
Requirements for Rich Internet Application

Design Methodologies

Jevon M. Wright and Jens B. Dietrich

Institute of Information Sciences and Technology,
Massey University, Palmerston North, New Zealand

j.m.wright@massey.ac.nz

j.b.dietrich@massey.ac.nz

Abstract. Rich Internet Applications (RIAs) are quickly becoming the
de facto standard for interactive web applications on the Internet, fea-
turing rich interfaces that increase user usability and efficiency. These
technologies increase the complexity of implementing web applications,
making it difficult to address non-functional requirements such as appli-
cation quality and reliability. There is much activity in developing mod-
elling languages for web applications, but RIAs introduce additional con-
cerns for application developers. Without identifying the requirements of
interactive web applications, we cannot quantitatively compare different
formal methodologies nor suggest they are robust enough for industry.
In this paper we present a comprehensive list of web application mod-
elling requirements, derived from previous work and existing real-world
interactive web applications. We use these requirements to then pro-
pose an industry-inspired benchmarking application, which allows us to
evaluate approaches to handling the complexity of modelling real-world
applications.

Key words: interactive web applications, Rich Internet Applications,
web engineering, requirements, benchmark

1 Introduction

For the last decade, web applications are increasingly becoming the standard
for communication and interaction, allowing any connected user on the Internet
to browse information using standardised protocols and a web browser. Many
approaches to model these web applications have been proposed in the past,
such as WebML [1], UWE [2] and W2000 [3]. Recently, the concept of Rich

Internet Applications [4] has arguably redefined the environment of web appli-
cations – advocating rich user interfaces and improving user participation – and
is transforming users from content consumers to providers [5].

This has increased the complexity of web development, and consequently
web developers have found a greater need for the use of formal methodologies to
assist in the development and deployment of these interactive web applications
[4]. However, very little work has been done in evaluating existing methodologies,

2 Jevon M. Wright and Jens B. Dietrich

or proposing a comprehensive list of requirements of RIAs. This paper aims to
satisfy these real needs by defining the expressive requirements of interactive
web applications, and demonstrating the use of these requirements by proposing
a sample benchmarking application.

We provide a brief background and our motivation for this work in Section 2.
We then propose our requirements in Section 3, along with a discussion on their
development. We combine these requirements into a fully featured benchmarking
application, Ticket 2.0, in Section 4. A discussion of our contributions and future
work is presented in Section 5, and we finally conclude our work in Section 6.

2 Motivation

Software development is a complex activity, and it is expected by industry that
the use of formal methodologies and modelling languages to abstract away from
this complexity increases the reliability, usability, security and maintainability
of this software [6,7]. Web applications are a form of software that presents ad-
ditional unique challenges and requirements to desktop software [7], and many
modelling language approaches have been proposed to solve this additional com-
plexity.

Despite this complexity, developers tend away from using such formal method-
ologies, instead advocating for proprietary or outdated approaches, even though
formal methodologies are expected to be beneficial [6,8]. This may be a symptom
of existing modelling languages being unable to express the unique requirements
of web applications [7,9]; consequently, a methodology which is more expressible
with regards to web applications should be beneficial to the web development
community.

Past work on identifying the requirements of RIAs have tended to focus on the
qualities of the methodology surrounding it or its software support [4,10], with
less focus on the functional requirements of these applications. While web appli-
cations may be considered a primitive form of hypermedia [6], they have qualities
that cannot be addressed with existing hypermedia modelling approaches [4]. In
our paper we propose a comprehensive list of RIA requirements.

Along with correlating these requirements with existing work, we may also
prove their validity by highlighting their actual usage in existing web applica-
tions. We amplify this step by consolidating all of these requirements into a
proposed benchmarking application. Similar approaches are used in the domains
of business rules [11] and enterprise software modelling [12], and this imple-
mentation is crucial to prove the real-world suitability of a formal methodology
[6,13].

3 Requirements

Due to its relative infancy, there is little work on identifying the functional re-
quirements of RIAs, with most research to date spent on identifying the technical
and process requirements of appropriate methodologies. Whilst it is important

Requirements for Rich Internet Application Design Methodologies 3

to consider the requirements of the process surrounding a modelling language,
this is generally more flexible than the issues raised by the expressiveness of the
modelling language itself. This is especially valid with web applications, as web
concepts such as sessions and e-mails are largely ignored in existing approaches
[14]. Consequently, we chose to develop our RIA requirements by studying real-
world examples in industry:1

1. Gmail: Web-based e-mail by Google.
http://www.gmail.com

2. Calendar: Google Calendar, a collaborative online calendar.
http://calendar.google.com

3. Reader: Google Reader, an offline-enabled feed reader.
http://reader.google.com

4. Docs: Google Docs, a collaborative office suite.
http://docs.google.com

5. Last.fm: A social network-enabled music site.
http://www.last.fm

6. Pages: Google Page Creator, an online web publishing suite.
http://pages.google.com

7. Facebook: A social networking platform.
http://www.facebook.com

In Tables 1 and 2 we present our proposed 59 core requirements of interac-
tive web applications. Each requirement is based on an actual feature of RIAs,
and is presented along with an example of their usage. They are grouped into
six categories solely for ease of reference. We have purposefully ignored some
basic data and presentation requirements;2 these trivial aspects are covered by
requirements such as View Data and are omitted for clarity.

These proposed requirements are ideal for evaluating and comparing different
web modelling languages, and this approach has been taken before in evaluat-
ing older web modelling languages [4,9,10]. Indeed, it would be very useful to
evaluate these requirements in a similar manner to Christodoulou et al [10]. As
our previous work is concerned with a similar evaluation [14], we instead focus
our attention on suitable methods to create and validate modelling language to
address these requirements.

4 Benchmarking Application

Benchmarking applications3 are a technique that may be useful in identifying the
expressiveness of different technologies, and this concept has been used before

1 The interested reader will note that most of these applications are developed by
Google; indeed, Google has focused their business model significantly around RIAs.

2 Such as the ability to use an external database, linking between pages, or being able
to display the content in HTML.

3 Instead of the classic definition of a performance benchmark, this is instead a func-
tional benchmark.

http://www.gmail.com
http://calendar.google.com
http://reader.google.com
http://docs.google.com
http://www.last.fm
http://pages.google.com
http://www.facebook.com

4 Jevon M. Wright and Jens B. Dietrich

Requirement Example

Data

D1 Static Pages Gmail: Static help pages
D2 View Data Gmail: View an e-mail
D3 Update Data Gmail: Create an e-mail
D4 Pagination Gmail: Display e-mails in pages
D5 Provide Data Feed Last.fm: Provide RSS feed of recommendations
D6 Use Web Services Calendar: Use external iCal feed
D7 Offline Data Reader: Download new feeds before going offline
D8 Offline Resources Reader: Download resources before going offline
D9 Web Service Provider Facebook: Provide Facebook application using API
D10 Uploading Files Gmail: Adding attachments
D11 Access Server Data Gmail: Download new message headers
D12 Local Variables/Data Docs: Download document source to client
D13 Cookies Gmail: Recall last input language

Events

E1 Scheduled Events Calendar: Event reminders on client and server
E2 Client Timer Support Gmail: Check server for new e-mails
E3 Server Timer Support Gmail: Check POP3 servers for new e-mails
E4 Async Form Validation Last.fm: Check in entered event artist data
E5 Client Form Validation Gmail: Warn user if subject is missing
E6 Server Form Validation Gmail: Sending an e-mail to an invalid address
E7 User Collaboration Docs: Two users can work on the same document
E8 Browser-Based Chat Gmail: Google chat
E9 Out-of-Order Events Docs: Dealing with edit events with multiple users
E10 Server Transaction Support Gmail: Purchasing more storage space

Users and Security

S1 User Authorisation Gmail: Sign in
S2 Session Support Gmail: Sign in
S3 User Logout Gmail: Sign out
S4 Automatic User Auth Gmail: Log in automatically
S5 User Security Calendar: Only certain users can access a calendar
S6 Group Security Calendar: Shared calendars secured to certain groups
S7 Security Levels Calender: Read/write/change sharing permissions
S8 Single Sign-In Solutions Google Services; OpenID
S9 Personalisation Calendar: Display a custom timetable format

User Agents

A1 Browser Identification Gmail: Redirect user if user agent fails requirements
A2 User Redirection Gmail: Redirect to e-mail web links
A3 Multiple Browser Support Gmail: Load different interfaces depending on agent
A4 Multiple Outputs Calendar: Provide a feed in iCal, XML, HTML
A5 Client-Side Application Gmail: Webmail application
A6 Load Additional Scripting Gmail: Contacts menu loads another script
A7 Back Button Control Gmail: A user cannot go back once logged out
A8 Plugin Support Gmail: Play MP3 attachment
A9 Plugin Communication Last.fm: Clicking on a track updates the Flash player
A10 Navigation Control Gmail: Update URL fragment identifier

Table 1. Interactive Web Application Requirements (1)

Requirements for Rich Internet Application Design Methodologies 5

Requirement Example

Interaction

T1 E-mailing Users Gmail: Can send e-mails
T2 E-mail Unsubscription Facebook: User can unsubscribe from all e-mails
T3 Mobile Phone Communication Calendar: Can send text message reminders
T4 Internationalisation Support Last.fm: Different locales
T5 Multiple Domain Support Last.fm: Different domains display different locales

User Interface

U1 Presentation Calendar: Displaying a particular user interface
U2 Client-side Scripting Gmail: Home page displaying available space
U3 Drag and Drop Calendar: Can drag and drop events
U4 Loading Time Support Gmail: Switch to HTML view after 30 seconds
U5 Keyboard Shortcuts Calendar: Can browse using keyboard
U6 Opening New Windows Pages: Open links in new windows
U7 Pop-up Dialog Boxes Gmail: Can compose an e-mail in a new window
U8 Runtime Interface Updates Gmail: Update Unread Mails in real time
U9 Static Views (HTML) Gmail: Provide a static HTML view
U10 Modal Dialogs Pages: Inserting an image shows a modal dialog
U11 Use External Components Facebook: Transitions with script.aculo.us
U12 Provide External Libraries Gmail, Calendar: A consistent calendar input box

Table 2. Interactive Web Application Requirements (2)

in a variety of different domains [11,12]. In the search for such a benchmarking
application for web development however, we have not yet found any web appli-
cation that matches all of our requirements simultaneously. We suspect this is
due to the complexity such an application would burden on a development team,
and it is precisely this reason that a structured formal methodology would be
appropriate. This also means that there is no suitable application from which to
build upon.

Ideally a benchmarking application for RIAs would involve the fields of so-
cial networking, e-commerce, web services, scheduled events, business integra-
tion and consumer interaction. It would be difficult to adapt common academic
scenarios such as library or student applications to address all of these require-
ments. A sensible option would be adapting an existing web application, but
existing applications are designed primarily for user simplicity and not feature
usage. Extending an existing application may entangle too much additional com-
plexity4, which is important to consider when realising that a poorly designed
modelling language may require significant model duplication5 in order to fulfill
the benchmark.

4 Consider re-implementing Gmail from scratch, compared with implementing only a
single client-side application.

5 Consider that an application with client-side, server-side and mobile interfaces may
require at least three separate but functionally identical models.

6 Jevon M. Wright and Jens B. Dietrich

Whilst combining all RIA features into one application will exponentially
increase its complexity, it is this complexity that will be a valuable learning
exercise into how a methodology handles semi-realistic web applications. As
such, we propose that a simple event ticketing application, combined with social
networking features, is ideal. This proposed application meets all of the require-
ments we proposed in Section 3, as shown in Table 4. We also argue that while
developing our own benchmarking application is definitely a challenge, it will be
less complicated and more accessible in the long term than trying to extend an
existing web application.

In the rest of this section we present our social networking-enabled, event
ticketing application titled Ticket 2.0. Its business goal is to provide a rich inter-
face for users to browse upcoming events and book tickets using a credit card.
They may interact with other users on the site through friends lists and chat
rooms on the event detail pages themselves, permitting open discussions and
user interaction. It also aims to provide a unified interface for event managers,
allowing them to schedule upcoming events and track their progress.

The conceptual structure of the application is presented in Figure 1, and
the ticket booking application flow is shown in Figure 2. These figure have been
purposely presented without using any existing modelling notations to try and
be as independent as possible. Elements shaded gray indicate features that are
navigable from every page,6 likely as part of a common navigation header. Due
to space restrictions this is not a complete formal specification, and the following
sections will become quite technical, however straight forward for an experienced
developer to implement. The full specifications for Ticket 2.0 are available online
at http://openiaml.org/.

4.1 Application Properties

The site is provided in two locales, with two separate domains selecting the
appropriate display language. The user may be automatically logged in through
cookie identification, if this feature is selected by the user. If the user visits
with a mobile phone, a smaller set of the application is presented (highlighted
in light gray), which does not include manager or administrator functionality.
Pages marked with an asterisk may be visited offline if the user has appropriate
technology7 installed. The application is divided into three secure sections, which
only particular types of users may access. The Book Ticket page involves a client-
side application, and is described with detail in Section 4.6.

4.2 Public Pages

Home The home page describes the application, and allows the user to switch
locales. It also allows the user to switch between the mobile and full versions of
the application.

6 These pages may be called landmarks [15].
7 Such as Google Gears: http://gears.google.com.

http://openiaml.org/
http://gears.google.com

Requirements for Rich Internet Application Design Methodologies 7

Fig. 1. Ticket 2.0 Application Page Structure

8 Jevon M. Wright and Jens B. Dietrich

Signup, Login, Logout Allows the user to signup, login, or logout. These
pages are secured through HTTPS. When logging in the user is presented with
an option to remember their authentication details.

Browse Events Lists all events in the system, presents a Google Maps mashup
[16] of events, and plays MP3 samples for selected events. It also provides a
public API for event listings. The user may browse the listings using keyboard
shortcuts, and uses a standard search widget. If not logged in, it uses cookies to
recall the last browsed location.

Event Details Provides a Google Maps mashup of the event location. It may
play an MP3 file uploaded by the manager related to the event. External links
are opened in new windows. From here the visitor may purchase a ticket as
described in Section 4.6.

4.3 User Pages

Recommended Events Displays events the application recommends to the
user, in a manner similar to Browse Events. This page provides an external API
to retrieve a certain users’ recommended events, using a token key as authentica-
tion. The events are selected both by user recommendations and the system. It
provides a drag-and-drop interface to delete unwanted recommendations. If of-
fline, the deletions are saved and submitted once the application is online again.
Once per week, the application sends out an automated e-mail to the user, listing
new event recommendations.

Recommend Allows a user to recommend any event to another user or e-mail
address. They may enter in multiple targets. If the e-mail address exists on the
system and is not currently a friend of the user, a friend request is sent as well.
If the target user is currently logged into the application, the recommendation
is displayed in a popup window as well on the targets machine.

Event Chat A simple interactive chat popup window, which provides rudimen-
tary communication between users. Visitors do not have to be currently logged
in, but Users may add other Users as friends. It uses script.aculo.us8 for event
chat transitions.

Friends Allows the user to view, add and remove friends.

Browse Tickets, View Ticket Allows the user to browse and view previously
purchased event tickets.

4.4 Manager Pages

After logging in conventionally, managers may authenticate themselves addition-
ally using OpenID [17] before any changes are applied.

8 A Javascript library providing rich object transitions and interactions: http://

script.aculo.us.

http://script.aculo.us
http://script.aculo.us

Requirements for Rich Internet Application Design Methodologies 9

Create New The manager may upload an MP3 file for the event. The event
description is presented in a rich text editor, and the venue may be selected using
an auto-completed text field. This page provides an external API to schedule new
events, using a token key as authentication.

Your Events, View Event, Edit Event The manager may view the events
they have added, and edit them with an interface similar to Create New.

Upload CSV The manager may upload multiple events in one file, according
to a CSV format.

Setup Data Sources The manager may set up an RSS feed for new events.
This RSS feed is checked daily for new events, which are then imported into the
system. The manager may specify an additional OpenID authentication server.

4.5 Administrator Pages

This section is restricted to administrators only, allowing them to modify the
core content of the site.

List/Edit Events/Users Lists the events or users on the system, and the
administrator may edit their properties or remove them.

Site Stats Displays a simple overview of the traffic statistics for the site in a
client-side application. Updates the fragment identifier while browsing between
dynamic pages, which allows the administrator to bookmark the application
state.

Contact User The administrator may send one or many users an e-mail or
text message.

4.6 Ticket Booking Process

This process is described graphically in Figure 2. This operates as a client-side
application that loads additional scripting to define the display of the venue
details, and the user cannot navigate using their back button or history. Before
the user reaches this, the user agent is checked for compatibility; if it cannot
execute client-side scripting, the user is redirected to a separate static version of
the booking process which is functionally similar, but lacks the richness of the
client-side user interface.

The application displays a warning message if it takes longer than one minute
to load the application. It has a three-minute client-side timeout, and a fifteen-
minute server-side timeout; the current timeout situation is displayed in real
time, along with the current connection status. If the client-side timeout occurs,
the user is warned that the connection has failed; if the server-side timeout
occurs, the booking process is cancelled and any reserved seats released. Input
validation occurs both on the server and the client, as well as asynchronously
in the background, with the client displaying errors in modal popup boxes on
failed client-side validation.

10 Jevon M. Wright and Jens B. Dietrich

Fig. 2. Ticket 2.0 Booking Process

Select Seats Provides a graphical interface to select seats in the venue, dis-
playing a map of the venue and clickable seat regions. If whilst selecting seats
a seat region is expended on the server, all clients are notified and the region
disabled on their displays.

Check Availability After successfully finding some seats in the desired region,
the seats are booked. These are reserved until the user completes the process or
the server timeout occurs.

Fill in Details, Create Account The user enters in the details for purchasing
the tickets, and if the user is not currently logged in, they are asked to create
an account, or authenticate themselves.

Charge Card Interacts with an external credit card billing provider, charging
the user for the tickets. If either the card charging or order submission steps fail,
the transaction is rolled back and the user is asked to confirm their details.

Requirements for Rich Internet Application Design Methodologies 11

Submit Order Once an order is submitted, the user is e-mailed a confirmation,
and a message is also sent to their mobile phone. The tickets are printed to PDF
on the server, which are posted manually every morning by the printing office.

5 Discussion

Feature Matching Requirements

Interaction E4, U2, U3, U5
Multimedia A8
Tool CASE n/a
Visual continuity A5, U2, U8
Synchronization E2, E3
N-Tier development n/a
Dynamic data retrieval D7, D12
Parallel requests to different sources D6, E4
Personalisation A3, T4, S9
Interactive collaboration E7, E9

Table 3. Comparison of Requirements Proposed by Precadio et. al [4]

These proposed requirements fit in well with existing discussions of Rich
Internet Applications and hypermedia systems. Precadio et al. [4] propose ten
RIA requirements, and finds that both web modelling languages and hypermedia
languages are functionally lacking. Similarly, Christoudoulou et al. [10] present
fifty hypermedia methodology requirements, and Gu et al. [18] propose sixteen
specific web application requirements; many of these relate to the development
process. While space limitations prevent us from including a full comparison
of our work with existing requirements, we do summarise in Table 3 how our
requirements match with those proposed by Precadio et al [4].

We do note that some of our requirements, such as keyboard shortcuts, au-
tomatic user authentication, client timer support and browser identification do
not yet match up with any previously published requirements; we suggest that
these are the new functional properties of RIAs that are currently neglected by
existing approaches.

As mentioned in the beginning of this paper, much work has been accom-
plished in identifying the technical and methodological requirements of web mod-
elling languages. Whilst identifying the functional requirements in this paper,
some common themes emerged of these other requirements, such as the impor-
tance of a CASE tool; the ability to model using patterns; platform indepen-
dence; integration with the business model; and management of the develop-
ment lifecycle [10,18]. Gitzel et al. [7] adds an excellent discussion on the unique
non-functional requirements of web applications, such as consistency and pre-
dictability. We acknowledge that while expressiveness in a modelling language is

12 Jevon M. Wright and Jens B. Dietrich

Feature Requirements Fulfilled

Application Properties

Entire Application D2 D3 E3 S1 S2 S4 S5 T4 T5 U1 U2 U12
Offline D7 D8
Automated D6 E1 E10 T1 T2
Mobile A3 A4 E1

Public Pages

Home D1
Signup E4-6 T1
Login D13 S1 S2
Browse Events A8 A9 D4 D5 D13 U5 U11
Event Details A2 A8 U6 S9
Book Ticket A1 A5-7 D6 D11 D12 E2-6 E9 E10 T1 T3 U4 U8-10
Recommend T1 U8 S9
Event Chat D11 D12 E7-9 U7 U8

Users Only

Logout S3
Recommended Events A8 A9 D4 D5 U3 U5 U8 U11
Friends, Your Tickets, View Ticket S6

Managers Only

Your Events D4 S6 S7 S8
Upload CSV D10
Setup Data Sources D6
View Event A2 A8 U6
Create New D9 E1 E4-6
Edit Event E1 E4-6

Administrators Only

Site Stats A5 A10 D11 S6 S7
List Events/Users D4
Edit Event/User E5 E6
Contact User T1

Table 4. Matching Ticket 2.0 Features to RIA Requirements

Requirements for Rich Internet Application Design Methodologies 13

vital, it must satisfy these additional requirements in its implementation to be
successful [13].

With respect to the ability of existing modelling languages to fulfill these
requirements, previous work has already shown that no existing language is
expressive enough for RIAs [4,10,14], so we omit such an evaluation in this paper.
Future research in this area includes work on extending existing languages in
order to address their shortcomings.

In the web application domain, previous benchmarking applications have
included conference management systems [19], travel agencies [20] and movie
databases [21]. Our contribution is a web application which is clearly aligned
with the industry interests of interactive web applications, and specifically fulfills
the requirements of RIAs (Table 4).

Other than simply implementing a benchmarking application, it is impor-
tant to develop metrics to enable quantitative comparisons. This would allow a
more precise comparison of different methodologies, and hopefully focus research
efforts on addressing these real-world requirements. A discussion of suitable met-
rics is beyond the scope of this paper, but existing projects such as Tukutuku

[22] should provide a source of inspiration.

Since this paper was submitted, we have successfully implemented the Ticket

2.0 application using the Symfony framework for PHP. The implementation of
this benchmark has already pointed out some interesting challenges that mod-
elling languages would need to address, such as being able to model the intricate
details of interacting with Google Maps and rich text editors, and keeping client-
side and server-side interfaces synchronised. The next step in this research is to
investigate these challenges and use our findings to improve the growing field of
web application modelling.

To interact with a demonstration of this application, the interested reader is
referred to the project website at http://openiaml.org/. This implementation
may be considered as a reference for future research in this field. The reader is
also encouraged to retrieve a copy of the benchmark specifications and implement
them in their development platform of choice.

6 Conclusion

In this paper we have investigated existing real-world applications, and present
a comprehensive list of requirements for Rich Internet Applications. We also
propose a benchmarking application called Ticket 2.0 which embodies all of these
requirements in a familiar domain. We believe that this approach is an important
step in being able to develop modelling approaches to handle the complexities
of interactive application development and compare them quantitatively. By
basing this benchmarking application in the same domain as existing industry
applications, we also believe this contribution will prove favourable for industry
discussion and support.

http://openiaml.org/

14 Jevon M. Wright and Jens B. Dietrich

References

1. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites. In: Proceedings of the 9th international World
Wide Web conference on Computer networks, Amsterdam, The Netherlands, The
Netherlands, North-Holland Publishing Co. (2000) 137–157

2. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering. In:
IWWOST’02. (2002) 105–119

3. Baresi, L., Colazzo, S., Mainetti, L., Morasca, S.: W2000: A Modelling Notation
for Complex Web Applications. In Mendes, E., Mosley, N., eds.: Web Engineering.
Springer (2006) 335–364

4. Preciado, J.C., Linaje, M., Sanchez, F., Comai, S.: Necessity of Methodologies to
Model Rich Internet Applications. In: WSE ’05: Proceedings of the Seventh IEEE
International Symposium on Web Site Evolution, Washington, DC, USA, IEEE
Computer Society (2005) 7–13

5. Millard, D.E., Ross, M.: Web 2.0: Hypertext by any other name? In: HYPERTEXT
’06: Proceedings of the seventeenth conference on Hypertext and hypermedia, New
York, NY, USA, ACM (2006) 27–30

6. Lang, M., Fitzgerald, B.: Hypermedia Systems Development Practices: A Survey.
IEEE Software 22(2) (2005) 68–75

7. Gitzel, R., Korthaus, A., Schader, M.: Using established Web Engineering knowl-
edge in model-driven approaches. Sci. Comput. Program. 66(2) (2007) 105–124

8. Taylor, M.J., McWilliam, J., Forsyth, H., Wade, S.: Methodologies and Website
Development: A Survey of Practice. Information & Software Technology 44(6)
(2002) 381–391

9. Selmi, S.S., Kräıem, N., Ghézala, H.H.B.: Toward a Comprehension View of Web
Engineering. In: ICWE ’05: Proceedings of the 5th international conference on
Web engineering. (2005) 19–29

10. Christodoulou, S.P., Styliaras, G.D., Papatheodrou, T.S.: Evaluation of Hyperme-
dia Application Development and Management Systems. In: HYPERTEXT ’98:
Proceedings of the ninth ACM conference on Hypertext and hypermedia, New
York, NY, USA, ACM (1998) 1–10

11. Giurca, A., Wagner, G.: Rule Modeling and Interchange. Symbolic and Numeric
Algorithms for Scientific Computing, 2007. SYNASC. International Symposium on
(26-29 Sept. 2007) 485–491

12. Dean Wampler: Cat Fight in a Pet Store: J2EE vs. .NET. Technical report,
ONJava.com (2001)

13. Preciado, J.C., Linaje, M., Sanchez, F., Comai, S.: Hypermedia Systems Develop-
ment: Do We Really Need New Methods? In: IS2002: Proceedings of the Informing
Science + IT Education Conference, Cork, Ireland (2002)

14. Wright, J., Dietrich, J.: Survey of Existing Languages to Model Interactive Web
Applications. In: Proceedings of the Fifth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2008), Wollongong, NSW, Australia (2008)

15. Nielsen, J.: Hypertext and hypermedia. Academic Press Professional, Inc., San
Diego, CA, USA (1990)

16. Ankolekar, A., Krötzsch, M., Tran, T., Vrandecic, D.: The Two Cultures: Mash-
ing up Web 2.0 and the Semantic Web. In: WWW ’07: Proceedings of the 16th
international conference on World Wide Web, New York, NY, USA, ACM Press
(2007) 825–834

Requirements for Rich Internet Application Design Methodologies 15

17. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity manage-
ment. In: DIM ’06: Proceedings of the second ACM workshop on Digital identity
management, New York, NY, USA, ACM (2006) 11–16

18. Gu, A., Henderson-Sellers, B., Lowe, D.: Web Modelling Languages: The Gap
Between Requirements and Current Exemplars. In: AusWeb02: Proceedings of the
eighth Australian World Wide Web conference. (2002)

19. Schwabe, D.: A Conference Review System. In: First International Workshop on
Web-Oriented Software Technology. (2001)

20. MDWE 2005 Workshop: The Travel Agency System Example. Technical report
(2005)

21. van der Sluijs, K., Houben, G.J., Broekstra, J., Casteleyn, S.: Hera-S: Web Design
using Sesame. In: ICWE ’06: Proceedings of the 6th international conference on
Web engineering, New York, NY, USA, ACM (2006) 337–344

22. Mendes, E., Martino, S.D., Ferrucci, F., Gravino, C.: Cross-company vs. single-
company web effort models using the Tukutuku database: An extended study.
Systems and Software (2007)

	Lecture Notes in Computer Science
	Requirements for Rich Internet Application Design Methodologies
	Introduction
	Motivation
	Requirements
	Benchmarking Application
	Application Properties
	Public Pages
	User Pages
	Manager Pages
	Administrator Pages
	Ticket Booking Process

	Discussion
	Conclusion

