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Abstract. In this paper, we present a human-robot teaching framework
that uses ”virtual” games as a means for adapting a robot to its user
through natural interaction in a controlled environment. We present an
experimental study in which participants instruct an AIBO pet robot
while playing different games together on a computer generated play-
field. By playing the games in cooperation with its user, the robot learns
to understand the user’s natural way of giving multimodal positive and
negative feedback. The games are designed in a way that the robot can
reliably anticipate positive or negative feedback based on the game state
and freely explore its user’s reward behavior by making good or bad
moves. We implemented a two-staged learning method combining Hid-
den Markov Models and a mathematical model of classical conditioning
to learn how to discriminate between positive and negative feedback. Af-
ter finishing the training the system was able to recognize positive and
negative reward based on speech and touch with an average accuracy of
90.33%.

1 Introduction

In recent years, a lot of research has been done focusing on creating robots that
are able to communicate with humans and learn from humans in a natural way.
When teaching a robot in a natural environment, many issues have to be handled
that are not directly related to the interaction with a human, but to perceiv-
ing and modeling the environment as well as moving around and manipulating
objects. Even apparently simple tasks like picking up objects cause considerable
implementation effort.

Using a robot simulation or a virtual agent can be an alternative in many
cases but has the disadvantage that interaction cannot be perceived through the
actual sensors of the robot and does not occur in the same spatial context as
with a real robot. Moreover, especially in case of gesture or touch, user behavior
depends on inherent properties of the robot like its size and the location of its
sensors and can be expected to differ significantly between interacting with a
real robot and a computer simulation. Therefore we implemented a client-server
based framework for teaching a real robot in a ”virtual” task, that is, a computer-
generated visual representation of a task, where all relevant information can
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Fig. 1. AIBO during task execution

be accessed and controlled directly without additional effort for implementing
perception and physical manipulation of the environment.

We present an experimental study that uses ”virtual” games to allow an AIBO
pet robot to learn to understand multimodal positive and negative feedback from
a human through natural interaction. The setting is shown in figure [Il The use
of virtual games allow us to create a controlled environment in which the robot
can deliberately provoke and explore its user’s reward behavior by making good
or bad moves. Being able to instantly assess the correctness of a move, the robot
can anticipate positive or negative reward and learn its user’s preferred methods
for giving feedback. The game tasks are explained in detail in section

We chose understanding reward as a first step toward learning more general
commands, because understanding whether an action has been correct or in-
correct through human feedback is one of the capabilities that a robot usually
needs when learning through interaction with a human instructor. In most ex-
isting service- or entertainment robot platforms, the means of giving reward to
a robot are hard-coded such as predefined commands, buttons that have to be
pressed or GUI-items of a remote application that have to be used for input. The
user has to read a handbook and remember the correct way of giving commands
and feedback. In order to enhance the user experience and to make interacting
with a robot more accessible e.g. for aged people with memory deficits it would
be desirable to shift the effort of learning and remembering the correct way of
interacting from the user to the robot.

We propose a two-staged learning method for adapting the robot to its user’s
feedback. In the first stage Hidden Markov Models are used to learn to discrimi-
nate different perceptions in an unsupervised way. Then associations are learned
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between perceptions represented by their corresponding HMMs and either posi-
tive or negative reward based on a mathematical model of classical conditioning.
Details of the learning method is are given in section

We conducted an experimental study in order to assess how humans give
feedback to a robot in a virtual game task and analyzed the observed reward
behaviors. We found that the two most important modalities for giving rewards
are speech and touch, while gestures were mainly used for giving instructions, not
reward. We also asked the users to answer a questionnaire about their experience
during the experiments to find out which features of a training task are important
for successful and enjoyable teaching. With our learning method an average
recognition accuracy of 90.33% is reached for discriminating between positive
and negative reward based on speech and touch.

2 Related Work

Approaches to combine actual robots with virtual or mixed reality have mainly
been researched upon in the field of telerobotics. However, due to the distance
between the robot, and the user, the modalities used for interaction typically
differ from the ones used in face-to-face communication. The most closely related
work from the field of telerobotics was developed by Xin and Sharlin [11]. They
are using a mixed-reality implementation of the classic Sheep and Wolves game.
The sheep is a virtual, computer generated object and has to be chased by a
team of four robotic wolves on a real playfield. The human is part of the robot
team and interacts with the robots. The user does not have direct contact with
the robot but observes the playfield through an online mixed-reality system
showing the current situation on the playfield. However, interaction is not done
by physically interacting with the robots but from a distance through a text-
based interface. Our work focuses on modalities that are naturally used when
interacting with a robot in close distance, such as speech and touch.

Another related research field is the acquisition of speech and especially the
grounding of vocabulary [5] [6] through human-robot interaction.

Steels and Kaplan [10] developed a system to teach the names of three different
objects to an AIBO pet robot. They used so-called ”language games” for teaching
the connection between visual perceptions of an object and the name of the
object to a robot through social learning with a human instructor.

Twahashi described an approach [6] to the active and unsupervised acquisition
of new words for the multimodal interface of a robot. He applies Hidden Markov
Models to learn verbal representations of objects, perceived by a stereo camera.
The learning component uses pre-trained HMMs as a basis for learning and
interacts with its user in order to avoid and resolve misunderstandings.

Kayikci et al. [§] use Hidden Markov Models and a neural associative memory
for learning to understand short speech commands in a three-staged recognition
procedure. First, the system recognizes a speech signal as a sequence of diphones
or triphones. In the next step, the sequences are translated into words using a
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neural associative memory. The last step employs a neural associative memory
to finally obtain a semantic representation of the utterance.

In the same way as the approaches outlined above, our learning algorithm at-
tempts at assigning meanings to observations. However, our system is not trying
to learn the relationship of individual words or symbols to real-world objects
but focuses on relating observations to the concepts of positive or negative feed-
back. Those observations can be words as in the studies above, but also touch
patterns, utterances consisting of multiple words and combinations of them.
Moreover, our proposed approach is not limited to a single modality but tries to
integrate observations from different modalities.

For learning associations between the meaning of commands and rewards and
their appropriate Hidden Markov Model representations, classical conditioning is
used. Mathematical theories of classical conditioning were extensively researched
upon in the field of cognitive psychology. An overview can be found in [4].

3 Framework Design and Implementation

The focus of the actual implementation of the system was to develop a frame-
work for conducting experiments that is easy to extend and to adapt to new
tasks. It is implemented using a client-server based architecture consisting of
four components which communicate via TCP/IP:

— The game server provides the display and handling of the playfield, an eval-
uation function for the robot’s moves as well as the opponent’s artificial
intelligence in case of a game for multiple players.

— The perception server records and processes audio and video data of the
user’s interaction. It receives data from the robot’s touch sensors, video data
from two Logitech Fusion web cameras as well as audio data from a wireless
lavalier microphone that is attached to the user’s clothes. The data from
different modalities is synchronized and stored, while the information, which
is extracted from the audio and video data streams is sent to the robot
control software. Learning to interpret the user’s behavior using the method
described in section [] takes place in the perception server

— The robot control software is connected to the game server as well as the
perception server and uses information about the game state to calculate the
next moves of the robot. Moreover, it uses information from the perception
server in order to assess whether interaction has been perceived in order to
react appropriately.

— The AIBO robot itself. We are using an AIBO ERS-7 for our experiments.
The AIBO Remote Framework [I] is used by the robot control software for
wireless control of the robot and for reading its sensor data.

4 The Training Tasks

During the experiments, the image of the playfield is generated by a computer
and projected from the back to the physical playfield, as seen in Figure[Il The
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robot visualizes its moves by motion and sounds and reacts to the moves of its
computer opponent by looking at the appropriate positions on the playfield.

Deliberately provoking positive and negative rewards from a user is only pos-
sible for the robot within a task where the human and the robot have the same
understanding of which moves are desirable or undesirable. As the robot does
not actually understand commands from its user at the beginning of the task,
the user’s commands as well as positive and negative feedback need to be reli-
ably predictable from the task-state. In that case the robot can easily explore
the user’s reward behavior by performing in a good or bad way. Even though the
combination of Hidden Markov Models and classical conditioning is designed to
be robust against occasional false training examples it is desirable to keep their
number as low as possible. In order to ensure that a good move of the robot
will receive positive reward and a bad move will receive negative reward the
games used for training must be designed in a way that the situation is easy to
evaluate by the user. We assess the suitability of the different training tasks in
the experiments described in section [@] of this paper.

4.1 Advantages of Virtual Training Tasks

Using virtual training tasks as a basis for human-robot-communication has dif-
ferent benefits. As mentioned at the beginning of this paper, one main advantage
is the reduction of effort needed to implement perception and understanding of
the environment, so that priority can be given to the system capabilities that
are actually needed for interacting with a human.

Many commercially available robots used in research such as the AIBO or
Khepera are quite small and have no or very simple actuators. So their ability to
actually manipulate objects in their environment is often quite limited. AIBO,
the robot used in our experiments, can only pick-up small cylindrical objects
with its mouth and needs to approach them extremely precisely in order to be
able to pick them up.

Another difficulty in real-world tasks is to detect errors during task-execution
such as failing to pick up an object, hitting any objects that are in the way etc.
Failing to detect that an attempted action could not be performed successfully
poses a risk for misinterpreting the current status of the task and misunder-
standing user interaction.

For these reasons, we decided to implement the training task in a way that
the robot can complete it without having to directly manipulate its environment.
When using a computer-based task, the current situation of the robot can be
assessed instantly and correctly by the software at any time. It can be manipu-
lated freely, e.g. to ensure exactly the same conditions for all participants in an
experiment.

4.2 Selected Game Tasks

The following tasks were selected to be used in our experiments, because they
are easy to understand and allow the user to evaluate every move instantly. We
selected four different tasks in order to see whether different properties of the



Teaching a Pet Robot through Virtual Games 313

Fig. 2. Screenshots of the Virtual Game Tasks

task, such as the possibility to provide not only feedback but also instruction,
the presence of an opponent or the game-based nature of the tasks influence the
user’s behavior. We implemented them in a way that they require little time-
consuming walking movement from the robot. Screenshots of the playfields can
be seen in figure

Find Same Images. In the "Find Same Images”-Task, the robot had to be
taught to chose the image, that corresponds to the one, shown in the center of
the screen, from a row of six images. While playing, the image that the robot
is currently looking or pointing at is marked with a green or red frame to make
it easier for the user to understand the robot’s viewing or pointing direction.
By waving its tail and moving its head the robot indicates that it is waiting for
feedback from its user. The participants were asked to provide instruction as
well as reward to the robot to make it learn to perform the task correctly. The
system was implemented in a way that the rate of correct choices and the speed
of finding the correct image increased over time.

Pairs. In the ”Pairs” game, the robot plays the game ”Pairs”: At the beginning
of the game, all cards are displayed upside down on the playfield. The robot
chooses two cards to turn around by looking and pointing at them. In case, they
show the same image, the cards remain open on the playfield. Otherwise, they
are turned upside down again. The goal of the game is to find all pairs of cards
with same images in as little draws as possible. The participants were asked not
to give instruction to the robot, which card to chose but teach the robot to play
the game by giving positive and negative feedback only.

Connect Four. In the "Connect Four” game, the robot plays the game ” Con-
nect Four” against a computer player. Both players take turns to insert one stone
into one of the rows in the playfield, which then drops to the lowest free space
in that row. The goal of the game is, to align four stones of one’s own color
either vertically, horizontally or diagonally. The participants were asked to not
to give instructions to the robot but provide feedback for good and bad draws in
order to make the robot learn how to win against the computer player. Judging
whether a move is good or bad is considerably more difficult in the ”Connect
Four” task than in the three other tasks as it requires understanding the strategy
of the robot and the computer player.
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Dog training. In the "Dog Training” task, the participants were asked to teach
the speech commands ”forward”, ”back”, "left”, "right”, ”sit down” and ”stand
up” to the robot. The "Dog Training” task is the only task that is not game-
like and does not use the ”virtual playfield”. Only in this task the robot was
remote-controlled to ensure correct performance. It was used by us as a control
task in order to detect possible differences in user behavior between the virtual
tasks and “normal” Human-Robot-Interaction.

5 The Learning Method

We propose a learning method consisting of two stages to allow the system to
adapt to the user’s way of giving positive as well as negative feedback. It com-
bines an unsupervised low-level learning stage based on Hidden Markov Models
(HMMs) with a supervised learning stage based on a mathematical model of clas-
sical conditioning. In the low-level "reward recognition learning” learning stage
the system trains HMMs to match perceived utterances and prosodic patterns.
In the high-level learning stage, the "reward association learning”, the system
creates associations between the trained models and either positive or negative
rewards.

In this paper we are presenting results of the learning algorithm for under-
standing speech (utterances) and touch, combining the data from these two
modalities for reliable recognition. Extensions are currently under development
to deal with gesture as well as prosody of human speech. Different aspects were
considered when choosing the combination of HMMs and classical conditioning
for the purpose of learning to understand human feedback.

By combining unsupervised clustering of similar perceptions with a super-
vised learning method, such as classical conditioning, our system can learn the
meaning of feedback from the user during natural interaction because the learn-
ing algorithm does not require any explicit information, such as transcriptions
of the user’s utterances or gestures. It only needs the information of whether
an utterance means positive or negative feedback, which is determined by the
training task.

HMDMs usually show high performance for the classification of time series data
and are therefore widely considered state-of-the-art for this purpose. Although
HMMs are typically trained in a supervised way, different approaches for an
unsupervised training of HMMSs have been described in literature [7].

We chose conditioning as a biologically inspired approach which typically
converges quickly and has other desirable properties, which are described in
section Classical conditioning allows the system to weigh and combine user
inputs in different modalities according to the strength of their association to-
ward positive or negative reward. An overview of the learning algorithm that is
used to train the HMMs and associations is shown in Figure Bl It is described
in detail in sections 5.1l and
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5.1 Reward Recognition Learning

The basis of the reward recognition learning are sets of pre-trained elementary
Hidden Markov Models (HMMs) as well as a model of possible touch patterns.
HMMs are employed for the low-level modeling of perceptions. As a standard
approach for the classification of time series data, HMMs are widely used in
literature. The use of Mel-Frequency-Cepstrum-Coefficients (MFCC) for HMM-
based speech recognition is described in [I2]. They are used in our work as an
input for the HMM-based low-level learning phase.

The initial HMM-set for learning speech-based rewards contains all Japanese
monophones and is taken from the Julius Speech Recognition project [13]. We use
standard left-right HMMs for recognition. The models base on MFCC feature-
vectors generated from the recorded speech data. We decided to use monophone
models instead of diphone or triphone models although the latter are more pow-
erful and widely used in speech recognition, because of their smaller number
and lower complexity. While the monophone set for Japanese contains 43 mod-
els, 7946 HMMs are contained in the Julius triphone set for Japanese. As the
initial HMMs only form a basis for constructing word models and training them
in a user-dependent way, perfect accuracy is not needed in this stage. More-
over, the number of states of our word models directly depends on the number
of states of the concatenated elementary models, which is significantly higher
for triphone models. To keep the number of necessary training utterances low,
the degrees of freedom, that is the number of states and transitions, used when
training the models should not grow excessively large.

We use a grammar for the phoneme recognizer that permits an arbitrary
sequence of phonemes, not restricted by a language dependent dictionary. A
sequence of phonemes may have an optional beginning and ending silence and
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contain short pauses. The grammar of our utterance model allows exactly one
utterance with an optional beginning or ending silence.

During the training phase, utterances from the user are detected by a voice
activity detection based on energy and periodicity of the perceived audio signal.

Every time a reward from the user is observed, first the system tries to rec-
ognize the utterance with the phoneme sequence recognizer as well as with the
recognizer for the already trained utterance models. Matching is done by HVite,
an implementation of the Viterbi Algorithm included in the Hidden Markov
Model Toolkit (HTK) [12]. The result of this first step of the reward recognition
learning is the best-matching phoneme sequence and the best matching utter-
ance out of the utterance models that have been generated up to that point. In
addition to that, a confidence level is output by the system for both recogni-
tion results. The confidence level, that is, the log likelihood per frame of both
results calculated by HVite, is compared to find out whether to generate a new
model or retrain an existing one. If the confidence level of one of the existing
models matches the utterance well enough, that is, the confidence level of the
best-fitting phoneme sequence is less than 107> better than the confidence level
of the best-fitting existing utterance model then the best-fitting utterance model
is retrained with the new utterance.

If the confidence level of the best-matching phoneme sequence is more than
1075 better than the one of the best-fitting whole-utterance model, then a new
utterance model is initialized for the utterance. The new model is created by
concatenating the HMMs that make up the recognized most likely phoneme
sequence. The new model is retrained with the just observed utterance and
added to the HMM-set of the whole-utterance recognizer. So it can be reused
when a similar utterance is observed. The threshold of 10~° was determined
experimentally, using data that was recorded with the same audio equipment
but not used for training or evaluation.

As for touch-based rewards, we decided after the experiments to abandon
using complex and time-consuming HMM based modeling for the time being
and decided to model touch by the following three patterns for touching the
head sensor and touching the back sensor.

— Touching the robot’s sensor one or multiple times for less than half a second
(hitting)

— Touching the robot’s sensor for more than a second one or multiple times
(stroking)

— Touch-based interaction not falling into one of the above classes

The HMM or touch-pattern that this low-level classification and learning stage
outputs is the current most accurate available model of the observed reward. It
serves as an input for the reward association learning where it is associated with
either positive or negative meaning.

5.2 Reward Association Learning

In the reward association learning an association between the HMM obtained
from the reward recognition learning and either positive or negative feedback is
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created or reinforced. The information of whether the HMM should be associated
with positive or negative reward is obtained from the current state of the game.
If the last move of the robot was a good one, the observation is associated with
positive reward. If the last move was a bad one, the observation is associated
with negative reward.

Reward association learning is based on the theory of classical conditioning,
which was first described by I. Pavlov and originates from behavioral research in
animals. In classical conditioning, an association between a new, motivationally
neutral stimulus, the so-called conditioned stimulus (CS), and a motivationally
meaningful stimulus, the so-called unconditioned stimulus (US), is learned [4].

Classical conditioning possesses several relevant features, such as blocking,
extinction, sensory preconditioning and second-order conditioning, that allow
our system to give priority to rewards that are used most frequently, adapt to
changes in reward behavior and associate rewards which often occur together.
These properties are explained in more detail in [3].

The Rescorla-Wagner-Model of Classical Conditioning. There are sev-
eral mathematical theories, trying to model classical conditioning as well as
the various effects that can be observed when training real animals using the
conditioning principle. The models describe how the association between an un-
conditioned stimulus and a conditioned stimulus is affected by the occurrence
and co-occurrence of the stimuli. In this study, the Rescorla-Wagner model [4],
which was developed in 1972 and has served as a foundation for most of the
more sophisticated newer theories is employed. In the Rescorla-Wagner model,
the change of associative strength of the conditioned stimulus A to the uncon-
ditioned stimulus US(n) in trial n, AV A(n), is calculated as in ().

AV A(n) = aABUS(n)(AUS(n) — Vall(n)) (1)

aA and pUS(n) are the learning rates dependent on the conditioned stimulus
A and the unconditioned stimulus US(n) respectively, AUS(n) is the maximum
possible associative strength of the currently processed CS to the nth US. It is
a positive value if the CS is present when the US occurs, so that the association
between US and CS can be learned. It is zero if the US occurs without the CS.
In that case, AV A(n) becomes negative. Thus, the associative strength between
the US and the CS decreases. Vall(n) is the combined associative strength of
all conditioned stimuli toward the currently processed unconditioned stimulus.
The equation is updated on each occurrence of the unconditioned stimulus for
all conditioned stimuli that are associated with it.

One advantage of using conditioning as an algorithm for learning the associ-
ations between positive/negative reward and the user’s corresponding behaviors
is its rather quick convergence, depending on the learning rate.

In this study, the learning rates for conditioned and unconditioned stimuli are
fixed values for each modality but can be optimized freely. They determine how
quickly the algorithm converges and how quickly the robot adapts to a change
in reward behavior. The maximum associative strength is set to one, in case the
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corresponding CS is present, when the US occurs, zero otherwise. The combined
associative strength of all conditioned stimuli toward the unconditioned stimulus
can be calculated easily by summarizing the association values of all the CS
toward the US, that have been calculated in the previous runs of the reward
recognition learning.

6 Experiments

We experimentally evaluated our training method as well as our learning algo-
rithm. Ten persons participated in our study. All of them were Japanese graduate
students or employees at the National Institute of Informatics in Tokyo. Five of
them were females, five males. The age of the participants ranged from 23 to 47.
All participants have experience in using computers. Two of them have inter-
acted with entertainment robots before. Interaction with the robot was done in
Japanese. During the experiment, we recorded roughly 5.5 hours of audio and
video data containing 533 rewards which consisted of 2409 individual stimuli.
Figure [l shows a scene from the video taken during the experiments.

6.1 Results

We evaluated the performance of the learning algorithm offline with the data
recorded within the above described experimental setting. The system was
trained and evaluated with data from the ”Find Same Images” and the ”Pairs”
task. The data from the ”Connect Four” task was not used because the partici-
pants often were not able to evaluate whether a move was good or bad. Therefore
reward from the user was observed for less than one third of the robot’s moves in
the ” Connect Four” task, had a strong positive bias and often did not match the
judgment from the evaluation function of the game. We also excluded the data

Fig. 4. Participant instructing AIBO
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Table 1. Confusion Matrix (in percent)

Positive(actual) Negative(actual)

Positive (recognized) 48.32 4.49
Negative (recognized) 5.18 42.01

from the ”"Dog Training” task where the robot was remote-controlled. Train-
ing and evaluation were done in a user-dependent way using leave-one-out cross
evaluation in order to use as much data for training and evaluation as possible.
The average accuracy of our system for classifying between positive and neg-
ative rewards given by one user based on speech and touch was 90.33%. The
standard deviation between users was 3.41%. As the rewards given by the par-
ticipants showed a slight bias toward positive feedback, the confusion matrix,
shown in Table 1 gives a more detailed overview over the performance of our
recognizer. Using speech only we reached a recognition rate of 78.35% with a
standard deviation of 4.37%. Using touch only the recognition rate was 76.16%
with a high standard deviation of 16.92% as the usage and frequency of touch
varied strongly between users. Typically one reward consists of multiple stimuli.
A stimulus is one utterance or one touch of the touch sensors. The recognition
rate for individual uncombined speech and touch stimuli is 80.20% with a stan-
dard deviation of 3.46%. This is about 10% lower than the recognition rate for
combined rewards shown above. These results underline that combining stimuli
given through different modalities is crucial for a reliable recognition.

A more detailed analysis on the participants’ behavior during the interaction
with the robot in the four training tasks is presented in [2]. We found, that the
most frequently used modality was speech, which accounts for 78.37% of the
recorded stimuli, followed by touch, which accounts for 20.92% of the stimuli.
Gesture was almost not used (0.71%) for giving reward, although it was fre-
quently used for providing instruction to the robot. The preferred utterances to
give positive and negative feedback varied among different people as well as for
one person but we did not observe a strong task-dependence.

We prepared a questionnaire for the participants to ask about their evaluation
of the different tasks. They could rate their agreement with different statements
concerning the interaction on a scale from one to five, where one meant ”com-
pletely agree” while five meant ”completely disagree”. The results can be found
in table @I As can be seen from the table, the four tasks were considered al-
most equally enjoyable by the participants. For the "Find same Images” task
and the "Dog Training” task, the participants’ impression that the robot actu-
ally learned through their feedback and adapted to their way of teaching was
strongest. Those two tasks allowed the participants to not only give feedback
to the robot but also provide instructions. Moreover, they were designed in a
way that the robot’s performance improved over time. In the "Dog Training”
task, the robot was remote-controlled to react to the user’s commands and feed-
back in a typical Wizard of OZ-Scenario. However, in the ”Find Same Images”
task, which was judged almost equally positively by the participants, the user’s
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Table 2. Results of the Questionnaire (standard deviation given in brackets)

Same Pairs Four Dog

Teaching the robot through the 1.81 (1.04) 1.90 (0.83) 1.81 (0.89) 1.63 (0.81)
given task was enjoyable

The robot understood my feedback 1.27 (0.4) 1.81 (0.74) 2.90 (0.85) 1.81 (0.30)
The robot learned through my feed- 1.36 (0.59) 2.81 (0.93) 3.45 (0.95) 1.54 (0.69)
back

The robot adapted to my way of 1.45 (0.66) 2.63 (1.05) 3.45 (1.04) 1.64 (0.58)
teaching

I was able to teach the robot in a 2.18 (0.96) 2.09 (0.86) 2.54 (1.12) 1.64 (0.69)
natural way

I always knew, which instruction or 2.00 (0.72) 2.09 (0.86) 2.90 (1.02) 1.91 (0.83)
reward to give to the robot

instructions and feedback were not actually understood by the robot but antic-
ipated from the state of the training task. This did not have a negative impact
on the participants impression that the robot understood their feedback, learned
through it and adapted to their way of teaching. The lowest ratings were given
for the "Connect Four” task. As the robot’s moves could not be evaluated as
easily, as in the other tasks, the participants were unsure which rewards to give
and therefore did not experience an effective teaching situation. This also be-
comes apparent in the overall low quantity of feedback given in this task which
still included incorrect feedback.

7 Conclusion

In this paper, we described and evaluated a method for learning a user’s feedback
for human-robot-interaction. The performance based on interpreting speech and
touch rewards from a human can be considered sufficiently reliable for being
used to teach a robot by reinforcement learning.

Training tasks for learning to understand rewards need to be carefully de-
signed to ensure that the robot’s moves can be easily evaluated by the user. In
a strategic game like ” Connect Four” it is difficult to instantly assess whether a
move was good or bad. This results in a decrease of the quantity as well as the
correctness of the rewards and also affects the user experience.

The reliability of recognizing reward could be enhanced by not only processing
the speech utterances but also taking into account prosody. For learning to
interpret commands, other than rewards, gesture recognition will be helpful, so
integrating prosody and gesture as additional modalities into our system is the
current priority of our ongoing research.

One important question that remains open after the study is the similarity of
user behavior between virtual tasks and real world tasks. Although differences
in giving positive and negative reward between the virtual game tasks and the
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dog training task could not be observed this does not necessarily mean that it
is generally possible to train a robot for a real world task using a virtual task.
This question will be targeted in a follow-up study.
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