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Abstract.  To meet time constraints, a CBR system must control the time spent 
searching in the case base for a solution. In this paper, we presents the results of 
a case study comparing the proficiency of some criteria for forgetting cases, 
hence bounding the number of cases to be explored during retrieval. The 
criteria being considered are case usage, case value and case density. As we 
make use of a sequential game for our experiments, case values are obtained 
through training using reinforcement learning. Our results indicate that case 
usage is the most favorable criteria for selecting the cases to be forgotten prior 
to retrieval. We also have some indications that a mixture of case usage and 
case value can provide some improvements. However compaction of a case 
base using case density reveals less performing for our application.  
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1   Introduction   

Games are an interesting laboratory for CBR as they involve interactivity, complex 
situations and evolving scenarios. As games often depict complex environments for 
which an exact model is difficult to build, they present some opportunities for the 
insertion of approximate approaches relying on example-based reasoning. Our work 
pertains to the application of CBR to games involving uncertainty and real-time 
response where time available to make a decision might vary with the context. 
Temporal constraints in games might be resulting from a change of level, a situation 
presenting increased complexity or a variation of tempo in the occurrence of events.  

Computational time in a CBR cycle depends on the time dedicated to retrieval and 
adaptation. In a nearest neighbor setting, retrieval time depends on the number of 
cases being considered for making recommendations. Hence to meet time constraints 
a CBR system would either have to forget cases prior to case retrieval or to filter 
cases while performing retrieval. For this work, we adopt a forgetting approach to 
limit retrieval time. Characterization of adaptation time is more complex as this phase 
is less standardized. As most applications do not require adaptation or make use of 
simple case modification heuristics, we assume that most of the overall CBR 
computational time depends on the number of cases being considered during retrieval.  

Forgetting cases involves removing those less valuable to the task being 
accomplished in order to maintain run-time performance and competence to an 



acceptable level. Means are required to assess the value of individual cases. As most 
games are sequential in nature, reinforcement learning [15] is an interesting 
framework for determining the contribution or payoff expected from each case for 
solving some problems. Recent progress has been made in this direction [1, 2, 3, 9, 
11] and we adopt this approach to assign values to individual cases.  

In this paper, our goal is to determine if values obtained through reinforcement 
learning could provide a good indication on which cases a CBR system should forget 
to reduce the size of a case base. We conduct this work as a case study using Tetris, a 
game with simple rules presenting relevant time constraints. In section 2, we briefly 
survey the related CBR techniques used to manage a case base. Section 3 describes 
our research motivations and section 4 presents the reinforcement learning scheme we 
used for training a case base.  In sections 5 and 6, we compare reinforcement value to 
other criteria such as case usage and case density to assess its importance as guidance 
for case forgetting.  We also present in section 7 some experiments conducted with 
variants of a case deletion strategy proposed in [13] to determine if the compaction of 
case base is relevant to our problem.  

2   Related Work 

Managing the size of case bases has been addressed mostly by the community of CBR 
researchers working on case base maintenance strategies. Markovitch and Scott [6] 
showed that additional knowledge can degrade the performance of learning system 
and that removing some of this knowledge can help to correct the situation. Minton 
[7] proposed a deletion technique for explanation based learning systems. Racine and 
Yang [8] proposed to reduce the size of a textual case base by exploiting redundancy 
and incoherence relationships between cases.  

Smyth and McKenna [13] proposed a technique for constructing compact case 
bases. Their approach relies on the notions of coverage and reachability [12], two 
criteria for estimating the competence of a case base when case adaptation is possible. 
This work highlights the importance of finding a trade-off between the competence 
and the efficiency of a CBR system. This is in opposition to machine learning deletion 
approaches mostly concentrating on computational time reduction.    

It is important to mention that an alternative to removing cases prior to retrieval 
would be to filter cases during retrieval, and hence avoiding an exhaustive search of 
the case base.  Schaaf [10] proposed Fish and Shrink, an approach where the 
similarity between two cases depends on how they are related to other cases already 
visited during retrieval. Also Footprint-Based Retrieval [14] is a retrieval procedure 
where a search is guided by a limited number of cases (the footprint set) covering all 
of the other cases in the case base. Following the selection of a reference case from 
the footprint set, the search is extended to covered cases, i.e. those that can be solved 
following adaptation of the reference case.  

The main specificity of our work is that we make use of reinforcement learning to 
guide the forgetting of cases. Reinforcement learning (RL) in CBR has recently been 
studied by some authors. Gabel and Riedmiller make use of CBR to approximate RL 
versions of temporal difference learning [2] and Q-Learning [5].  Sharma et al. [11] 



proposed an approach for conducting RL/CBR in games.  In our previous work [9], 
we experimented with Q-Learning for evaluating existing case bases. Finally Aha & 
Molineaux [1] proposed a model for the reinforcement of continuous actions in CBR 
systems.  

3   Motivations   

As mentioned previously, we are interested in the application of CBR to games where 
time to make a decision varies for different situations. To conduct our study, we make 
use of Tetris [9]. Tetris consists of placing a dropping piece onto a set of columns to 
complete rows and avoid accumulation of pieces (Figure 1). Seven different shapes of 
pieces exist in the game. Placing each of them involves various combinations of 
rotation and sliding. This game presents interesting time constraints as a decision 
must be made before the piece touches the upper row of cubes. Time constraints in 
Tetris are caused by the following:  

• As a piece is dropping, time is limited to make a decision.  
• As the upper row of cubes rises up, space is reduced to rotate and translate 

the dropping piece.  
• As the level of the game increases, the dropping speed increases.   

This has an impact on the number of cases that can be processed to select a move. 
For instance, in most implementations of the game, a dropping figure takes less then a 
second for going down one step at level 0. And for each additional level, the time 
allocated for each step is reduced by tens of milliseconds. For our current 
implementation, this means that less than 25 000 cases could be explored for each 
step at level 0 during the retrieval phase. And each subsequent time reduction would 
corresponds to approximately 1000 cases that could not be used by the CBR 
component to meet its constraints.  

 

 
 

Figure 1 - Playing Tetris with CBR local patterns (from [9]). 
 
We assume for the moment that adaptation efforts are limited. In our current 

setting, adapting a solution consists of rotating and translating the dropping figure.  
This can be easily accomplished by comparing cases and determining where some 
target patterns are located on the surface of the board (for additional details, see 



details in [9]). As this computation is negligible compared to retrieval time, temporal 
constraints would not influence how adaptation is performed.   

We are interested to determine which cases should not be considered by the CBR 
system when time is limited. To do so, we need some selection criteria to 
momentarily forget some of the cases. Such criteria would be associated to a 
performance profile indicating how the removing cases impact on the competence of 
a CBR system. As mentioned in section 2, criteria such as usage, recency and density 
could be considered. However, Tetris is a sequential game where a decision on how to 
place a figure impact on the next moves that can be done. This suggests that it is 
possible through reinforcement learning to assign a value to each case that would 
indicate the payoff expected from its usage. As reported in the next section, we made 
use of a Q-Learning scheme to determine such case values.  

Given some profiles on how forgetting cases impact on CBR performance, we 
would need a framework to manage how to exploit these while reasoning online. 
Work on anytime reasoning could constitute an interesting framework to explore this 
issue. Case based reasoning could be formulated as an interruptible algorithm that can 
provide answers without running through a full completion of the reasoning cycle. As 
soon as one case has been consulted, the CBR system could be interrupted and return 
a solution whose quality might be partially satisficing. Quality measures are then 
required to guide a CBR component to keep searching for the amount of time being 
given. So our current goal is to learn how to characterize these performance profiles 
for CBR systems.  

In the next sections, we will explore how reinforcement of learning is used to 
evaluate the payoff of a group of cases. Then we conduct a case study for evaluating 
the influence of various criteria on the performance of a CBR component for the 
game of Tetris.  

4   Evaluation of Cases through Reinforcement Learning  

Reinforcement learning [15] is a practical approach to learn consistent evaluations 
from observed rewards for complex Markov decision processes (MDPs).  RL can be 
used to estimate the value of a state through temporal difference techniques or to 
evaluate state-action pairs through Q-Learning. For our application, we adopt a Q-
Learning approach to evaluate a case base and the general training procedure is 
described in Figure 2.  

Training relies on conducting multiple problem solving episodes with the CBR 
component. The case-based reasoning cycle (function CHOOSE-CBR-MOVE) used for 
this work contains the usual phases of CBR, i.e. retrieval and reuse. For our Tetris 
application, retrieval is performed by matching pattern cases with a subset of the 
columns on the board [9]. A pattern is represented as the heights of a sequence of N 
columns where a specific piece type can be dropped.  This process returns the k best 
matching patterns. Case selection (function SELECT-BEST-CASE) is based on the value 
assigned to a case and returns, during exploitation, the most valued neighboring case. 
Case evaluation is performed using a Q-Learning procedure and is explained in the 
next paragraphs.  Finally case adaptation (function ADAPT-SOLUTION) in Tetris is 



done by modifying the orientation of a dropping piece. This can easily be determined 
by placing the piece where a pattern was matched and by applying the move (i.e. the 
rotation) recommended by the selected case. 

 
procedure EVAL-CB-WITH-QLEARNING (CB)  
 inputs:  CB, the case base used by the CBR cycle. 
 local variables:  
  State, the current state of the game (i.e. the height of the columns, initially empty). 
  Problem, a problem to solve (i.e. a new piece P presented with orientation O) 
  Case, one specific case (a pattern of columns + a piece + its orientation + a move)   
  Previous_Case, the case recommended in the previous cycle.  
  Solution, a move (i.e. the rotation and translation of the piece P). 
  R, the reward obtained by applying Solution to State 
   
 repeat  
  Problem  GENERATE-NEW-PROBLEM();  // Select randomly a piece to be placed 
  Case, Solution   CHOOSE-CBR-MOVE(Problem, State, CB);   
   Previous_Case.Value  UPDATE-CASE-VALUE (Previous-Case, Case, R)    
  R, State  reward and new state resulting from the application of Solution to State    
  Case.usage  Case.usage + 1 
  Previous-Case  Case 
 until some stopping criterion is satisfied 
 
function CHOOSE-CBR-MOVE(New-problem, State, CB)  returns a case and a solution 
   local variables:  
               k, the number of nearest neighbors being considered 
               Case, one specific case (a pattern of columns + a piece + its orientation + a move)  
   Candidates, some similar cases   
               New-solution, a move (i.e. the rotation and translation applied to the piece P). 
   // Retrieval 
   Candidates  FIND-KNN(k, New-Problem, State, CB)    
   // Reuse 
   Case  SELECT-BEST-CASE(Candidates, New-Problem, State)   
   New-solution  ADAPT-SOLUTION(Case, New-Problem, State) // rotate and translate the piece       
   return Case, New-solution 

Fig. 2 - CBR problem-solving cycle for the reuse of reinforced cases with its interpretation for 
the game of Tetris.  

The training procedure (EVAL-CB-WITH-QLEARNING) for evaluating cases 
provided by a case base goes as follows. We start with some initial evaluations Value 
corresponding to the rewards assigned by Tetris to each of the cases of the case base.  
Then we let the CBR component play games during which cases are selected and 
modified. For a case Ct selected at time t, a revision of its value is performed by 
UPDATE-CASE-VALUE using the following function: 
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where R is the reward obtained by applying the move adapted from Ct to the new 
target surface at time t. The discount factor γ assigns some importance to future 
moves and α determines the trade-off between the current value of a case and its 
potential future payoff.  

In the update equation (1), Ct+1 corresponds to the case selected by the CBR 
system at the iteration t+1. This captures the idea that an efficient CBR system should 
seek the maximum payoff expected from future moves. Hence the value of future 
moves should be backed up in the value of Ct. As the CBR cycle always chooses the 
most valued case present in the case base (function SELECT-BEST-CASE), we assume 
that the next selected case Ct+1 is a good approximation of the maximum solution to 
be applied to statet+1. From an implementation point of view, the value of Ct is 
updated during the CBR cycle at time t+1. 

In order to prevent falling into local optima regions, the training process is allowed 
to explore the search space by selecting non maximal cases from the set of nearest 
neighbors. This is captured by a softmax rule [16] where the probability of selecting 
one of the nearest neighbors is given by  
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where τ is an exploration factor (or temperature). This factor is reduced progressively 
with time to bring the training algorithm to adopt a greedy exploitation behavior (i.e. 
select the most valued case). And exploration is not allowed during the exploitation of 
the case base once training is completed.  

5   Forgetting Cases using Reinforcement Values 

The first issue we addressed was to determine if reinforcement learning helps to 
provide good indications on how to reduce the size of a case base. We conducted an 
experiment with an initial case base of 55 000 cases trained with Q-Learning and 
softmax exploration as described in the previous section. All the results were obtained 
using the Tieltris testbed and we made use of the rewards assigned by this 
implementation of Tetris to update the value of the cases.  

The two following parameters for each case were determined following the 
training session:  

• Case value (V) : the reinforcement value resulting from successive updates 
of a case during training; 

• Case usage (U): the number of times a case was selected during the training 
experiment.    

For evaluating the impact of these two criteria on the performance of the CBR 
component, we built performance profiles as follows:  

• We impose a threshold value on one of the criteria and we remove all cases 
presenting lower characteristics; 



• We play a number of games to evaluate the performance obtained by using 
the remaining cases.  In our experiments, 100 games were played for each 
trial. And for each game, the pieces to be dropped were selected randomly. 

• We increase the cutoff threshold and repeat this evaluation until the case 
base gets empty.  

Performance profiles for both criteria are presented in Figure 3. Performance is 
characterized by the number of lines removed during a Tetris game. We obtained 
similar results for indicators such as game scores and the number of moves played 
during a game. Hence these are not presented in this experimentation section as they 
would lead to similar conclusions.  
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Fig. 3. Performance profiles for case usage and case reinforcement value. These are 
performance profiles obtained by progressively removing cases from an initial case base of 
55 000 cases. 

Our experimental results indicate that progressively removing cases based on their 
reinforcement value prematurely yields an important degradation of performance (see 
curve V). By deleting about one thousand of the least valued cases (i.e. 2% of the 
initial case base), the CBR component removes on average 25% fewer lines during a 
game. We conjecture that some of these cases are applied to difficult moves offering 
little payoff. These states might often be visited during the course of a game and, by 
removing them from the case base, the CBR system is left with no guidance on how 
to manage these situations. Then by progressively removing additional cases, we 
notice a performance degradation which is almost linear.  Finally, the system becomes 
totally inefficient when less than a thousand cases are used by the system.    

Case usage presents a much different performance profile. The number of lines 
being removed remains constant even after removing 40 000 of the less frequently 
used cases (i.e. 2/3 of the initial case base). However with a CBR system operating 



with between 2000 and 12 000 cases, the performance starts to oscillate. In this 
transition phase, we notice some peak performance even surpassing results obtained 
from larger case bases. However no guarantee for improvements can be made due to 
the instability of the performance profile in this region. Finally, as we keep removing 
the last few cases (< 1000), the performance drops rapidly to lower values as the 
number of cases becomes insufficient.   

Hence, from this experiment, we can conclude that case usage (U) provides a better 
decision criterion for progressive forgetting of cases for our application. Results also 
indicate that reinforcement value (V) is not by itself an informative criterion for 
reducing the size of the case base. It is also interesting to note that the size of the CBR 
memory can significantly be reduced without impacting severely on its performance.   

6   Combining Multiple Criteria 

Based on the results of the previous experiment, we tried to combine both criteria to 
see if additional improvements could be obtained using a mixture of them. We 
considered 2 variants:  

• Additive form: a linear combination of the two criteria.   
( ) .  .f Case CaseU CaseVα β= +  

• Product form: a product of the two criteria where V is normalized to remove 
negative reinforcement values.   

( ) . ( . )f Case CaseU CaseVα β= × +  
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Fig. 4. Combining criteria U and V for forgetting cases. 



Figure 4 displays some experimental profiles we obtained for these forms. For 
most of the coefficients α and β, making a linear combination of V and U represents a 
compromise between these two criteria. Hence the resulting combination generates a 
performance profile that stands between those of the individual criteria. For instance, 
the curve U+V is a slight improvement over V but does not nearly surpass the 
performance profile of U.  And as the component U becomes more important in the 
mixture, the performance profile of the combination resembles the profile of the case 
usage criteria. We tried different linear combinations and we found that, for our Tetris 
application, the best results were obtained when 7α β ≈ . While some significant 
improvements can be expected from this combination, we can not however conclude 
that such a linear combination guarantees better results for any number of cases. 
However it seems to be an advantageous option for case bases comprising less then 
20 000 cases.  
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Fig. 5. Case being removed from the case base for a linear combination of 7U + V.  Points with 
a lighter shade of gray represent cases that have been removed from the case base.   

Figure 5 illustrates the composition of the case base when reduced to 5200 cases 
(i.e. less than 1/10th of its initial size) by applying a linear combination of 7U + V (i.e. 
a ratio of α/β = 7). If we refer to Figure 4, this corresponds to the optimum peak value 
obtained by this performance profile. The dark points correspond to those cases left in 
the case base while the gray points correspond to those being removed. We notice that 
while more than 90% of the cases have been removed, those are highly concentrated 
in the bottom left part of the figure. This region depicts cases with both lower usage 
and reinforcement values. This suggests that this is a region where it is beneficial to 
concentrate its forgetting efforts. 

Finally a comparison of the additive and product forms of combination, as 
illustrated in Figure 6, clearly indicates that the product form does not provide any 
additional advantage over the best results obtained using an additive form.   
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Fig. 6. Comparison of additive and product forms. 

7   Compacting the Case Base 

Smyth and McKenna proposed in [13] a case deletion strategy to build compact 
case bases. The basic idea is to select a subset of cases that perform well and that are 
well dispersed in the problem space. To achieve this, we evaluate all the cases of the 
CBR system with respect to some criterion and sort them in decreasing order. Then 
we create a new case base and we successively add cases, following a decreasing 
order, that can not be solved by other cases already present in the new case base.  This 
algorithm is presented in Figure 7.  

From an intuitive point of view, compaction seems to favor the removal of cases 
from different regions of the problem space. This approach should provide 
performance profiles different from those of the progressive forgetting studied in 
section 5 and 6 of this paper where cases were removed in concentrated areas. By 
diversifying the regions where cases are removed, we could expect a better 
preservation of the competence of the CBR system.  

Authors in [13] proposed a competence criterion, based on reachability and 
coverage [12], to determine the extent of cases that can be solved. For our game of 
Tetris, we consider that a case can solve another if both pertain to the same type of 
piece and if the configurations of columns are sufficiently similar (i.e. superior to 



some similarity thresholds). This is a reasonable assumption as, for similar board 
configurations, a piece can be rotated and translated to produce a reusable solution.   

 
function CONSTRUCT_COMPACT_CB (Cases, Criterion), returns a case base 
 inputs:  Cases, all the case originally used of the CBR system. 
  Criterion, the attribute used to rank cases.  
 local variables:  
  Sorted_Cases, the cases ranked by some criterion 
  New_CB, the result of this function, a subset of the original cases 
  SIM_THRESHOLD, a cutoff threshold for forgetting cases.  
      Sorted_Cases  SORT-CB(Cases, Criterion); 
      New_CB   {}; 
      CHANGES  true; 
    
 while CHANGES do 
  CHANGES  false; 
  For each case C ∈  Sorted_Cases 
   if MAX-SIMILARITY (C, New_CB) <  SIM_THRESHOLD then 
         CHANGES  true; 
         Add C to New_CB; 
         Remove C from Sorted_Cases; 
   return New_CB 

function MAX-SIMILARITY (C, Cases) returns a similarity value 
 Sim = 0.0; 
 for each case C’ ∈  Cases do 
  if C.type = C’.type;   // similarity is restricted to pieces of the same type. 
   Sim  MAX(Sim,GET-SIMILARITY(C, C’)); 
  return Sim; 

Fig. 7. Algorithm for compacting a case base – Adapted from [13].  

The function CONSTRUCT_COMPACT_CB is sensitive to the ordering of the original 
cases. To control this factor, we need to sort the cases with respect to some criterion 
(function SORT-CB).  We compared experimental results obtained when cases were 
sorted based on their usage and reinforcement values. We also considered the 
possibility, for building a compact case base, to remove cases based on their similarity 
with other cases. So we estimated for each case the density of its neighborhood (i.e. 
the average similarity of its nearest neighbors) and we made use of this criterion for 
our experiments.  The resulting performance profiles are presented in Figure 8. To 
obtain various sizes of case bases, we applied the compaction function for different 
values of similarity thresholds SIM_THRESHOLD.  

We note that the compaction of a case base brings a constant and linear decrease 
for most of the sorting criterion. While this approach is superior to progressively 
forgetting cases based on reinforcement values, the various performance profiles 
obtained using U, V and case density as sorting criteria reveal largely inferior to the 
progressive approach with case usage.   
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Fig. 8. Compaction of cases using various sorting criteria. Progressive performance profiles 
refer to the removal of cases without compaction as described in sections 5 and 6 of this paper.  

Finally we also tried a variant of this approach called NUN [13]. While it compares 
favorably to the other compaction performance profiles, it does not outrank the results 
obtained by progressive forgetting with case usage.  

8   Discussion 

We learned from our case study with Tetris that profiles can be built for estimating 
the performance of a CBR system with various case base sizes. Our results clearly 
indicate that, for our application, case usage is the best criteria for forgetting cases.  
Reinforcement values are not necessarily by themselves good indicators for forgetting 
cases but could contribute if combined with other criteria.  Finally a progressive 
reduction of the case base seems to be more appropriate than compaction for our 
application. 

However this does not mean that reinforcement learning does not contribute to 
CBR. Our previous work [9] clearly illustrated that reinforcement training of a case 
base can improve the overall performance of a CBR system.    

As mentioned in section 3 of this paper, one of our objectives is to make use of 
performance profiles to limit the size of a case base when facing time constraints 
(which we referred to as anytime CBR).  This supposes that using fewer cases would 
imply a degradation of performance. But one of our findings is that using the 55 000 
cases that were initially provided to build the CBR system, we could play Tetris at an 



optimum level by using a subset of approximately 5 000 cases.  Hence with such a 
limited number of cases, retrieval time would never exceed temporal constraints 
imposed by the game. This is a surprising result as our internal case representation for 
Tetris has a dimensionality of approximately 70 million different states. But it seems 
to be a particular situation where the competence of the CBR system is not 
proportional to the number of cases being used.   

We expect that the proposed approach could be applicable to other time-
constrained games. For instance, pursuit games could benefit from performance 
profiles and by dimensioning the size of the case base to meet time-critical situations.  
For instance, a reactive game like Pacman could be simple and interesting laboratory 
for conducting such a study.  This remains to be done as future work.  
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