
J. Bailey et al. (Eds.): WISE 2008, LNCS 5175, pp. 426–442, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Addressing New Concerns in Model-Driven Web
Engineering Approaches

Nathalie Moreno1, Santiago Meliá2, Nora Koch3,4, and Antonio Vallecillo1

1 Universidad de Málaga, Spain
2 Universidad de Alicante, Spain

3 Luwig-Maximilians-Universität München, Germany
4 Cirquent GmbH, Germany

vergara@lcc.uma.es, santi@dlsi.ua.es,
kochn@pst.ifi.lmu.de, av@lcc.uma.es

Abstract. In the last few years, almost all model-driven Web Engineering
approaches have evolved in response to the new challenges of Web systems
design, which are due to new requirements and implementation technologies in
the Web domain. The evolution implies the extension and adaptation of current
approaches, in terms of new models, transformations and processes in order to
incorporate new concerns or aspects. Such changes in a methodology are a risky
and error-prone process. In this paper, we analyze different alternatives to
address the evolution and in particular, the addition of a new concern in a
Model-Driven Web Engineering approach: (a) extending the original method
with an additional modeling concern, (b) merging the original proposal with
another approach covering the specific concern and, (c) finally, we propose a an
interoperable and architectural-centric approach that aims to reduce the impact
of adding a new concern. We discuss the main advantages and drawbacks of
each alternative.

Keywords: Separation of Concerns, Web Engineering, Model-Driven Software
Development, Metamodeling, Model Transformations.

1 Introduction

Model-driven development (MDD) is an approach to software development that uses
models, metamodels and model transformation as key elements of the development
process [2]. It incorporates a higher level of abstraction in the specification of systems
guided by the separation of concerns principle and allows the (semi)-automated
derivation of the final implementation code. In this sense, most of the existing Web
engineering approaches match the MDD philosophy, because they address the
development of Web applications using separate models to describe the different
concerns that constitute Web systems. Furthermore, they provide model compilers
that permit automatic generation of system implementations from high-level models.

Traditionally, the majority of Web engineering proposals have considered the
content, navigation and presentation models, as the most relevant concerns in the
design of a Web application. However, due to new requirements and implementation

 Addressing New Concerns in Model-Driven Web Engineering Approaches 427

technologies in the Web domain, Web engineering approaches have to evolve.
Following a model-driven approach, the evolution may imply: (a) the definition of
new models and modeling elements that capture additional requirements; (b) the
redefinition of the metamodel for handling these additional features; (c) the adaptation
of the development process to incorporate the new concern and the information it
represents; (d) the adaptation of the modeling process and code generation tools that
support the method.

To avoid the need for these changes, some approaches have studied the practical
viability of merging their design methods with others [10,11]. Indeed, one of the main
advantages of using MDD in the Web application domain is the possibility of
establishing and exploiting the synergies existing among the approaches using simple
model transformations. In this paper we will discuss three different alternatives for
addressing the evolution of Web engineering methods: (1) extending the original
method with an additional modeling concern, (2) merging the original proposal with
another approach covering the specific concern and, (3) finally, we propose an
interoperable and architecture-centric process that aims to reduce the impact of adding
a new concern. For the last approach we propose to use the (Web Engineering
Interoperability) WEI common metamodel [11,18] which encapsulates the concepts
of almost all Web engineering approaches and the architecture models of the (Web
Software Architecture) WebSA approach [9]. The three alternatives will be illustrated
by introducing a new concern to model the business process operations performed
within Web applications.

The remainder of this document is structured as follows. Section 2 classifies the
concerns involved in the design of a Web application based on its dependency
relationships with other concerns and the impact that addressing these relationships
would have on a method. Section 3 analyzes three ways to address the evolution of a
Web engineering method. In Section 4 the main advantages and drawbacks of each
alternative are discussed. Then, Section 5 relates our work with other similar studies.
Finally, Section 6 draws some conclusions and outlines some future research
activities.

2 Classification of Concerns

Adding a new concern to a Web engineering method, with a well known and
structured separation of concerns, models and code generation process, is not a trivial
task. The complexity of this process will depend largely on the nature of the concern
considered and the relation it has with the current ones. Based on these
considerations, we distinguish the following categories of concerns:

Dependent concern. This concern has one or more dependency relationships with
others. Dependency relationships establish an order relation when defining the system
models, since they force the designer to define firstly the independent concerns and
subsequently the other concerns that depend on these. In addition, this kind of concern
involves managing consistency at model level between related concerns. Modifying
some modeling elements of a concern may have a knock on effect causing changes in
other concerns that depend on it. For example, both in the UML-based Web
Engineering (UWE) [6] and the OO-H [7] methods the navigation model is derived in

428 N. Moreno et al.

part from the content or conceptual model respectively (i.e. there is a dependency
relationship between elements of both models). Therefore, when a class of the
content/conceptual model is deleted, all navigational classes or relations that were
defined as a view on elements of that model must also be deleted. Nowadays, the
addition of a dependent concern to a methodology is done by hand. This process
involves the definition of an extension of the existing metamodel that addresses it and
also the specification of possible relations between the new metaclasses and the
existing ones.

Replacement concern. This is a concern that replaces another previously defined for
the same method but it offers a new viewpoint to address the modeling requirements.
When the new concern represents a total change with respect to the previous one, its
corresponding metamodel is replaced by the new one. In other cases, the original
metamodel is only subject to certain modifications. In fact, a replacement concern
may also be a dependent concern that has to maintain consistency with other concerns
at the metamodel level, i.e., respecting the relations that the concern being replaced
had with the others. Presentation is an illustrative example of replacement concern.
The advent of the Web 2.0 has shown that existing Web methods require more
expressive models for addressing the user interface of a system due to traditional
mechanisms are now inadequate [8].

Orthogonal concern. It represents a new concern that models a feature of a system
which is completely independent of all the others. In this case an independent
metamodel package and corresponding transformations are defined. They capture the
aspects of the new concern without affecting the other packages of the metamodel. In
this way, not only the design time but also the development time can be optimized
since developers can work simultaneously, each one on a different concern. Software
architecture is, for example, an orthogonal concern to navigation and presentation.

3 Addressing a New Concern

Business processes have gained a lot of importance in Web applications. Addition of
business processes to modern Web applications entails new challenges to the
development of Web applications. Following the previous classification, the business
process concern can be considered a dependent concern because it has a strict
dependency relationship with the content model. Hence, current Web engineering
methods have to propose extensions that include appropriate modeling concepts
specifically tailored to cope with this kind of requirements and appropriate horizontal
and vertical transformations. Horizontal transformations are those between models at
the same level of abstraction; vertical transformations “refine” system models, adding
information and therefore making them closer to the technology or implementation
platform. In this section we present three different ways to address a Web method
extension, illustrated by a running example.

The example models a very simple music portal Web application that allows users
to search music albums and songs by name. The search result is presented as a list of
matching albums/songs that provides links to a detail page for each album. The album

 Addressing New Concerns in Model-Driven Web Engineering Approaches 429

detail pages show the title of the album, the name of the artist, the list of songs and
the album’s price. For the sake of reducing complexity, in this example each album
has only one artist. The new concern, introducing modeling of business process
operations, is illustrated by the functional requirement to allow registered users to buy
albums, which then can be downloaded as archive files containing MP3s. The
following list gives a short informal description of the requirements.

• A user becomes a registered user by logging in. Unregistered users can register
with a username and a freely chosen password.

• If the user has already bought the album then a download link is shown. Otherwise,
there will be a link for buying the album. Only full albums can be downloaded.

• Each registered user has a credit account that is used to buy albums. The credit
account can be recharged by credit card payment.

• The links for logging in or out, for registering and to the user’s account page are
always shown. This also holds for the album search box.

3.1 Extending UWE with an Additional Modeling Concern

Similar to other Web engineering methods, UWE [6,16] addresses the different
concerns of a Web application by the construction of different models for the content,
the navigation structure, and the presentation. The distinguishing feature of UWE is
the use of standards, in particular the Unified Modeling Language (UML [15]). It is
UML2 compliant since modeling with UWE is based on a UML2 profile, which is
defined on a lightweight extension of the UML metamodel (see [6] for more details
about the UWE method and notation). UWE evolves, in the same way other Web
engineering approaches do, integrating modeling facilities for additional concerns. In
fact, UWE recently integrated techniques for modeling business processes, which are
driven by user actions. In the following we show UWE models by example and
explain how the new concern is added to the UWE approach [7].

A content model built with UML classes models the content of Web applications in
UWE. In our running example the content is modeled by classes such as Album, Song
and Artist (Fig. 1). Content classes are shown in a UML class diagram together with
their relationships (associations, composition, inheritance, etc.).

User

-name : String
-email : String
-password : String
-credits : float

+recharge()
+buyAlbum()

Album

-name : String
-price : float
-downloadLink : String
-cover : String
-description : String

+getSongs()
+changePrice()

Song

-name : String
-length : String

+listen2samples()

Artist

-name : String

+includeArtist()

-song

1..*

-album

1

-album

*

-artist

*

Fig. 1. UWE content mod el for the music portal example

430 N. Moreno et al.

The navigation model is based on the content model and represents the navigation
paths of the Web application. A navigation class represents a navigable node in the Web
application and is associated to a content class containing the information of the node,
e.g. navigation classes Album and Song. Navigation paths representing direct links
between two navigation nodes are represented by associations called navigation links
(for simplicity the corresponding stereotype is omitted in Fig. 2). Additional
navigation nodes are access primitives used to reach multiple navigation nodes (index

and guided tour) or a selection of items (query). Menus model alternative navigation
paths. Examples of access primitives in the navigation model of the music portal are
AlbumQuery and AlbumIndex; example of menu is the MainMenu.

<<navigationClass>>
Album

<<navigationProperty>>-artistName : String

<<navigationClass>>
Song

<<index>>
SongsInAlbumIndex

<<navigationClass>>
Home

{isHome}

<<query>>
AlbumQuery

<<index>>
SongIndex

<<query>>
SongQuery

<<index>>
AlbumIndex

<<menu>>
MainMenu

<<navigation property>>
selectionExpression=
"self.artist.name"

*

* *

Fig. 2. UWE navigation model for the music portal example

The presentation model is used to sketch the layout of Web pages associated to the
navigation nodes. For an example of a presentation model the reader is referred to [6].

Web applications are no longer built for browsing information, they are instead
required to offer to the user more and more functionalities, such as search facilities
and business process operations. This kind of operations constitutes therefore a new
concern that needs to be modeled for certain Web applications. UWE is extended to
cover this new concern as follows:

• A process model is added. It includes the process classes which contains the
required data for the process, such as Login, BuyAlbum, BuyAlbumConfirmation, and
InsufficentCreditMessage (see Fig. 3)[12].

• A navigation model is enriched with process classes indicating entry and exit
points of the processes, e.g. process classes Register, Login, BuyAlbum, etc. Process
classes and process links are shown in Fig. 4.

 Addressing New Concerns in Model-Driven Web Engineering Approaches 431

<<processClass>>
InsufficientCreditsMessage

-message : String

<<processClass>>
BuyAlbumConfirmation

-message : String

<<processClass>>
Login

-userName : String
-password : String
-errorMessage : String

+setLoginError()

<<processClass>>
BuyAlbum

CONTEXT Login::setLoginError()
POST: self.errorMessage = 'Login Error'

Fig. 3. Excerpt of the UWE process model of the music portal example

<<navigationClass>>
Album

<<navigationProperty>>-artistName : String

<<index>>
SongsInAlbumIndex

<<index>>
UserAlbumIndex

<<navigationClass>>
User

<<menu>>
UserMenu

<<navigationClass>>
Home

{isHome}

<<navigationClass>>
Song

<<processClass>>
Logout

<<processClass>>
Login

<<processClass>>
BuyAlbum

<<processClass>>
Recharge

<<processClass>>
Register

<<menu>>
MainMenu

<<query>>
AlbumQuery

<<menu>>
AlbumMenu

<<index>>
AlbumIndex

<<navigation property>>
selectionExpression =
"self.artist.name"

<<processLink>>

<<processLink>>

<<processLink>>

-ownedAlbums

*

*

*

Fig. 4. Extended UWE navigation model of music portal example

• A workflow is specified which models the activities of the business process logic,
e.g. describing the Login and Logout processes, the registration or the download of
an album (not shown here due to space limitations).

Adding a concern in UWE means that new elements and relationships have to be
defined and included in the UWE metamodel. Fig. 5 illustrates how the Navigation
package of the UWE metamodel is extended with ProcessClass and ProcessLink.

The UWE approach defines in addition to the UML profile and the UWE
metamodel, a model-driven process for the development of Web systems. The process
relies on models and model transformations following the MDA principles and using
several other standards [13]. A set of design model types is used in UWE to model the
different concerns of the Web applications. The transformations for refining the design
models comprise mappings from the content to the navigation model, refinements of

432 N. Moreno et al.

the navigation model, and from the navigation into the presentation model. In UWE, an
initial navigation model is generated based on classes of a stereotyped content model.
This generation step can be rendered as a transformation Content2Navigation. From a
single content model different navigation views can be obtained, e.g., for different
stakeholders of the Web system.

Starting with this basic navigation model, it can be further refined by a set of
vertical transformation rules that can be applied fully automatically. These rules
include for example the insertion of indexes and menus. Similarly, presentation
elements are generated from navigation elements. For example, for each link in the
navigation model an appropriate anchor is required in the presentation model. So far,
look and feel aspects have to be added manually. Transformations are defined as OCL
constraints (by preconditions and postconditions) in UWE and are implemented either
in Java in plug-ins for CASE tools such as MagicDraw and ArgoUML, or in the
model transformation language ATL [1].

NavigationProperty

-selectionExpression : String [0..1]

Query

-filterExpression : String [0..1]

GuidedTour

-sortExpression : String [0..1]

NavigationClass

Node

-isLandmark : Boolean
-isHome : Boolean

Link

-isAutomatic : Boolean

AccessPrimitive

ProcessClass
(Process)

ProcessLink
(Process)

Index

NavigationLink

Menu

-inLinks

*

-target

1..*

-outLinks

*

-source

1

-menus

* 0..1

{subsets target}

1..*

{subsets inLinks}

*

{subsets ownedAttribute}*

1

-accessedAttributes

*

*

Fig. 5. Excerpt of the UWE metamodel (metaclasses for new concern are colored)

The UWE MDD process comprises also an integration step. The aim is the creation
of a single model for validating the correctness of the functional models. This “big
picture” model is a UML state machine, representing the content, navigation
structure, and the business processes of the Web application as a whole. A model
checker like Hugo/RT [6] can check this state machine. In order to transform platform
independent to platform specific models additional information of the platform is
required. It can be provided as an additional model or it is implicitly contained in the
transformations. For mappings from design models to code UWE also uses vertical
transformation rules written in ATL that generate Java Beans and JSPs.

 Addressing New Concerns in Model-Driven Web Engineering Approaches 433

The activities required for the extension of the UWE approach with the new
concern business processes are detailed in the following indicating which is the
expertise required for such an extension. This extension process is shown in Fig. 6.
The UWE expert has to extend the profile and the metamodel. Model-to-model and
model-to-code transformations need to be defined by the transformation expert.
Finally, the tool builder has to introduce the corresponding changes in the UWE tool
to support modeling and generation of Web applications including business processes.
The steps outlined previously would be more complex and costly to implement if the
separation of concerns is not previously established as it is in UWE (i.e., where
concerns are grouped in a single model). In these cases it may even be necessary to
reorganize the models and transformations defined initially for the approach in order
to be able to carry out the required extension.

Fig. 6. The UWE extension process for adding the business process concern

3.2 Merging UWE Models with a Model of Another Approach

Instead of extending the UWE approach with new modeling constructs, an alternative
is to use modeling features of another approach covering the new concern, i.e. the
business process in our example. We choose OOWS [14] to illustrate the merging
process. OOWS models business processes in BPMN [3] notation, which is used to
generate WS-BPEL code. For OOWS, the business process is a concern depending on
their functional and structural models (this is the most complex case of the three types
of concerns we looked at in the classification presented in Section 2).

Thus, merging the OOWS business process with UWE requires firstly identifying
those UWE models with direct correspondences to OOWS models. Identifying those
models is strictly necessary for generating the process model in OOWS and requires
the definition of a set of horizontal transformation rules from the UWE content and

434 N. Moreno et al.

requirements models to the OOWS business process model in order to implement the
correspondences. Once these transformations are defined, OOWS can generate the
code corresponding to the business logic that has been modeled.

However, the objective of merging UWE and OOWS does not end there. It is
required in some way to integrate the information of the process model with the other
UWE concerns (i.e., to link the business logic with the other views of the UWE
system models). To do this, the next step is to determine what relation the new
concern has with those already considered by the method. These dependencies must
be identified and dealt with at the modeling level. In the case of UWE, it was decided
that the process model would provide input for the navigation and presentation
models. In order to keep those dependencies, it is necessary to define transformation
rules from the OOWS business process model to the UWE navigation and
presentation models as well as to establish some links between the code generated
using UWE that relates the user interface with the implementation of the business
logic generated with OOWS.

Fig. 7. The Merge UWEOOWS extension process for adding the business process concern

Fig. 7 illustrates these tasks and the experts responsible for them. Essentially,
merging the UWE approach with a different one, such as for example OOWS, for
modeling processes, means that the UWE expert must combine the UWE metamodel
with the subset of the OOWS metamodel that deals with modeling Business Process.
The resulting combination requires that a certain graphical notation must be
incorporated into the new modeling elements of the UWE metamodel dealing with the
processes. If the merge is done at the graphic design level, the transformations
previously referred to would still need to be defined so that the UWE modeling
elements correspond to the OOWS modeling elements and viceversa: in Fig. 7, the
“transformation expert” is in charge of this task. Finally, the tool builder may
construct a new code generation tool for UWE and the OOWS process model added,

 Addressing New Concerns in Model-Driven Web Engineering Approaches 435

using the original tool and the newly defined notation and set of transformations as
the basis. Obviously, all this process is simplified considerably if instead of
addressing a dependent concern we address an independent concern since the first one
requires working with at least two tools.

3.3 Adding the Process Concern Using the WEISA Approach

As an alternative to extending UWE and merging UWE and OOWS, this section
presents a new model-driven Web approach called WEISA that aims at obtaining
interoperability and extensibility through a common metamodel (defined by WEI [18,
11]) based on the consensus of the most important Web methodologies regarding
functional concerns; (2) WEISA also proposes a model-driven development process
that provides the necessary extensibility able to incorporate a new concern with the
lowest possible cost. Moreover, this process introduces an early representation of the
software architecture guided by WebSA [9] which permits to reduce the complexity
of the Web design with a small set of models and provides a closer match between the
system modeled and the final implementation.

Fig. 8 presents the WEISA extension process which permits to add a new concern
that comes from any MOF-compliant methodology in two different ways: (1) if
WEISA contemplates the mechanisms for modeling this concern, it only requires the
definition of horizontal transformations from the models that the initial method does
contemplate; (2) If WEISA does not contemplate the requested concern, it is
necessary extending their metamodel and studying the extension with a third model
proposal that defines this concern. The last step consists on establishing the vertical
transformations for introducing the new concern into the different types of WEISA
components.

Fig. 8. The WEISA extension process for adding the business process concern

436 N. Moreno et al.

In the case study of this paper, we can apply the first possibility, in which WEISA
represents the new process concern with its own process models, and obtains the rest
of models (i.e. presentation, navigation and domain models) from UWE through a set
of horizontal model transformations called UWE2WEISA. These transformations are
defined in ATL. In fact, one of the major advantages of our proposal is its ability to
design and implement Web applications reusing existing models from other Web
engineering methods.

WEISA represents the process concern using the BusinessLogicStructure Model of
WEI shown in Fig. 9. This model is a UML2 [12] stereotyped class diagram that
establishes the main classes and operations that implement the business logic from
our application. From here, we describe the behavior of each method by means of an
stereotyped activity diagram, where the new stereotypes model the operations invoked
from the user interfaces and the structure data returned by the business logic and
visualized in the interface. Here we describe the structural business aspects, without
delving into the behavioral business aspects. However, the interest reader in WEI
profiles may refer to [12] for more details.

At the same time, the WEISA designer defines the software architectural model
(called Configuration Model, CM) which uses the Web component as architectural
unit, and defines around it a set of specific type of components of the Web application
family (e.g. Controller, ServerPage, ProcessComponent, etc.). These kinds of
components allow structuring the functionality of a Web application according to a
given architectural style. Thus, this model provides a representation of the software
architecture of the system, orthogonally to its functionality, thereby allowing for its
reuse in different Web applications.

<<InternalBIUnit>>
Album

-name : String
-price : float
-downloadLink : String
-cover : String
-description : String

+getSongs()
+changePrice()

<<InternalBIUnit>>
User

-name : String
-email : String
-password : String
-credits : float

+recharge()
+buyAlbum()

<<InternalBIUnit>>
Artist

-name : String

+includeArtist()

<<InternalBIUnit>>
Song

-name : String
-length : String

+listen2sample()

-album

1

-song

1..*

-album

*

-artist
1

Fig. 9. The Business Logic Structure model of music portal example

Fig. 10 depicts the CM of the case study. The front-end part of the model shows a
ServerPage component which receives the user’s requests and renders the response in
a PC browser. The ServerPage also has a reference to EntityData in order to represent
the functionality and is responsible for sending messages to the Controller. At this
point, each ProcessComponent PC receives the requests through the BusinessFaçade
ServiceInterface from the Controller, and re-sends them to the Entity. Finally, the Entity
references to a DataAccessComponent called DAC in order to store and to recover data
from a database.

After the models defined by the WEISA designers are completed, these become the
entry point of the Merge2Design transformation which converts the functional and

 Addressing New Concerns in Model-Driven Web Engineering Approaches 437

architectural models into a detailed design model represented by the WEISA
Integration Model.

This complex and extensible transformation is based on the concatenation of a
set of smaller transformations associating each type of component with a concern
(e.g. the data model is related to the data access component, the ServerPage to the
model presentation, the EntityWeb to the domain model, the ProcessComponent to the
process model, etc.). This provides us with the integration model representing the
design components that constitute the Web application where we have introduced
the functional content from the functional models. Finally, this process establishes
a model-to-text transformation called Integration2Platform that allows us to obtain
the final implementation. This is a model-to-text transformation that obtains the
code from the integration model and the functional models requested by different
concerns.

<<EntityData>>
Model

<<ProcessUserComponent>>
Controller

<<EntityWeb>>
EN

<<ProcessComponent>>
PC

<<ServiceInterface>>
BusinessFacade

<<ServerPage>>
WebPages

<<DataAccessComponent>>
DAC

<<ServiceAgent>>
RequiredServices

<<ProcessComponeent>>
isDistributed=true
isTransactional=true
hasState=false
typeServices=business

<<Entinty>>
hasState=true
typeAttribute=domain
is distributed=false

<<EntityData>>
hasState=true
typeAttribute=navigation

<<ServiceInterface>>
isRemote=true

<<ServiceAgent>>
isRemote=true

<<Server Page>>
device=PC

-controller

1

-model

1..*

<<use>>
-model

1

-webpage
*

<<use>>

-dac
1

-entity
1

Fig. 10. The Configuration Model of the music portal example

In the case study, we focus on the Merge2Design Tranformation part in charge of
introducing the process concern into the design model. More specifically, the
ProcessComponent and the EntityWeb are the only ones which obtain the data from the
process concern. Fig. 11 shows a fragment of integration model that represents the
ProcessComponent and EntityWeb components obtained from the BusinessLogicStructure
classes such as Artist, Album and Song.

Finally, this process establishes a model-to-text transformation called Integration2Platform
that allows us to obtain the final implementation. This transformation obtains the code
from the integration model and the functional models requested by different functional
concerns.

438 N. Moreno et al.

+getSongs()
+changePrices()
+setAttributes()
+etAttributes()

<<EntityWeb>>
ENAlbum

-downloadlink : String
-name : String
-price : float
-cover : String
-description : String

<<ServiceInterface>>
ArtistBusinessFacade

+includeArtist()

<<ProcessComponent>>
PCArtist

+includeArtist()

<<ProcessComponent>>
PCAlbum

+getSongs()
+changePrices()

<<ServiceInterface>>
CDBusinessFacade

+getSongs()
+changePrices()

<<EntityWeb>>
ENArtist

-/name : String

+includeArtist()
+getName()
+setName()

<<EntityWeb>>
ENSong

-name : String
-length : String

+listen2examples()
+getAttributes()
+setAttributes()

<<use>>

-song

1

-enalbum

1
-enalbum

*

-enartist

1

<<use>>

<<use>>

Fig. 11. A fragment of the Integration Model of the music portal example

Table 1. Comparing alternatives for adding a new concern

Criteria Proprietary Method
(UWE)

Merging 2 Methods WEISA

Abstract syntax Adding modeling
elements to original
metamodel.

Putting both metamodels
in relation (when it is
possible) maybe by means
of a third one.

Defining an independent
metamodel and putting it
in relation with the others.

Notation Extending UML profile
with new artifacts.

Two options: (a) Using,
notations of each method
for modeling the concerns
(b) defining a new nota-
tion for modeling element
results of the merge.

Extending UML profile
with new artifacts.

Transformations Vertical transformations
for the concern added
and modifying the
others in order to
guaranty the
consistency between all
concerns.

Defining vertical
transformations for the
concern added; one
transformation for each
method.

Defining vertical
transformations for
concern added without
modifying previous one.
Other methods will benefit
of new trans-formation
without change.

Tool Extending graphical
interface and
transformation engine
of CASE tool to include
modified vertical
transformations.

Importing ad-hoc of all
the models in a new
environment The total set
of transformations rules
also have to be included
in the merging
environment.

Extending graphical
interface and adding only
one transformation to the
transformation engine of
the CASE tool.

Interoperability/
Extensibility

Representing different
concerns with its own
models.

Representing the concerns
with both methods.

Representing different
concerns with WEISA or
with any approach with a
MOF metamodel.

4 Analyzing and Comparing the Three Alternatives

Like most design decisions, the choice of any of the previous alternatives may have
far-reaching consequences for a Web engineering method. We can indeed find

 Addressing New Concerns in Model-Driven Web Engineering Approaches 439

arguments for and against each way proposed. In this sense, we hope this study will
not only make it easier to understand the relative strengths or weakness of each
strategy, but will also serve as a basis for analyzing the obstacles to evolve or
maintain a method. As a summary, Table 1 identifies the most relevant features of a
model-driven Web engineering approach, which can be affected as a consequence of
the evolution process when addressing a new concern. Although there are other
evaluation criteria, the following may provide a good basis for comparing the three
alternatives:

Abstract syntax. The abstract syntax of a modeling language describes the
vocabulary of concepts provided by the language, the definition of such concepts and
the relationships that exist between them. It also establishes how the concepts may be
correctly combined to create models by means of a metamodel definition. Therefore,
adding a new concern may involve a review of the current syntax in order to identify
if the new concern added requires specific modeling concepts. Furthermore, the
method must decide where the new artefacts are going to appear within a system
description, (i.e, as a part of an existing concern, in a new model, etc.).

Notation. All methodologies provide a notation that facilitates the presentation and
construction of models in their associated languages. There are two main types of
concrete syntax or notation: textual and visual. In any case, when the abstract syntax
is affected by a change then normally this change will carry out notation changes.

Development process. In model-driven Web development methods, changes to
abstract syntax must be also mapped into changes to the development through the
definition of transformation rules: (a) on the one hand, it may imply the definition of
vertical transformations that convert models from a higher to a lower level of
abstraction and (2) on the other hand, it may suppose the definition of horizontal
transformations which describe mappings between models of the same level of
abstraction.

Tool. New transformation rules must be integrated into the CASE tool that supports
the Web engineering method. However, not only the code generation engine requires
changes but also the model editor of the same tool. This task may be more complex
and time-consuming than we expect, especially when the CASE tool design was not
prepared to assume the evolution.

Interoperability/Extensibility. The ability to extend a system and the level of effort
required to implement the extension is a measure of its extensibility. The central
theme is to provide for current and future changes while minimizing the impact to the
existing proposal.

All three alternatives have their own advantages and disadvantages, and therefore it
is particularly difficult to offer general guidelines on when a designer should opt for
one or for another. At first sight it could be considered, for example, that in those
cases in which we deal with an orthogonal concern the least expensive decision at the
implementation level is the merging or the WEISA approach. On the contrary, in the
cases where we deal with the dependent concern, it may be more appropriate to
directly extend the methodology.

440 N. Moreno et al.

Although the influence of the type of concern is extremely relevant for
implementing the method extension, other factors such as the semantic distance
between the source and target metamodels may be equally relevant. This semantic
distance would determine the complexity of the transformations to be implemented.

5 Related Work

As far as we know, there are not studies in the Web engineering domain that analyze
the real impact of extending a design method with an additional concern. However,
we have found proposals in other research areas that address relevant and related
issues to the proposed research topic of this article.

In the product-line context, released products are built on various versions of core
assets and glued together with product specific code. Thus, the domain evolution
problem (i.e., the metamodel evolution in our case) arises when existing product-line
must be extended and/or refactored to handle unanticipated requirements. Clements
and Northrop list in [4] a set of metrics to measure the opportunities for future asset or
infrastructure of a certain product-line. These metrics can be adapted and applied on
the three alternatives we propose here.

In [5] we find an interesting classification of the changes that may occur in a
metamodel. According to the authors, changes can be grouped into three categories:
(a) changes that preserve the semantics of the metamodel, (b) changes that introduce
new classes and/or properties to the metamodel, (c) changes that remove/destroy
elements of the metamodel. Adding a new concern has always effects on a
metamodel. In particular, orthogonal and dependent concerns introduce new artefacts
and extend the semantic of the original metamodel. On the contrary, replacement
concerns may modify it by removing key elements of the metamodel so they require
especial attention.

On the problem of synchronizing models with evolving metamodels, [17]
introduces and outline an approach to addressing it efficiently. The authors aim to
minimize the effort required to perform model migration in face of metamodel
changes (some of them are shown in Table 1).

6 Conclusions and Future Work

Model-driven development (MDD) is being adopted due to its advantages of
portability and facilities for the integration of models produced by different
approaches, which is supported by model transformations. In particular, MDD is
applicable in the Web application domain as a very clear separation of concerns is one
of the main characteristics of almost all Web engineering methods.

Another advantage of MDD is the flexibility when introducing a new concern that
is part of the evolution of Web methodologies. Including a new concern may be more
or less difficult depending on the type.

This paper presents a classification of concerns and a discussion on three different
alternatives for addressing the evolution of Web engineering methods. The more
traditional way is the adaptation of the own method extending it with an additional

 Addressing New Concerns in Model-Driven Web Engineering Approaches 441

modeling concerns. Another alternative is merging the original proposal with another
approach covering the specific concern. Finally, we propose a new approach called
WEISA based on an interoperable and architecture-centric process that aims to reduce
the impact of adding a new concern. A table comparing the three alternatives is
presented as well.

We will continue working on the variants detailed, completing the models with
dynamic aspects and we will define the complete set of transformations required for
the MDD process. In addition, adding a new concern to a Web engineering approach
may in general affect three different dimensions: the way of modeling, the way of
working (i.e., the associated methodology), and the supporting environment and tools.
The approach presented here has focused on the way of modeling first, because the
changes to other two dimensions depend on the alternative selected to incorporate the
new concern at the modeling level. Once we have identified the alternatives, the next
step is to study their potential impact on the other two dimensions.

Acknowledgements. This work has been partially funded by projects Desarrollo de
Software para Sistemas Distribuidos Peer-to-Peer (TIN2005-09405-C02-01), MOVIS
(P07-TIC-03184), EU project SENSORIA (IST-2005-016004), ESPIA (TIN2007-
67078). We would also like to thank the reviewers for their insightful comments and
suggestions.

References

1. ATL ATLAS Transformation Language project,
http://www.eclipse.org/m2m/atl/

2. Bézivin, J.: In Search of a Basic Principle for Model Driven Engineering. UPGRADE
V(2), Novática (2004)

3. Business Process Modeling Notation (BPMN) Version 1.0 - OMG Final Adopted
Specification (February 6, 2006)

4. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2001)

5. Gruschko, B., Kolovos, D., Paige, R.F.: Towards Synchronizing Models with Evolving
Metamodels. In: Proc. of 11th Workshop on Model-Driven Software Evolution (MODSE
2007) (2007)

6. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based Web Engineering: An
Approach based on Standards. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.)
Web Engineering: Modelling and Implementing Web Applications. Springer, Heidelberg
(2007)

7. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of Business Processes in Web
Applications Models. Journal of Web Engineering (JWE) 3(1), 22–49 (2004)

8. Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.: Engineering Rich Internet Application
User Interfaces over Legacy Web Models. IEEE Internet Computing 11(6), 53–59 (2007)

9. Meliá, S., Gomez, J.: The WebSA Approach: Applying Model Driven Engineering to Web
Applications. Journal of Web Engineering 5(2), 121–149 (2006)

10. Meliá, S., Kraus, A., Koch, N.: MDA Transformations Applied to Web Application
Development. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 465–
471. Springer, Heidelberg (2005)

442 N. Moreno et al.

11. Moreno, N., Vallecillo, A.: Towards Interoperable Web Engineering Methods. Journal of
the American Society for Information Science and Technology (JASIST) 59(7), 1073–
1092 (2008)

12. Moreno, N., Vallecillo, A.: Modeling Interactions between Web Applications and Third
Party Systems. In: Proc. of the 5th International Workshop on Web Oriented Software
Technologies (IWWOST 2005) (2005)

13. Object Management Group (OMG), http://www.omg.org
14. Torres, V., Giner, P., Pelechano, V.: Web Application Development Focused on BP

Specifications I Taller sobre Procesos de Negocio e Ingeniería del Software (PNIS) (2007)
15. Unified Modeling Language (UML). Superstructure, version 2.1.2. Specification, OMG,

http://www.omg.org/cgi-bin/doc?formal/07-11-01
16. UML-based Web Engineering (UWE),

http://www.pst.informatik.uni-muenchen.de/projekte/uwe/
17. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Ernst, E. (ed.)

ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)
18. Web Engineering Interoperability (WEI),

http://www.lcc.uma.es/~nathalie/WEI/

	Addressing New Concerns in Model-Driven Web Engineering Approaches
	Introduction
	Classification of Concerns
	Addressing a New Concern
	Extending UWE with an Additional Modeling Concern
	Merging UWE Models with a Model of Another Approach
	Adding the Process Concern Using the WEISA Approach

	Analyzing and Comparing the Three Alternatives
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

