix blocks in tape caches:
Abuf = Acache.readAccess(a, phsA);
Bbuf = Bcache.readAccess(b, phsB);
Cbuf = Ccache.writeAccess(c);
// call BLAS-dgemm for block matrix multiplication:
dgemm (’n’, ’n’, dim, dim, dim, 1.0,

Abuf, dim, Bbuf, dim, 1.0, Cbuf, dim);
} else {

/* 27 recursive calls: */
peanomult( phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult( phsA,-phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult( phsA, phsB, phsC, dim/3); a += phsA; b += phsB;
/* ... */

} }

Fig. 5. Sketch of the parallelised Peano multiplication: the parameters phsA, phsB,
and phsC (values ±1) control which of the eight recursive multiplication schemes is
used. Acache, Bcache, and Ccache are the local tape caches for matrices A, B, and
C. a, b, and c (here as global variables) are the starting indices of the current matrix
blocks. Each processor performs the entire recursion, and decides for each atomic block
multiplication whether this is part of its own task list.

from the rest of the implementation. The block recursive algorithm only requires
one call for each matrix that requests the next accessed block from the respective
tape cache – see figure 5 for the general structure of this algorithm.

For load distribution, the linear sequence of block multiplications generated
by the Peano recursion is split into equally sized parts, which are distributed
onto the available processors. For sufficiently small atomic blocks, this task-list
oriented strategy leads to an excellent load balance. For example, three levels of
recursion will lead to 273 atomic block operations – distributing these to 128 pro-
cessors results in a load imbalance of less than 1%. As an alternative approach,
an owner computes scheme can be used, where each atomic block operation is
performed by the processor that owns the respective atomic block of the result
matrix C (see illustration in figure 3). This requires considerably smaller atomic
block sizes to avoid load imbalances. However, this strategy completely avoids
write access conflicts to the matrix C, and is therefore especially suited for multi-
and manycore environments with shared cache memories[6].

5 Performance Results

The parallel implementation of the Peano algorithm was tested on an Infini-
band cluster with 32 Opteron nodes; each node contains four AMD Opteron
850 processors (2.4GHz) connected to 8GB of shared memory, and is equipped
with one MT23108 InfiniBand Host Channel Adapter card for communication.
The atomic block multiplications were executed by the dgemm implementation of
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Fig. 6. Parallel efficiency of the parallel Peano algorithm: diagrams (a)–(d) show the
achieved MFlop/s per processor for various atomic block sizes. Results are given for
different sizes of the tape caches (‘bpcl’ = ‘blocks per cache line’) and, in (c) and (d)
for double buffering (’dbl. buf.’). The dashed horizontal lines mark the achievable se-
quential performances for the respective block size. Diagram (d) gives the performance
of SRUMMA[7] and ScaLAPACK’s SUMMA implementation[5] for comparison.

ACML (AMD Core Math Library, v. 3.6.0). Performance was always evaluated
in terms of achieved MFlop/s per processor to show the parallel efficiency of the
method. The matrix size for all tests was 15066×15066. We used Peano layouts
of 243 × 243, 81 × 81, 27 × 27, and 9 × 9 atomic blocks, starting with 62 × 62 as
the smallest atomic block size (the best size for the level 1 hardware cache[6]).

Figure 6 shows the MFlop/s rates measured for increasing number of proces-
sors, and expresses how the parallel efficiency of the Peano algorithm depends
on the size of the atomic blocks and of that of the tape caches. At least for
up to 32 processors, the Peano implementation scales well for all atomic block
sizes. For more processors, efficiency deteriorates, as several processors have to
share only one InfiniBand adapter for communication, which noticeably reduces
bandwidth and latency, and hence also parallel performance. We also observe a
general increase of MFlop/s with growing size of the tape caches. By increasing
the cache sizes, the performance can be driven close to the achievable sequential
performance, which is determined by ACML’s performance for the given block
size (dashed lines). Diagram (d) also includes the performance of the SRUMMA
implementation in Global Arrays [7,9] and that of ScaLAPACK’s implementa-
tion of SUMMA[5] to show that the Peano implementation is well competitive
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Fig. 7. Parallel efficiency (on 32 processors with uniform block size 62×62) for varying
sizes of the tape caches for matrices A, B, and C. In plot (d), the given cache size
indicates the total number of 62 × 62-blocks cached in all three tape caches.

compared to these established approaches. Apparently, SUMMA falls behind
SRUMMA and the Peano algorithm, as long as these can overlap communica-
tion and computation. In contrast, SUMMA’s minimisation of communication
makes it less vulnerable to slow communication when all 128 processors are used.

From the memory access pattern given in figure 3, we can expect that choosing
caches of different size for the three involved matrices should be advantageous.
For example, the access pattern to B is much more local than that to A, which
suggests a smaller cache for B. Judging from the access patterns an optimal
cache size ratio of A : B : C = 9 : 1 : 3 is to be expected. Performance tests to
study this aspect in detail are illustrated in figure 7: diagrams (a), (b), and (c),
plot the performance when only one of the three cache sizes is increased while
the respective other two cache sizes are kept constant. In addition, different size
ratios between the other two caches were tested. Diagrams 7(a) and (b) indeed
show a slight increase of performance with growing sizes of B and C; however,
the more substantial performance gain seems to result from increasing the cache
for A, which is supported by the results in figure 7(c), where an increase of the
cache size for A, while keeping the cache sizes for B and C constant, leads to
a much stronger performance gain. Figure 7(c) also indicates best performance,
when the cache for C is chosen comparably large. Hence, figure 7(d) compares the
performance when using different fixed ratios of the cache sizes. As expected, the
ratio 9 : 1 : 3 leads to the smoothest increase of performance with growing total
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Fig. 8. Performance of the owner-computes scheme (’owner’) compared to work-
oriented distribution: In (a) and (b), results (in MFlop/s per processor) are given
for different sizes of the tape caches (analogous to Fig. 6). In (c), the optimal cache
size ratios where used (total cache size identical; two different block sizes). Plot (d)
shows the impact of growing cache size (optimal vs. uniform cache size ratio).

cache size, and seems to be the best overall choice. However, the performance
differences are small and are overlapped by local performance maxima that occur
when a cache line size matches the block size of the Peano layout.

Figure 8 compares the performance when using the owner computes approach
for load distribution instead of the regular work-oriented approach. The owner
computes strategy proved to be faster for up to 16 or even 32 processors. For
more processors, performance quickly deteriorates, and the work-oriented distri-
bution is clearly the better choice. This slow-down is due to the additional cache
misses that occur for the owner computes scheme (note the “splitted” owner-
computes partition in figure 3). At such tape cache misses, prefetching of the
operand matrices fails, and a blocking call to obtain the required matrix blocks is
necessary. This leads to performance penalties for large blocks and especially for
large tape cache lines, but also for short task lists (if comparably many processes
are used), as then the number or the cost of the tape cache misses grows.

The results for the owner computes strategy are especially important for using
the Peano algorithm on multi- and manycore platforms[6], because in such a
setting the owner computes strategy avoids costly synchronisation of the write
accesses to matrix C, and especially of resulting cache coherence conflicts.
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6 Conclusion
The present study shows that the inherently cache efficient Peano algorithm can
be turned into a competitive parallel implementation of matrix multiplication.
The key idea is to include an additional cache level, the tape caches, to store
and prefetch remote matrix blocks. The performance results show that the size
of these caches is the key parameter to achieve optimal parallel efficiency. Thus,
the Peano algorithm is especially suitable for situations where memory is scarce
and can not easily be invested for replicating large remote matrix blocks.

Our primary aim, however, is to combine the hardware-oriented multicore
implementation of our Peano algorithm[6] with the parallelisation approach pre-
sented in this paper, which will require the combination of the owner-computes
approach with the work-oriented load distribution. In such an algorithm, only
two components would need to be hardware-aware: the multiplication kernel for
the atomic block multiplications has to be tuned to the specific CPU; and the
size of the tape caches has to be adopted to the communication parameters (la-
tency and bandwidth) of the parallel platform. The goal is a both parallel and
cache oblivious algorithm that consequently exploits the Peano curve’s locality
properties on all memory levels, and therefore works well on parallel platforms
of all kind – from multi- and manycore CPUs up to parallel compute clusters.
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