In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

Situation Assessment for Plan Retrieval in
Real-Time Strategy Games

Kinshuk Mishra, Santiago Ontanén, and Ashwin Ram

Cognitive Computing Lab (CCL)
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332/0280
{kinshuk,santi,ashwin}@cc.gatech.edu

Abstract. Case-Based Planning (CBP) is an effective technique for
solving planning problems that has the potential to reduce the computa-
tional complexity of the generative planning approaches [8, 3]. However,
the success of plan execution using CBP depends highly on the selection
of a correct plan; especially when the case-base of plans is extensive. In
this paper we introduce the concept of a situation and explain a situ-
ation assessment algorithm which improves plan retrieval for CBP. We
have applied situation assessment to our previous CBP system, Darmok
[11], in the domain of real-time strategy games. During Darmok’s ex-
ecution using situation assessment, the high-level representation of the
game state i.e. situation is predicted using a decision tree based Situation-
Classification model. Situation predicted is further used for the selection
of relevant knowledge intensive features, which are derived from the basic
representation of the game state, to compute the similarity of cases with
the current problem. The feature selection performed here is knowledge
based and improves the performance of similarity measurements during
plan retrieval. The instantiation of the situation assessment algorithm to
Darmok gave us promising results for plan retrieval within the real-time
constraints.

1 Introduction

Generative planning techniques are typically inapplicable for solving problems
with extensive search spaces within real-time constraints. Case-based planning
(CBP) [13] has the potential of reducing the computational complexity of tradi-
tional planning techniques. Specifically, CBP works by reusing previous stored
plans for new situations instead of planning from scratch. Thus, CBP is a promis-
ing paradigm to deal with real-time domains. In this paper we will focus in
Darmok, [11] a case-based planning system that is able to deal with the complex-
ity of real-time strategy (RTS) games. Darmok was designed to play WARGUS,
an open source implementation of the famous Warcraft II. However, the success
of plan execution using CBP in such domains depends on the quality of plan
selection within the real-time constraints. The performance of Darmok’s plan

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

retrieval suffers when the case-base stores numerous plans representing several
strategies played over maps of different sizes and terrain formations. In this pa-
per we explain our work on situation assessment technique applied to Darmok
for better plan retrieval in real-time.

A Situation is a high-level representation of the state of the world. For ex-
ample, in the WARGUS domain the player might be in an attacking situation,
or in a base development situation, among others. Depending on which situation
the player is in, different aspects of the world state will be important to take
decisions. Thus, in order to select which strategy to execute, it is important to
know the current situation. Situations can be predicted based on raw features
that can be directly computed from the game state, i.e. shallow features. How-
ever, shallow features by themselves are not strong enough for selection of a
strategy in a game. Additional derived deep features for a situation are needed.
For example, shallow features, like the ratio of a player’s resources to that of
the opponent, by themselves are less suggestive of usefulness of an appropriate
strategy. However deeper features, like knowing the existence of path or a barrier
between the player and its opponent, can help in choosing a rush or a tunnel-
ing strategy. Situation assessment is used to predict the situation of a game
state based on the shallow features. This information is used to further select
a set of deep features specific to the situation for choosing the best strategy.
Formally, Situation Assessment is a process of gathering high-level information
using low-level data to help in better decision making.

Our general situation assessment technique comprises of four steps: shallow
feature selection, model generation, model execution and case retrieval. Firstly, a
subset of shallow features is selected which are used for classification of a game
state into a situation. Then three models: a) for classification of game state into
situations based on shallow features, b) for mapping of situations to cases and c)
for mapping of situations to deep features respectively are generated. Execution
of these models helps Darmok to classify a game state into a situation and
then retrieve the most optimal plan using situation specific deep features. Plan
retrieval results in Darmok using situation assessment have been promising.

The rest of the paper is organized as follows. Section 2 presents a summary
of the related work. Then, Section 3 briefly explains the architecture of the
Darmok system. After that, Section 4 describes the process of situation assess-
ment. Section 5 explains the situation assessment algorithm applied to Darmok
System. Section 6 provides an illustration of the process. Finally, we summarize
our experiment results in Section 7 and then end with a conclusions section.

2 Related Work

There are several relevant areas of work related to our approach, namely: situa-
tion assessment, feature selection, and the application of CBR to computer game
Al Concerning situation assessment, work has been done extensively in the area
of information fusion [4] and defense related command and control projects [2],
however little work has been done using CBR. Kolodner [10] defined situation

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

assessment as the process of deriving additional features in a particular situa-
tion in order to compare it with previous experiences, but no CBR system to
our knowledge implements such process. Kofod-Petersen and Aamodt [9] define
a case-based situation assessment system for a mobile context-aware application.
The system uses case-based reasoning to determine the situation in which the
user might be in, and the possible goals associated with these situations. They
define a situation as a context, and define a hierarchy of contexts in which the
user might be in. The difference with our work is that we are interested in situa-
tion assessment as a way to select a subset of features that allows us to perform
better case retrieval.

Plenty of work exists on feature selection in the machine learning literature.
Hall and Holmes [7] present a nice overview and empirical evaluation of several
feature selection techniques. Some well-known techniques include: information-
gain based techniques [14], Principal Component Analysis, Correlation-based
Feature selection [6], or Cross-validation methods (that simply run the learn-
ing algorithm repeatedly with different feature subsets and select the best one
empirically). The main difference of our work with the existing feature selection
techniques, is that the set of possible features from where we can select features is
too large and the examples are few, and thus we need a more knowledge-based
feature selection method (situation assessment) that does not involve trying
feature-by-feature.

Concerning the application of case-based reasoning techniques to computer
games, Aha et al. [1] developed a case-based plan selection technique that learns
how to select an appropriate strategy for each particular situation in the game of
WARGUS. In their work, they have a library of previously encoded strategies,
and the system learns which one of them is better for each game phase. In
addition, they perform an interesting analysis on the complexity of real-time
strategy games (focusing on WARGUS in particular). Another application of
case-based reasoning to real-time strategy games is that of Sharma et al. [12],
where they present a hybrid case-based reinforcement learning approach able
to learn which are the best actions to apply in each situation (from a set of
high level actions). The main difference between their work and ours is that
they learn a case selection policy, while our system constructs plans from the
individual cases it has in the case-base. Moreover, our architecture automatically
extracts the plans from observing a human rather than having them coded in
advance.

3 Case-Based Planning and Execution in Wargus

In this section we will present an overview of WARGUS and of the Darmok
system. WARGUS (Figure 1) is a real-time strategy game where each player’s
goal is to remain alive after destroying the rest of the players. Each player has
a series of troops and buildings and gathers resources (gold, wood and oil) in
order to produce more troops and buildings. Buildings are required to produce
more advanced troops, and troops are required to attack the enemy. In addition,

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

Fig. 1. A screenshot of the WARGUS game.

players can also build defensive buildings such as walls and towers. Therefore,
WARGUS involves complex reasoning to determine where, when and which
buildings and troops to build. For example, the map shown in Figure 1 is a
2-player version of the classical map ”Nowhere to run nowhere to hide”, with
a wall of trees that separates the players. This maps leads to complex strategic
reasoning, such as building long range units (such as catapults or ballistae) to
attack the other player before the wall of trees has been destroyed, or tunneling
early in the game through the wall of trees trying to catch the enemy by surprise.

The Darmok system [11] is a case-based planning system designed to play
the game of WARGUS. Darmok learns plans (cases) by observing a human
playing the game, and then reuses such plans combining and adapting them
to play new games using case-based planning methods. Figure 2 presents the
Darmok architecture that is split into two main processes: Behavior Acquisition
and Behavior Ezxecution. The Behavior Acquisition process is performed by the
Revision and Case Learning modules in the following way. Each time a human
plays a game, a trace is generated (containing the list of actions performed by the
human). During revision, the human annotates that trace stating which goals
he was pursuing with each action. This annotated trace is processed by the case
learning module that extracts plans in form of cases from the trace. Each plan
consists of two components:

— A Behavior: consisting of a goal and a plan. Basically, a behavior stores that,
to achieve a particular goal, the human used a particular plan.

— An Episode: consisting of a reference to a behavior, a game state and an
outcome. Episodes store how well a particular behavior performed in a par-
ticular game state. The outcome is a real number between 0 and 1, stating
how much the behavior achieved its goal in the specified game state.

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

Behavior Acquisition
Expert Expert

Case Annotation Wargus
Extractor Tool E

Behaviors

Behavior Execution

Behavior M Plan Plan
Retriever Expander - Executioner

Fig. 2. Overview of our case-based planning approach.

Thus, the case-base of Darmok is composed of behaviors, and each behavior
is associated with a bunch of episodes. Behaviors are learnt from traces, and
episodes can be learnt either from traces or from experience. The Behavior Ez-
ecution process is performed by the rest of the modules in the architecture, and
works as follows. Darmok starts off by giving the initial unexpanded goal ”Win
Wargus” to the Plan Expander. Each time the Plan Expander wants to expand
a goal, it asks the Behavior Retriever for a behavior, which uses the case-base to
select the best behavior for the goal at hand in the current game state. The Plan
Adapter adapts the retrieved behaviors before they are inserted in the current
plan, which is maintained by Darmok for execution. The Plan Executioner con-
stantly tries to execute that plan that might be only partially expanded. Such a
plan is maintained by the Plan Expander that looks for unexpanded goals in the
plan and tries to expand them. Thus, the Plan Executioner tries to see if there
is any part of the plan that has been expanded to the level of primitive actions
that can be sent to the game, and executes such actions if possible. Some of the
primitive actions in the game are like move-unit, repair-building, etc.

Finally, notice that WARGUS is a dynamic domain, thus the game state
changes constantly. For that reason, the Plan Expander delays the adaptation of
plans till the last moment (right before they have to start execution) to ensure
they are adapted with the most up-to-date game state (Delayed Adaptation). In
this paper we will focus on the behavior retrieval problem. See [11] for a detailed
explanation of the Darmok system.

4 Situation Assessment for Case Retrieval

Traditionally, in Case-Based Reasoning the process of case retrieval is done by
selecting the case from the case-base that has the closest similarity to the world
state of the problem. This similarity is measured over the various features that
are computed from the representation of the world state. The key to the most

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

optimal case selection is choosing the set of most important features which im-
prove the similarity measurement during the case selection process. The choice
of features depends on their relevance in representing the high-level inferential
knowledge about the world state. Here, we define a Situation as a high-level
representation of the state of the world in a problem. For example, in the WAR-
GUS domain the player might be in an attacking situation, or in a base building
situation among others. Depending on which situation the player is in, different
aspects of the world state will be important for decision making. Hence, the
task of choosing the most relevant set of features for optimal case selection de-
pends on the current situation of the world. Situations can be predicted based
on the raw features that are directly computed from the world state i.e. shallow
features. These shallow features are generally computationally inexpensive but
lack the high-level inferential knowledge about the world. For instance, in the
WARGUS domain, the features like ratio of player’s gold resources versus that
of the opponent or the number of trees in the map are shallow features. Once a
situation is predicted, through situation assessment, the additional derived deep
features specific to a situation are used for comparing the high-level knowledge
represented by each case. For instance, in the WARGUS domain, the deep fea-
tures like knowing the existence of path or a barrier between the player and its
opponent, can help in choosing a rush or a tunneling strategy. The deep features
are generally computationally expensive but provide information very relevant
for case selection in specific situations. As we said before, situation assessment
is a process of gathering high-level information using low-level data to help in
better decision making. Thus, in the case of CBR, it is the process of gathering
the important features and other pieces of information that will help us retrieve
the most appropriate case.

Our general situation assessment algorithm is described in Figure 3. It com-
prises of four main steps:

— Shallow Feature Selection: During this first step, a situation annotated
trace T' is provided to a feature selection algorithm. An annotated trace
consists of a sequence of world states annotated with the set of shallow
features computed for each world state and the appropriate situation that
world state corresponds to. This algorithm returns the set of shallow features
F! which have high information gain. Specifically, in Darmok, we have used
best-first greedy hill-climbing algorithm [5] for filtering the high information
gain shallow features.

— Model Generation: In this step the following three models are generated:

o The Situation-Classification Model, M.y, is built by providing F) and T'
to a classification algorithm. This model is useful for classification of a
world state to a situation using shallow features in F!. In Darmok, we
have used a standard algorithm inducing a decision tree classifier model.

e The Situation-Case Model, M., provides a mapping from the set of sit-
uations S to a subset of cases in the case-base C'. It can be built using
statistical or empirical analysis. This model captures the intuition that
not all the cases will be useful in all the situations.

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

Function SituationAssessment(C,T)
1 Shallow Feature Selection
F! = SelectShallowFeatures(Fs, T')

2 Model Generation
M, = GenerateClassificationModel(F, T)
M. = GenerateCaseModel(S, C)
Mg4s = GenerateDeepFeatureModel(S, Fi)

3 Model Execution
s = GetCurrentSituation(M.f, Fy)
C’ = GetRelevantCaseSubset (M., s)
F = GetDeepFeatureSet(Mys, C")

4 Case Retrieval
Return RetrieveCase(C’, Fj, Fs)
End-Function

Fig. 3. General Situation Assessment Algorithm. Where C is the case-base, T' is the
situation annotated training set. s and Fy are the set of all shallow and deep features
respectively. F, is the subset of high information gain features selected from Fs. M.y is
the Situation-Classification model. S is the universal set of all possible situations. M.
and Mgy are the Situation-Case model and Situation-Deepfeature models respectively,
built empirically in Darmok. s represents the current situation of the game state. C’ is
the most relevant subset of cases from the case-base obtained for s from the execution
of M.. F} is the subset of deep features obtained from execution of M. RetrieveCase
returns the best case from C’ using F; and Fj.

e The Situation-Deepfeature Model, Mg, provides a mapping from S to
deep features in the set Fy. This mapping is done using a feature selection
algorithm or by using empirical knowledge.

— Model Execution: In this third step, the models generated in the previous
step are executed to get the current situation s, the subset of cases C’ from
the case-base C' and the subset of deep features F); which are most relevant
to s. s is obtained by running M.s over F,. Once s is known, using M. and
Mys, C'" and F}j are obtained respectively.

— Case Retrieval: This is the last step where using F); and F; the most
similar case in retrieved from C’ using normal retrieval techniques.

5 Situation Assessment applied to Darmok

In this section we shall present the instantiation of the situation assessment
algorithm in our system, Darmok, to improve the performance of its case-based
plan retrieval. We apply the General Situation Assessment algorithm in Figure
3 to Darmok, but split in two stages:

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

Situation-
— | Classification
Model

Situation-
—_ Feature
Model

Feature Selection
(Greedy Hill-Climbing)

— F's — | Situation-

Case Model

Step1 : Shallow Feature
Selection Step2 : Model Generation

Fig. 4. Offline Stage of Situation Assessment. Where T is the trace, F; is the set of
shallow features, F is the subset of shallow features after feature selection, Fy is the
set of deep features, S is the set of situations and C' is the case-base.

Table 1. Goal to Situation Mapping

Goals Situations
ResearchGoal Base Development, Defense,
Dev-Defense
AbsoluteBuildUnitsGoal, ||Base Development, Defense,
RelativeBuildUnitsGoal Attack, Dev-Defense,
Dev-Attack
ResourcelnfrastructureGoal Base Development
KillAllUnitsOfTypeGoal,
KillUnitGoal, Attack
DefeatPlayerGoal
WinWargusGoal Beginning

— The Offline Stage: comprising of Feature Selection and Model Generation
before the game-play.

— The Online Stage: comprising of Model Execution and Plan Retrieval during
the game-play.

We perform situation assessment in two stages since the models required
for predicting the situation during Darmok’s game-play are built just once at
the start. Therefore, the models can be easily generated offline using standard
feature selection and classification algorithms.

5.1 Offline Stage

As shown in the Figure 4 the offline stage of the situation assessment algorithm
in Darmok consists of the first two steps of the algorithm from Figure 3.

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

In the first step of shallow feature selection the set of shallow features F}’
in WARGUS and the situation annotated trace T are provided to the best-
first greedy hill-climbing-with-backtacking feature selection algorithm [5]. T% is
generated over various game states, with the values of all the shallow features, by
forcing Darmok to play particular maps with the best strategies for those maps,
which were demonstrated by an expert. In our experiments, trace generation
and annotation was automated, based on the goals that Darmok was pursuing
in those particular game states, because a goal being pursued is the high-level
representation of the game state that helps in choosing a particular plan.

The feature selection algorithm we have used returns the set of shallow fea-
tures FS“’/7 which have high information gain. Once F, Sw/ is generated it is pro-
vided along with T to a pruning enabled C4.5 decision tree algorithm [5] to
learn a decision tree situation-classifier model M_}. M generated here is used
in real-time during game-play for predicting the situation of the game state.

The Situation-Case model MY is built using empirical knowledge of the
WARGUS domain. The cases are mapped manually to situations based on the
goal of the behavior in the plan represented in the case as shown in Table 1.

The Situation-Deepfeature model Mg; is constructed manually by using an
expert’s empirical knowledge about usefulness of various deep features in cer-
tain situations. For example, using deep features like attacking-speed-of-troops
and attacking-radius-of-troop-formation are more relevant in choosing a strat-
egy while a player is in attacking situation as compared to when he is in base
development situation.

5.2 Online Stage

Game-State

I

Game-State

Situation-Classification F’d
Model —
[
| _— =
[
Similarity
=
— [
l l [
s::;:::_ Situation- ES
Model Case Model -
! ! l
= O
[)
F
d
Step 3 : Model Execution Step 4 : Retrieve Plan

Fig. 5. Online Stage of Situation Assessment. Where s is the current situation, F}; is
the relevant subset of deep features, C’ is the relevant subset of the case-base, F; is
the set of shallow features and P is the retrieved plan.

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

‘Win-Wargus Win-Wargus
l i'_l_l'
Inl:i":li(t]::fgre Inlz'f\i?:urztel;re Build U
| —~—
Build-Units Kill-Units
¢_I_¢ l'
Kill-Units Build-Units Defeat-Player

]

Defeat-Player

a) Plan for Ballista-Strategy b) Plan for Rush-Strategy

Fig. 6. Plans for ballista and rush strategies for game-play in WARGUS. a) The bal-
lista strategy comprises of initial resources development followed by building the units
to strengthen the player base. Later the units are built and sent to kill the opponent
units in parallel. b) The rush strategy comprises of quick resource development and
building the units at the start in parallel followed by killing the opponent units.

This stage comprises of the last two steps of the algorithm of Figure 3 as
shown in Figure 5. This stage in interleaved with the case-based planning and
execution of Darmok. During Darmok’s online game-play when the Plan Ex-
pander requests the Behavior Retriever for a new plan, Darmok, before the plan
retrieval, first executes the model M} followed by the parallel execution of M’

and Mg respectively . Darmok computes the value of Fs“’, from the current game
state and evaluates the current situation through the decision tree based Mg}.
Once the current situation s is evaluated, mapping based M’ and M model

suggest the case-base subset C"" and a deep feature subset F, ;”l for the final plan
retrieval.

In the last step of this stage the features in F;’/ and F}¥ are used to measure
the similarity of the cases in C*" and return the plan having most similar goal
and game state to the scenario during the game-play. The similarity is measured
by placing more importance to the features in F;”/ as compared to F°.

Let us illustrate this process with an example.

6 Example

Let us illustrate the online stage of the situation assessment process in Darmok
with an example. Imagine that Darmok has just started the game-play against
the built in game Al opponent in a variation of the well-known map “Nowhere to
run nowhere to hide” (NWTR) as shown in Figure 1. Unlike the typical NWTR
maps that have a wall of trees separating the opponent this map has a narrow
opening in the wall of trees. Darmok starts the execution with the initial goal of

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

“WinWargus”. During the execution, the Plan Expander requests the Behavior
Retriever to return a plan to satisfy this goal. Here, the online stage of situation
assessment gets triggered and Darmok uses the decision tree based situation-
classifier and the set of relevant shallow features, say, lumber (number of trees in
the map), food (amount of food), gold (amount of gold of the player), peasants
(number of peasants) and wunits (number of units the player has), which were
chosen during the offline stage, to predict the current situation as beginning.

Once the situation is predicted the Situation-Case model, essentially a map-
ping of situations to plans based on the goals that the plans satisfy as shown
in Table 1, is searched to find the subset of the plans which are relevant to the
beginning situation. Since the beginning situation is mapped to plans satisfying
the “WinWargus” goal, Darmok has successfully narrowed down its search space
to the set of few relevant plans.

Darmok also refers to the Situation-Deepfeature model to get the set of most
relevant features for the beginning situation: ispath (a boolean feature that is
true when there is a path from the player base to the enemy base), wallbarrier-
width (the width of the biggest barrier between the player and the enemy) and
baseproximitydistance (distance between the player’s base and the enemy base).

Beginning situation is where player has to choose a game strategy which is
most optimal for a particular map-terrain and opponent strength, to win the
game. Assuming that there are just two plans as shown in Figure 6 for the
beginning situation in the reduced case-base C“’l, each representing different
game strategies, the task of the Darmok’s Behavior Retriever is to choose the
plan with the best strategy for the current game state.

The two plans in Figure 6 represent the ballista and rush strategies. Ballista
strategy is good for maps where the player and the opponent are separated by
a wall of trees while rush strategy is good when there is a path from player
to the opponent in the map. The selection amongst these strategies depends
highly on the measurement of the deep features like ispath, wallbarrierwidth and
baseproximitydistance since the concept of existence of path between player and
opponent bases, wall of trees and separation distance of base are not expressed
through shallow features like gold, lumber, trees, etc. Also the other deep features
like attacking-speed-of-troops and attacking-radius-of-troop-formation are more
relevant for attack strategy selection rather than for game strategy selection
and hence are not be considered for beginning situation. Using the three deep
features and all the shallow features in a weighted manner Darmok’s Behavior
Retriever searches the two plans and retrieves the plan for the rush strategy
since the game state’s similarity is found to be higher for the episodes of plan
representing rush strategy.

If no deep features were used, Darmok would have difficulty identifying which
strategy to pick. Moreover, if no situation assessment is used, and all the deep
features are always used for retrieval, the time consumed to compute all the deep
features would be prohibitive (as we will show in the next section).

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

7 Experimental Evaluation

In our evaluation we found out that the performance of plan retrieval applying
situation assessment algorithm (Figure 3) is better compared to plan retrieval
without the application of situation assessment by conducting three set of ex-
periments as follows:

— FExp;: Darmok performed plan retrieval without the situation assessment
algorithm. Darmok used only the shallow features for computing similarity
during the retrieval stage and no situation prediction was performed.

— FExps: Darmok performed plan retrieval without the situation assessment
algorithm. Darmok used only the deep features for computing similarity
during the retrieval stage and no situation prediction was performed.

— FExps: Darmok performed plan retrieval using the situation assessment algo-
rithm. It used selected shallow and deep features for similarity computation
during the retrieval stage.

The experiments Exzp,, Fxps and Exps were conducted over 11 variations of
the “Nowhere to run nowhere to hide” (NWTR) map (with a wall of trees sepa-
rating the opponents that introduces a highly strategic component in the game)
and over “Garden of War” (GOW) map (large map having lot of open spaces,
with tree and gold resources in the middle). Darmok was tested with 10 differ-
ent strategies with slight variations, demonstrated over 6 out of the 11 different
maps. The 10 strategies demonstrated were variations of the ranged attack (bal-
listas attack over the wall of trees), rush (footmen are built and quickly sent
to attack the opponents when there is a path betweem them), tunneling (foot-
men and knights are built and tunnel through the wall of trees to attack the
opponent) and towering (towers are built around the wall of trees to block the
enemy).

We conducted the experiments with 10 traces in the case-base (that gives
a total of 52 behaviors and 52 episodes in the case base) over 5 runs of the
game and measured the performance of Darmok’s plan retrieval in Fxp; and
Exps over the following parameters: 1) number of wins, 2) number of draws, 3)
number of losses, 4) player’s score assigned by WARGUS, and 5) opponent’s
score assigned by WARGUS. We also report the average retrieval time for each
plan by Darmok. For our experiments, and in order to properly validate retrieval,
and retrieval only, episode learning and structural plan adaptation were disabled
in Darmok.

Tables 2 and 3 show the results of Fxp; and Ezps respectively. The first
column shows the map in which a game was played, the next three columns
show the number of wins, draws and losses respectively. The last two columns
show the scores of player and the opponent which are assigned by WARGUS.
The bottom row of each table shows a summarized view of Darmok’s win ratio
and average score ratio, where the win ratio is the number of wins divided by
the total number of games played and the average score ratio is the average
score of the player divided by the opponent’s average score. As seen, there is
a clear improvement in the results of the game-play in Exps; with win ratio of

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

map win |draw|loss player score opponent score
NWTR1 1 0 4 1068 1331
NWTR2 3 1 1 2410 562
NWTR3 2 0 3 2094 1613
NWTRA4 1 0 4 1964 1791
NWTRb5 1 0 4 1296 1700
NWTR6 1 1 3 1652 1128
NWTR7 1 0 4 1016 2161
NWTRS 2 0 3 1418 1560
NWTR9 0 0 5 832 2643
NWTR10 0 0 5 406 1997
NWTR11 0 0 5 82 1507
GoW 2 0 3 756 626
Win Ratio[|0.233 Average Score Ratio 0.81
Table 2. Exp; results.
map win |draw|loss player score opponent score
NWTR1 2 3 0 7136 1386
NWTR2 5 0 0 3000 24
NWTR3 5 0 0 1800 0
NWTRA4 4 0 1 1180 388
NWTR5 2 0 3 1794 1505
NWTR6 5 0 0 2450 50
NWTR7 5 0 0 3100 94
NWTRS 0 0 5 1750 2790
NWTR9 5 0 0 3356 60
NWTR10 5 0 0 1410 50
NWTR11 0 0 5 4466 3601
GoW 3 1 1 1355 585
‘Win Ratio||0.683 Average Score Ratio 3.12

Table 3. Exps results.

0.683 which is thrice better than win ratio of 0.233 in Exp;. Also, the average
score ratio in case of Exps is four times better than Fxp, (i.e. 3.12 as compared
to 0.81), which indicates that Darmok wins convincingly and even its losses
are well-fought. Situation assessment through its results, thus, can be seen to
increase the performance of plan retrieval. An interesting observation is that on
maps NWTR3, NWTR6, NWTR7, NWTR10 for which the expert demonstrated
strategies, Darmok won on all 5 occassions in Fxps. For the same maps in
FExpy, Darmok had marginal success and even complete failure in case of map
NWTRI10. In general Darmok performs better using situation assessment over
all the maps except NWTRS8 and NWTRI11. For the map NWTRS, Darmok’s
performance in Fxp; is marginally better compared to the performance in Exps.
Darmok’s performance suffers on map NWTRI11 even after correctly retrieving
the plan, demonstrated for map NWTR11 by the expert, from the case-base since
in adversarial non-deterministic domain like WARGUS there are lots of factors
which can influence winning a game. On the map NWTR11, Darmok’s win ratio
is same in Fxp; and Fxps, however, using situation assessment improved the
average score ratio in Faps.

Using selective deep features like ispath, wallbarrierwidth, etc. based on the
situations certainly improved the similarity metric for proper retrieval. Experi-
ments were also conducted to measure the average plan retrieval time in seconds
with all the deep features as shown in Table 4. Fxps was simply not feasible

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

Expi| Exps |Exps
retrieval time|0.016|46.428(4.990
Table 4. Average retrieval time (in seconds) for Fxpi, Exps and Ezps.

and experiments couldn’t be run, retrieval time was some times over a minute,
completely inappropriate for the dynamic nature of WARGUS. Using situation
assessment we managed to reduce the time to a few seconds, which is acceptable
for the speed at which WARGUS is played (notice that retrieval is only executed
a few times during game-play, and thus spending a few seconds on selecting the
appropriate plan paid off, as shown above). Interestingly, it was observed that
using all the deep features makes the system use lots of irrelevant information
during plan retrieval and reduces the efficiency. It is therefore necessary to filter
the deep features and select only the relevant ones. Also, Situation assessment
reduced the retrieval time by ten times through use of situation relevant deep fea-
tures. The above observations indicate that deep features improve the retrieval
performance only if chosen appropriately.

In the experiments conducted, Darmok’s score in Fxps increased to 0.683
compared to 0.233 in Fxp;. The retrieval times with application of the situation
assessment algorithm are also acceptable for Darmok’s real-time performance
and clearly show that quality of plan retrieval has improved.

8 Conclusions

In this paper we have presented situation assessment technique for plan retrieval
in real-time strategy games. Our technique is a knowledge based approach for
feature selection for improving the performance of case retrieval in case-based
reasoning systems. Situation assessment essentially involves two major steps be-
fore case retrieval: the generation of models for case-base size reduction and
feature selection and then their execution to get the reduced size case-base and
set of high information features for case selection. The main characteristics of
our approach are a) the capability to perform a knowledge based feature selec-
tion rather than a feature by feature, b) the ability to perform search in the
case-base in a fast and focused manner by reducing the search space to the set
of relevant cases using computationally inexpensive features, c¢) the capability to
resize the dimensions of similarity metric based on the high-level representation
of the game state i.e. situations. We have implemented the situation assessment
algorithm inside the Darmok system that plays the game of WARGUS. The
experiments conducted using situation assessment show a great improvement of
performance in the system.

The main contributions of our technique are: 1) introduction of a domain
independent situation assessment algorithm that can be applied for knowledge
based feature selection to any domain; 2) the idea of case-base size reduction dur-
ing the search operation through Situation-Case mapping; 3) the introduction

In 9th European Conference on Case-Based Reasoning (ECCBR 2009), Trier, Germany

of the concept of a situation as a high-level game state representation for effec-
tive plan selection for game strategies; 4) the idea of selective similarity-metric
resizing based on the game state situation.

As future lines of work, we plan to explore strategies to fully automate the

situation assessment procedure. Currently, the Situation-Case and the Situation-
Deepfeature models are empirically determined by hand. Also, the subset of
situations is defined by hand. Automated techniques to generate such models
will greatly increase the applicability of the approach.

References

10.
11.

12.

13.

14.

David Aha, Matthew Molineaux, and Marc Ponsen. Learning to win: Case-based
plan selection in a real-time strategy game. In ICCBR’2005, number 3620 in LNCS,
pages 5—20. Springer-Verlag, 2005.

. Robert P. Arritt and Roy M. Turner. Situation assessment for autonomous under-

water vehicles using a priori contextual knowledge. In 13th International Sympo-
sium on Unmanned Untethered Submersible Technology (UUST), 2003.

Ralph Bergmann, Hector Munoz-Avila, Manuela M. Veloso, and Erica Melis. Cbr
applied to planning. In Case-Based Reasoning Technology, pages 169-200, 1998.
E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. Das, G. M. Powell, D. D. Corkill,
and E. H. Ruspini. Issues and challenges of knowledge representation and reasoning
methods in situation assessment (level 2 fusion). Proc. SPIE 6235, 2006.

Eibe Frank, Mark A. Hall, Geoffrey Holmes, Richard Kirkby, and Bernhard
Pfahringer. Weka - a machine learning workbench for data mining. In The Data
Mining and Knowledge Discovery Handbook, pages 1305-1314, 2005.

Mark A. Hall. Correlation-based feature selection for discrete and numeric class
machine learning. In ICML, pages 359-366, 2000.

Mark A. Hall and Geoffrey Holmes. Benchmarking attribute selection techniques
for discrete class data mining. IEEE Trans. Knowl. Data Eng., 15(6):1437-1447,
2003.

Kristian F. Hammond. Case based planning: A framework for planning from ex-
perience. Cognitive Science, 14(3):385-443, 1990.

Anders Kofod-Pedersen and Agnar Aamodt. Case-based situation assessment in
a mobile context-aware system. In Artificial Intelligence in Mobile System (AIMS
2003), pages 41-49, 2003.

Janet Kolodner. Case-based reasoning. Morgan Kaufmann, 1993.

Santi Ontanién, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. Case-based
planning and execution for real-time strategy games. In Proceedings of ICCBR-
2007, pages 164-178, 2007.

Manu Sharma, Michael Homes, Juan Santamaria, Arya Irani, Charles Isbell, and
Ashwin Ram. Transfer learning in real time strategy games using hybrid CBR/RL.
In IJCAI’2007, page to appear. Morgan Kaufmann, 2007.

L. Spalazzi. A survey on case-based planning. Artificial Intelligence Review,
16(1):3-36, 2001.

Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in
text categorization. In ICML, pages 412-420, 1997.

