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Abstract. We present algorithmic, complexity and implementation re-
sults concerning real root isolation of a polynomial of degree d, with
integer coefficients of bit size ≤ τ , using Sturm (-Habicht) sequences and
the Bernstein subdivision solver. In particular, we unify and simplify the
analysis of both methods and we give an asymptotic complexity bound of
eOB(d4

τ
2). This matches the best known bounds for binary subdivision

solvers. Moreover, we generalize this to cover the non square-free polyno-
mials and show that within the same complexity we can also compute the
multiplicities of the roots. We also consider algorithms for sign evalua-
tion, comparison of real algebraic numbers and simultaneous inequalities
(SI) and we improve the known bounds at least by a factor of d.
Finally, we present our C++ implementation in synaps and some experi-
mentations on various data sets.

1 Introduction

The representation and manipulation of shapes is important in many applica-
tions: CAGD, non linear computational geometry, robotics, molecular biology,
. . . The usual underlying models for these shapes are e.g. parameterized patches
of rational surfaces, BSplines, natural quadrics, implicit algebraic curves or sur-
faces, . . . Geometric processing on these objects, e.g. computing boundary rep-
resentations, arrangements, Voronoi diagram of curved objects, etc [7,35,16,19],
requires the intensive use of polynomial solvers and computations with algebraic
numbers. In such applications, a geometric model may involve several thou-
sands of algebraic primitives. Their manipulations involve the computation of
intersection points of such primitives, of predicates on these intersection points
(such as the comparison of coordinates), of the sign of polynomial expressions
at these points (such as the sign of a polynomial which defines the boundary of
an object), . . . . The coordinates of these intersection points, which are the solu-
tions polynomial equations, are algebraic numbers that we need to manipulate
efficiently.

The objective of this paper is to give of an overview of effective computa-
tions with real algebraic numbers, which unify, simplify and improve previous



approaches. Hereafter, we will tackle both complexity analysis and practical is-
sues. We consider two approaches for real root isolation of univariate integer
polynomials, one based on Sturm sequences and one based on Descartes’ rule
of sign. We will also analyse algorithms for sign evaluation, comparison of real
algebraic numbers and the problem of simultaneous inequalities.

Our aim is to provide better insights on these algorithms and better bounds
on their complexity. For the analysis we consider the bit complexity model which
is more realistic than the arithmetic one in the problems we are interested in.
Our algorithms are essentially output sensitive, since they depend not only on
the input bit size, but also on the actual separation bound, as we will see.

Notation. In what followsOB means bit complexity and the ÕB-notation means
that we are ignoring logarithmic factors. For a polynomial f ∈ Z[X ], deg (f)
denotes its degree. By L (f) we denote an upper bound on the bit size of the
coefficients of f (including a bit for the sign). For a ∈ Q, L (a) is the maximum bit
size of the numerator and the denominator. Let M (τ) denote the bit complexity
of multiplying two integers of bit size at most τ and M (d, τ) denote the bit
complexity of multiplying two univariate polynomials of degrees bounded by
d and coefficient bit size at most τ . Using FFT, M (τ) = OB(τ logc1τ) and
M (d, τ) = OB(dτ logc2(dτ)) for suitable constants c1, c2.

Prior works. Various algorithms exist for polynomial real root isolation, but
most of them focus on square-free polynomials. There is a huge bibliography on
the problem and the references cited in this paper are only the tip of the iceberg
of the existing bibliography.

Collins and Akritas [9] introduced a subdivision-based real root isolation al-
gorithm that relies on Descartes’ rule of sign (we call it Descartes solver from

now on) and derive a complexity of ÕB(d6τ2). Johnson [24] improved the com-

plexity of the algorithm to ÕB(d5τ2), without using fast Taylor shifts [44], and a
gap in his proof was corrected by Krandick [26]. Rouillier and Zimmermann (c.f
[40] and references therein) presented a unified approach with optimal memory
management for various variants of the Descartes solver.

An algorithm (we call it Bernstein solver from now on) that is based on
a combination of Descartes’ rule and on the properties of Bernstein basis first
introduced by Lane and Riesenfeld [28] and a bound on its complexity first ob-
tained by Mourrain et al [36]. The interested reader may also refer to [34] for
a variant with optimal memory management and the connection to Descartes
solver. In the same context, Eigenwillig et al [14] proposed a randomized algo-
rithm for square-free polynomials with bit stream coefficients. The complexity
of all these algorithms is bounded by ÕB(d6τ2). Recently, the complexity bound

was improved to ÕB(d4τ2) [15] for the square-free case.
If we restrict ourselves to real root isolation using Sturm (or Sturm-Habicht)

sequences (we call it Sturm solver from now on) the first complete complexity
analysis is probably due to Collins and Loos [10], that state a complexity of

ÕB(d7τ3). Du et al [13] giving an amortized-like argument for the number of

subdivisions, obtained a complexity of ÕB(d4τ2), for square-free polynomials.
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Another family of solvers (that we call numerical), compute an approximation
of all the roots (real and complex) of a polynomial up to a desired accuracy (see
e.g [42,37]). They are based on the construction of balanced splitting circles in

the complex plane and achieve the quasi-optimal complexity bound ÕB(d3τ), if
we want to isolate the roots. However, performance in practice does not always
agree with that predicted by asymptotic analysis. Let us also mention the Aberth
solver [4,5], which has unknown (bit) complexity, but is efficient in practice.

For sign evaluation and comparison as well as computations with real alge-
braic numbers the reader may refer to [39]. In [17] for degree ≤ 4, it is proved

that these operations can be performed in O(1), or ÕB(τ). For the problem
of simultaneous inequalities (SI), we are interested in computing the (number
of) real roots of a polynomial f , such that n other polynomials achieve spe-
cific sign conditions, where the degree of all the polynomials is bounded by d
and their bit size by τ . Ben-Or, Kozen and Reif [2] presented the BKR algo-
rithm for SI and Canny [6] improved it in the univariate case (by a factor)
achieving O(n(m d log(m) log2(d) + m2.376)) arithmetic complexity, where m is
the number of real roots of f . Coste and Roy [11] introduced Thom’s encod-
ing for the real roots of a polynomial and SI in this encoding (see also [41]).
Their approach is purely symbolic and works over arbitrary real closed fields.
They state a complexity of ÕB(N8), using fast multiplication algorithms but not
fast computations and evaluation of polynomial sequences, where N ≥ n, d, τ .
In [1] an algorithm for SI is presented where the real algebraic numbers are in

isolating interval representation, with complexity ÕB(nd6τ2) or ÕB(N9), that
uses repeated refinements of the isolating intervals and does not assume fast
multiplication algorithms.

Results. For the problem of real root isolation of a univariate polynomial, us-
ing the Sturm solver we present an algorithm with complexity ÕB(d4τ2), that
improves the result of [13], by extending it to non square-free polynomials. We
also simplify significantly the proof (Th. 7) and unify it with the Bernstein
approach. We also show that computing the multiplicities of the roots can be
achieved within the same complexity bound.

For the Bernstein solver, we simplify the proof from [15,43] for the number of
subdivisions by considering the subdivision tree at an earlier level and by using
Th. 6 exactly as stated in [24,27]. Thus, we arrive at the same bound for the
Bernstein subdivision method (Th. 7) as in [15], but for polynomials which are
not necessarily square-free.

The analysis that we present applies to both solvers and simplifies signifi-
cantly the previous approaches. Moreover our analysis applies also to Descartes
solves, since the subdivision tree, i.e the number of steps that the algorithm
performs, is the same as in the case of Bernstein solver.

Real root isolation is an important ingredient for the construction of alge-
braic numbers. We also analyze the complexity of comparison, sign evaluation
and simultaneous inequalities (Sec. 6). Even though the algorithms for these
operations are not new [1,17,39,47], the results from real solving and optimal
algorithms for polynomial remainder sequences, allow us to improve the com-

3



plexity of all the algorithms, at least by a factor d (Cor. 2, 3). For SI we prove

a bound (Cor. 4) of ÕB(d4τ max{n, τ}), or ÕB(N6) under the notation of [41].
These algebraic operations ought to have efficient and generic implemen-

tations so that they can be used by other scientific communities. We present
a package of synaps [33] that provides these functionalities on real algebraic
numbers and exploits various algorithmic and implementation techniques. Ex-
perimental results (Sec. 7) illustrate the behavior of the software.

Our results extend directly to the bivariate case, i.e real solving of polynomial
system, sign evaluation of a bivariate polynomial evaluated over two algebraic
numbers, SI etc. However due to reasons of space, we cannot present these results
here. The reader may refer to [20,18].

Outline. In Sec. 2, we recall the main ingredient of the Sturm solver and analyse
them in detail. Sec. 3 presents the ingredients of the Bernstein solver and their
complexity. In Sec. 4, we present the general scheme for two algorithms based
on Sturm-Habicht sequences and on Bernstein basis representation, for real root
isolation and computation of the multiplicities. The following section is devoted
to the complexity analysis of both methods. Sec. 6 is devoted to operations with
real algebraic numbers, i.e. comparison, sign evaluation and SI. Sec. 7 illustrates
our implementation in synaps and experiments on various data sets (cf also the
Appendix). Finally, we sketch our current and future work in Sec. 8.

2 Preliminaries for Sturm–Habicht Sequences

We recall here the main ingredients related to Sturm sequence computations and
their bit complexity.

Let f =
∑p

k=0 fkxk, g =
∑q

k=0 gkxk ∈ Z[x] where deg(f) = p ≥ q = deg(g)
and L (f) = L (g) = τ . We denote by rem (f, g) and quo (f, g) the remainder and
the quotient, respectively, of the Euclidean division of f by g, in Q[x].

Definition 1. [29] The signed polynomial remainder sequence of f and g, de-
noted by SPRS (f, g), is the polynomial sequence

R0 = f, R1 = g, R2 = − rem (f, g) , . . . , Rk = − rem (Rk−2, Rk−1)

where rem (Rk−1, Rk) = 0. The quotient sequence of f and g is the polyno-
mial sequence {Qi}0≤i≤k, where Qi = quo (Ri, Ri+1) and the quotient boot is
(Q0, Q1, . . . , Qk−1, Rk).

There is a huge bibliography on signed polynomial remainder sequences (c.f
[1,45,47] and references there in). [46] presents a unified approach to subresul-
tants. For the Sturm-Habicht (or Sylvester-Habicht) sequences the reader may
refer to [22] (see also [1,29,30]).

In this paper we consider the Sturm-Habicht sequence of f and g, i.e StHa(f, g),
which contains polynomials that are proportional to the polynomials in SPRS (f, g).
Sturm-Habicht sequences achieve better bounds on the bit size of the coefficients
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and have good specialization properties, since they are defined through determi-
nants.

Let Mj be the matrix which has as rows the coefficient vectors of the poly-
nomials fxq−1−j , fxq−2−j , . . . , fx, f , g, gx, . . . , gxp−2−j , gxp−1−j with respect
to the monomial basis xp+q−1−j , xp+q−2−j , . . . , x, 1. The dimension of Mj is
(p + q − 1 − 2j) × (p + q − 1 − j). For l = 0, . . . , p + q − 1 − j let M l

j be the
square matrix of dimension (p + q − 2j) × (p + q − 2j) obtained by taking the
first p + q − 1 − 2j columns and the l-th column of Mj .

Definition 2. The Sturm-Habicht sequence of f and g, is the sequence

StHa(f, g) = (Hp = Hp(f, g), . . . , H0 = H0(f, g))

where Hp = f, Hp−1 = g and Hj =
∑j

l=0 det (M l
j)x

l. The sequence of principal
Sturm-Habicht coefficients (hp = hp(f, g), . . . , h0(f, g)) is defined as hp = 1 and
hj is the coefficient of xj in the polynomial Hj, for 0 ≤ j ≤ p. When hj = 0 for
some j then the sequence is called defective, otherwise non-defective.

If StHa(f, g) is non-defective then it coincides up to sign with the classical
subresultant sequence introduced by Collins [8] (see also [47]). However, in the
defective case, can have better control on the bit size of the coefficients in the
sequence (see e.g [29,30]).

Theorem 1. [1,38,30,45] There is an algorithm that computes StHa(f, g) in

OB(pq M (pτ)), or ÕB(p2qτ). Moreover, L (Hj(f, g)) = O(pτ).

Let the quotient boot that corresponds to StHa(f, g), be StHaQ(f, g) = (Q0, Q1,
. . . , Qk−1, Hk). The number of coefficients in StHaQ(f, g) is O(q) and their bit
size is O(pτ) (c.f [1,38]).

Theorem 2. [1,29,38,45] The quotient boot, the resultant and the gcd of f and

g, can be computed in OB(q log(q)M (pτ)) or ÕB(p q τ).

Theorem 3. [29,38] There is an algorithm that computes the evaluation of
StHa(f, g) over a number a, where a ∈ Q ∪ {±∞} and L (a) = σ with com-
plexity OB(qlogqM (max (pτ, qσ))) or OB(qM (max (pτ, qσ))) if StHaQ(f, g) is

already computed. In both cases the complexity is ÕB(q max (pτ, qσ)).

In many cases, e.g real root isolation, sign evaluation, comparison of algebraic
numbers, we need the evaluation of StHa(f, f

′

) over a rational number of bit size
O(pτ). If we perform the evaluation by Horner’s rule then for every polynomial
in sequence, there are Ω(p), we must perform Ω(p) multiplications between num-
bers of bit size O(pτ) and O(p2τ), thus the overall complexity is OB(p3

M (pτ)).
However, when we compute the complete StHa(f, f

′

) in OB(p2
M (pτ)) (Th. 1),

the quotient boot is computed implicitly [38,1]. Thus, we can use the quotient
boot in order to perform the evaluation even if we have already computed all the
polynomials in the Sturm-Habicht sequence. Notice also that the computation
should be started by the last element of the quotient boot so as to avoid the
costly computation of two polynomial evaluations using Horner’s scheme.
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Even though this approach is optimal, it involves big constants in its com-
plexity, thus it is not efficient in practice when the length of the sequence is not
sufficiently big or when the sequence is defective (see e.g [12]). Moreover, special
techniques should be used for its implementation to avoid costly operations with
rational numbers. So, as it is always the case with optimal algebraic algorithms,
the implementation is far from a trivial task.

Theorem 4. [1] The square-free part of f , i.e. fred, can be computed from

StHa(f, f
′

), in OB(plogpM (pτ)) or ÕB(p2τ), and L (fred) = O(p + τ).

Let W(f,g)(a) denote the number of modified sign changes of the evaluation of
StHa(f, g) over a. Notice that W(f,g)(a) does not refer to the usual counting of
sign variations, since special care should be taken for the presence of consecutive
zeros [1,22,29].

Theorem 5. [1,47,39] Let f, g ∈ Z[x] be relatively prime polynomials, where
f is square-free and f

′

is the derivative of f . If a < b are both non-roots
of f and γ ranges over the roots of f in (a, b), then W(f,g)(a) − W(f,g)(b) =∑

γ sign (f
′

(γ)g(γ)).

Corollary 1. If g = f
′

then StHa(f, f
′

) is the Sturm sequence and Th. 5 counts
the number of real roots of f in (a, b).

For the Sturm solver by V (f, [a, b]) will denote V (f, [a, b]) = W(f,f ′)(a)−W(f,f ′)(b).

3 Preliminaries for Bernstein Basis Representation

In this section we present the main ingredients needed for the representation of
polynomials in the Bernstein basis.

Let R[x]d be the set of real polynomials of degree d. For a < b ∈ R, we denote

by Bi
d(x; a, b) =

(
d
i

) (x−a)i(b−x)d−1

(b−a)d (i = 0, . . . , d) the Bernstein basis of R[x]d on

an interval [a, b].

For any polynomial f ∈ R[x]d =
∑d

i=0 biB
i
d(x; a, b), represented in the Bern-

stein basis, the coefficients b = (bi)i=0,...,d are called control coefficients of f .
We denote by V (f, [a, b]) ≡ V (b), the number of sign changes in this sequence
b (after removing zero coefficients).

The following theorem, which is a direct consequence of Descartes’ rule, al-
lows us to bound the number of real roots of f on the interval [a, b]

Proposition 1. [1] The number N of real roots of f on (a, b) is bounded by
V (f, [a, b]). Moreover N ≡ V (f, [a, b]) mod 2.

Given a polynomial f represented in the Bernstein basis on an interval [a, b],
de Casteljau’s algorithm (see e.g [1,34]), allows us to compute its representation
on the Bernstein bases of the two subintervals, IL = [a, (1 − t)a + tb] and IR =
[(1 − t)a + tb, b], where 0 ≤ t ≤ 1. Namely, bL = (bi

0)i=0,...,d (resp. bR =
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(bd−i
i )i=0,...,d) are the control coefficients of f on IL (resp. IR), where b0

i =
bi, i = 0, . . . , d, and

br
i = (1 − t) br−1

i + t br−1
i+1 (t), 0 ≤ i ≤ d − r, 0 ≤ r ≤ d. (1)

In order to analyse the complexity of the de Casteljau algorithm we recall
some polynomial transformations related to the Bernstein representation (see
[34] for more details). Let R[x, y][d] be the set of homogeneous polynomials of

degree d in (x, y). For any f ∈ R[x]d, we denote by f the homogenisation of f
in degree d. For λ 6= 0, µ ∈ R, consider the following maps, R2 → R2:

– ρ : (x, y) 7→ (y, x),
– Hλ : (x, y) 7→ (λx, y), H ′

λ : (x, y) 7→ (x, λy),
– Tµ : (x, y) 7→ (x − µy, y), T ′

µ : (x, y) 7→ (x, y − µx).

The composition of the previous maps with f induces invertible transformations
on the set of polynomials of degree d, and the corresponding maps for non-
homogeneous polynomials, which we denote using the same names, are: ∀f ∈
R[x]d, ρ(f) = xdf(1/x), Hλ(f) = f(λx), H ′

λ(f) = f(λ−1x), Tµ(f) = f(x − µ),
T ′

µ(f) = (1 − µ x)df( x
1−µ x

).

For any polynomial, f(x) =
∑d

i=0 biB
i
d(x; a, b), we have

ρ ◦ T1 ◦ ρ ◦ Hb−a ◦ T−a(f) =

d∑

i=0

(
d

i

)
bix

i.

Now consider another interval [c, d]. The representation of p in the Bernstein

basis on [c, d] is p(x) =
∑d

i=0 b′iB
i
d(x; c, d). The map which transforms p from its

Bernstein represenation on [a, b] to its Bernstein represenation on [c, d], i.e from∑d

i=0

(
d
i

)
bix

i to
∑d

i=0

(
d
i

)
b′ix

i is

ρ◦T1 ◦ρ◦Hd−c◦T−c◦Ta ◦H 1
b−a

◦ρ◦T−1◦ρ = T ′
1 ◦Hd−c ◦Ta−c◦H 1

b−a

◦T ′
−1 (2)

If we consider [a, b] = [0, 1] and [c, d] = [0, 1
2 ] then map (2) becomes: ρ◦T−1 ◦

ρ ◦ H 1
2
◦ ρ ◦ T1 ◦ ρ. And after simplifications, we obtain

∆L : f 7→ f(x +
y

2
,
y

2
) = f ◦ T−1 ◦ H ′

1
2

. (3)

If we consider the symmetric case, i.e [a, b] = [0, 1] and [c, d] = [ 12 , 1] then
map (2) becomes: ρ◦T−1◦ρ◦H 1

2
◦T− 1

2
◦ρ◦T1◦ρ. It corresponds to the following

map on the homogeneous polynomials:

∆R : f 7→ f(
x

2
,
x

2
+ y) = f ◦ T ′

−1 ◦ H 1
2
.

In both cases, multiplication by 2d yields the map ∆R : p 7→ p(x, x + 2 y),
(resp. ∆L : p 7→ p(2 x + y, y)), which operates on polynomials with integer
coefficients.
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Proposition 2. Let (bi)i=0,...,d ∈ Zd+1 be the coefficients of a polynomial f in
the Bernstein basis on the interval [a, b], and let ν be a bound on their size. The
complexity of computing the Bernstein coefficients of f for the two subintervals
[a, a+b

2 ], [a+b
2 , b] is bounded by ÕB(d(d + ν)) and their size is bounded by d + ν.

Proof. Using the de Casteljau scheme, Eq. (1) using t = 1
2 , we prove by induction

that the coefficients br
i =

(br−1

i
+b

r−1

i+1
)

2 are of the form
b

r

i

2i , where b
r

i ∈ Z is of size
≤ ν + r. Reducing to the same denominator 2d, we obtain integer coefficients of
size ≤ ν + d.

We denote by ν′ the size of the coefficients (
(
d
i

)
bi)i=0,...,d where (bi)i=0,...,d

are the coefficients of f in the Bernstein basis (Bi
d(x; a, b))i=0,...,d. Notice that

ν′ ≤ ν + d.
For computing the coefficients of f on [a, a+b

2 ] and [a+b
2 , b], we apply the same

operations as when we compute the coefficients of a polynomial for the Bernstein
bases on [0, 1

2 ] and [12 , 1], when it is given in the Bernstein basis on [0, 1].
According to (3), applying de Casteljau algorithm corresponds first to mul-

tiply by the binomial coefficients, then to shift y → x + y, then to scale one
variable of the homogeneous polynomial f by 1

2 , and finally to divide by the
binomial coefficients3.

Since the bit size of the binomial coefficients is bounded by d (their sum is

2d), multiplying the bi by them costs at most ÕB(d(ν + d)). The shift by 1 of a

polynomial of degree d with coefficients of size ≤ ν +d requires ÕB(d(d+ν)) bit
operations [45, Th. 9.15]. This produces a polynomial which coefficients are of
size O(ν + d). Thus scaling in this polynomial, the variable by 1

2 and computing

the quotient by the binomial coefficients requires ÕB(d(ν + d)) bit-operations.
Therefore, the complexity of computing the Bernstein coefficients of f on

the subinterval [a, a+b
2 ] is bounded by ÕB(d(ν +d)). By symmetry, inverting the

order of the coefficients of f , we obtain the same bound for the coefficients of f
on [a+b

2 , b], which ends the proof. ⊓⊔

4 Subdivision Solver

Let f =
∑d

i=0 aix
i ∈ Z[x], such that deg(f) = d and L (f) = τ and let fred

be its square-free part. We want to isolate the real roots of f , i.e to compute
intervals with rational endpoints that contain one and only one root of f , as well
as the multiplicity of every real root. In Fig. 1, we present the general scheme of
the (subdivision) solvers that we consider. It uses an external function V (f, I),
which bounds the number of roots of f on an interval I. In the case of Sturm
solver, V (f, I) is exactly the number of roots (counted without multiplicities)
of f on I (see Sec. 2). In the case of Bernstein solver, V (f, I) is equal to the
number of roots of f on I (counted with multiplicities) modulo 2 (see Sec. 3).

Separation bounds. An important ingredient for the analysis of our solvers is
a good bound on the minimal distance sep(f) between the roots of a univariate

3 Not needed, if we have to apply repeatedly the shift operation.
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ALGORITHM: Real Root Isolation
Input: A polynomial f ∈ Z[x], with deg(f) = d and L (f) = τ .
Output: A list of intervals with rational endpoints, which contain one
and only one root of f and the multiplicity over every real root.
1. Compute the square-free part of f , i.e fred

2. Compute an interval I0 = (−B, B) with rational endpoints that
contains all the real roots. Initialize a queue Q with I0.
3. While Q is not empty do

a) Pop an interval I from Q and compute v := V (f, I).
b) If v = 0, discard I.
c) If v = 1, output I.
d) If v ≥ 2, split I into IL and IR and push them to Q.

4. Determine the multiplicities of the real roots, using the square-free
factorization of f .

Fig. 1. Real root isolation subdivision algorithm

polynomial f (also called separation bound), or more generally on the product
of distances between roots. We recall here classical results, slightly adapted to
our context.

For the separation bound it is known [1,31,47] that sep(f) ≥ d−
d+2

2 (d +

1)
1−d

2 2τ(1−d), thus log(sep(f)) = O(dτ). The latter provides a bound on the
bit size of the endpoints of the isolating intervals. Recall that Mahler’s measure
of a polynomial f is M(f) = |ad|

∏d

i=1 max {1, |γi|}, where ad is the leading
coefficient and γi are all the roots of f . We know that M(f) < 2τ

√
d + 1 [1,31].

Thus, the following inequality [1,31] holds:

M(fred) ≤ M(f) < 2τ
√

d + 1 (4)

For the minimum distance between two consecutive real roots of a square-free
polynomial, Davenport-Mahler bound is known [12] (see also [24,27]). The con-
ditions for this bound to hold were generalized by Du et al [13]. Moreover, a
similar bound, with less strict hypotheses, also appeared in [32]. Using (4) we
can provide a similar bound to [12,24,27]). for non square-free polynomials.

Theorem 6 (Davenport-Mahler bound revisited). Let A = {α1, . . . , αk}
and B = {β1, . . . , βk} be subsets of distinct (complex) roots of f (not necessarily
square-free) such that βi /∈ {α1, . . . , αi} and |βi| ≤ |αi|, for all i ∈ {1, . . . , k}.
Then

k∏

i=1

|αi − βi| ≥ M(f)−d+1d−
d

2 (

√
3

d
)k

The bound also holds when α1 > β1 = α2 > β2 = . . . αk > βk := αk+1, are
distinct real roots of f .

Proof. Use [24] (or [47,27]) and (4). ⊓⊔

5 Complexity Analysis of Real Root Isolation

In this section, we bound the number of bit operations for isolating the real
roots of a polynomial using Sturm and Bernstein solver. We consider the tree
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associated with a run of the subdivision algorithm on a polynomial f . Each node
represents an interval. The root of the tree corresponds to the initial interval
I0 = [a, b]. Each interval which is not a leaf of the tree is splitted to two half
intervals. The depth of a node of the tree (associated with an interval I) is
log(|I0|/|I|). This is also the number of subdivisions performed to obtain the
subinterval I from I0. Notice that the number of steps (subdivisions) that the
algorithm performs equals the total number of nodes of the subdivision tree, or
in other words equals the number of intervals (subintervals of I0) that are tested.

In what follows we present in detail the complexity of each step of the sub-
division algorithm (see Fig 1).

5.1 Square-Free Factorisation [step 1]

The computation of fred can be done in ÕB(d2τ) (Th. 4). Notice that L (fred) =
O(d+τ). We assume that d = O(τ), thus L (fred) = O(τ). Notice also that after
this computation, the Sturm-Habicht sequence StHa(f) is available. We do not
need the complete sequence but only the quotient boot, thus this computation
can be done in ÕB(d2τ) (Th. 2). However, we may also assume that the complete

sequence is computed, with complexity ÕB(d3τ) (Th. 1), since this step is not
the bottleneck of the algorithm.

5.2 Root Bounds and Initialization [step 2]

The Cauchy bound states that if α is a real root of f then |α| ≤ B = 1 +

max
(∣∣∣ad−1

an

∣∣∣ , . . . ,
∣∣∣ a0

an

∣∣∣
)
≤ 2τ . Various upper bounds are known for the absolute

value of the real roots [1,47,45]. However, asymptotically the bit size of all the
bounds is the same, i.e B ≤ 2τ . Thus, we can take I0 = [a, b], with a ≥ −2τ ,
b ≤ 2τ .

For the Sturm solver, before starting the main loop, we have to compute the
Sturm-Habicht sequence of f , which costs ÕB(d3τ) (Th. 2).

For the Bernstein solver, we have to represent fred in the Bernstein basis
of [a, b]. This can be done in O(d2) arithmetic operations and it produces co-
efficients of size O(d(d + τ)). The cost of this transformation is bounded by

ÕB(d3(d + τ)).

In both methods, the initialisation step can be done in ÕB(d3(d + τ)).

5.3 Computing V (f, I) and Splitting [steps 3.a-d]

Suppose that the algorithm is at depth h of the subdivision tree. The tested
interval, say I, has endpoints of bit size bounded by τ +h, since each subdivision
step increases the bit size by one.

Using Sturm solver, we compute V (f, I), Cor. 1, by evaluating StHa(f) over

endpoints of I. The cost of the evaluation is ÕB(d2(τ + h)) (Th. 3). Then we
split I, i.e compute the middle point of it, in OB(τ + h).

10



Using Bernstein solver, we compute V (f, I) by counting the number of sign
changes in the control coefficients of f in I. This can be done in O(d) opera-
tions. We denote by τ0 = O(d(d + τ)) (Sec. 5.2) a bound on the bit size of the
coefficients of f in the Bernstein basis on the interval I0. By proposition 2, since
we performed h subdivisions starting from a polynomial with coefficients of size
τ0, the coefficients of f on I are of bit size τ0 + dh and the complexity of the
splitting operation is in ÕB(d(d + τ0 + d h)) = ÕB(d2(d + τ + h)) (Sec. 5.2).

Finally for both solvers, the steps 3.a-d can be performed in ÕB(d2(d+τ+h)).

5.4 Subdivision Tree Analysis [step 3]

In this section, we analyse the total number of subdivisions. A bound on this
number was derived in [27, Th. 5.5, 5.6], where in Rem. 5.7 the authors state:
“The theorem (5.6) implies the dominance relations hk � n log (nd) and h �
n log (nd) which can be used in an asymptotic analysis of the Algorithm 1 when
the ring S of the coefficients is Z”, where k is the number of internal nodes of
depth h in the recursion tree of the subdivision algorithm based on Descartes’
rule, n is the degree and d is the Euclidean norm of the polynomial. In [43,
Th. 5], a O(dτ + dlogd) bound is derived and, later on, [15] proved optimality
under the mild assumption that τ = Ω(logd). Our arguments for this bound are
a combination and/or simplification of the arguments in [27,13,43]. Our proof
(prop. 4) is simpler than the one in [15,43] since the handling of the subdivision
tree stops at an earlier level and we use Th. 6 (as stated in [24] and [27]) without
any modifications. We also simplify substantially the proof of [13], for Sturm
solver.

We denote by I the set of intervals which are the parent of two leaves in the
subdivision tree in Sturm (resp. Bernstein) method. By construction, for I ∈ I,
V (f, I) ≥ 2 but for the two subintervals IL, IR of I, V (f, IL) and V (f, IR) are
in {0, 1} (because these intervals are leaves of the subdivision tree). Moreover,
for the Sturm solver, we have V (f, I) = 2 and V (f, IL) = V (f, IR) = 1.

Notice that |I| is less than V (f, I0), since at each subdivision the sum of the
variations of f on all the intervals cannot increase, for both methods (see [36,34]
for the Bernstein solver). In particular, we have |I| ≤ d.

Proposition 3. Let I ∈ I. Then, there exist two distinct (complex) roots αI 6=
βI of f such that |αI − βI | < 2|I|.

Proof. Consider an interval I ∈ I which contains two leaves IL, IR of the subdi-
vision tree. We have the following possibilities for the sign variation of f on the
two subintervals IL, IR:

– (1, 1): for both methods, there are two distinct real roots α ∈ IL, β ∈ IR in I
and |α−β| ≤ |I|. This is the only case, which can happen in Sturm method.

– (0, 0): this may happen only in the Bernstein method. Since the sign variation
of V (f, I) ≥ 2, by the first circle theorem [34,1,27], there exist two complex

conjugate roots β, β in the disc D(m(I), |I|
2 ). Therefore |β − β| ≤ |I|.
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– (1, 0) or (0, 1): this may also happen only in the Bernstein method. Then,
there is a real root α in I. Since V (f, I) ≥ 2, by the second circle theorem
[34,1,27], there exists two complex conjugate roots β, β in the the union of
the discs D(m(I) ± 1

2
√

3
i|I|, 1√

3
|I|), which is contained in a disc of diameter

2 |I|. Therefore |β − α| < 2|I|.

Thus the proposition holds. ⊓⊔

In addition, we can prove the following result.

Lemma 1. Let {αI , βI} ∩ {αI′ , βI′} 6= ∅, then I ∩ I ′ 6= ∅.

Proof. For the Sturm method, this property is clear since αI , βI ∈ I.
Let us consider the Bernstein subdivision method. Without loss of generality,

we can assume in the proof that I 6= I ′, |I ′| ≤ |I|, and that ∀x ∈ I, ∀y ∈ I ′, x ≤ y.
We suppose that I ∩ I ′ = ∅. Then since the intervals are obtained by binary

subdivision, we can assume that the distance between I and I ′ is at least |I ′|.
Then by scaling and translation, we can assume that the right endpoint of I
is 0, that I ′ = [1 + u, 2 + u], (u ≥ 0). Then, the tangents to the larger circles

containing I and the roots αI , βI at (0, 0) are
√

3
2 x ± y

2 = 0. We denote by RI

the union of the corresponding discs, so that αI , βI ∈ RI .
The center of the discs whose union RI′ contains the roots αI′ , βI′ are (3

2 +

u,±
√

3
6 ) and their radius

√
3

3 . A direct computation of the distance between
these centers and the two tangent lines shows that RI ∩ RI′ = ∅. Consequently,
if I ∩ I ′ = ∅, then we have {αI , βI} ∩ {αI′ , βI′} = ∅. ⊓⊔

Let us number the intervals of I by increasing order and denote by I ′ the
subset with an even index and by I ′′ the subset with an odd index. By lemma 1,
the pairs {αI , βI} for I ∈ I ′ (resp. I ′′) are disjoint. Thus, by Th. 6 (exchanging
the role of αI and βI if necessary), we have

∏

I∈J
|αI − βI | ≥ M(f)−d+1d−

d

2
−|J |√3

|J |
, (5)

for J = I ′ or J = I ′′. This is the key ingredient of the following result:

Proposition 4. The number of subdivisions in both methods is in O (dτ + d log(d)) .

Proof. The number N of subdivisions equals the number of internal nodes in the
subdivision tree. It is less than the sum of the depth of I, for I ∈ I:

N ≤ ∑
I∈I log |b−a|

|I|
≤ |I| log|b − a| − ∑

I∈I log|I|
≤ |I| log|b − a| + |I| − ∑

I∈I log|αI − βI | (Prop. 3)

By (5), we have −∑
I∈I′ log|αI − βI | ≤ (d − 1)log(M(f)) + (d

2 + |I ′|)logd −
|I′|log

√
3. A similar bound applies for I ′′.
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As we can take a = −2τ , b = 2τ (by Cauchy bound) and logM(f) ≤ τ +
1
2 log(d + 1) (Eq. 4) and |I ′|+ |I ′′| = |I| ≤ d, the number of internal nodes N in
the subdivision tree is bounded by

N < |I| + |I|log|b − a| − ∑
I∈I log|αI − βI |

≤ d + d(τ + 1) + (d − 1)(2τ + log(d + 1)) + 2dlogd
= O (dτ + dlogd) .

⊓⊔
Remark 1. The constant in this bound on the number of subdivisions can be
divided by 2, in Sturm method, by applying directly Th. 6 to αI , βI for I ∈ I.

5.5 Multiplicities [step 4]

In order to compute the multiplicities of the roots, we compute the square-free
factorization, i.e a sequence of square-free coprime polynomials (g1, g2, . . . , gm)
with f = g1g

2
2 · · · gm

m and gm 6= 1. The algorithm of Yun [45] computes the

square-free factorization in ÕB(d2τ). To be more specific the cost is twice the
cost of the computation of StHa(f, f

′

) [21]. Moreover deg(gi) = δi ≤ d and
L (gi) = O(dτ) by Mignotte’s bound [31], where 1 ≤ i ≤ m.

At every isolating interval, one and only one gi must have opposite signs at
its endpoints, since gi are square-free and pairwise coprime. If gi changes sign
at an interval then the multiplicity of the real root that the interval contains is
i. Each gi can be evaluated over an isolating point in ÕB(δ2

i dτ), using Horner’s
rule. We can evaluate it over all the isolating points (there are at most d + 1),

in ÕB(δid
2τ) [45,47]. Since

∑m

i=1 δi ≤ d the overall cost is ÕB(d3τ).

5.6 Complexity of Real Root Isolation

In this section, we prove that the two subdivision solvers has a bit complexity
ÕB(d4τ2):

Theorem 7. Let f ∈ Z[x], with deg(f) = d and L (f) = τ , not necessarily
square-free. We can isolate the real roots of f and determine their multiplicities
using Sturm or Bernstein methods in ÕB(d4 τ2). Moreover, the endpoints of the
isolating intervals have bit size bounded by O(d τ).

Proof. In order to isolate the real roots of f , we first compute its square-free
part (step 1). This can be done in ÕB(d2τ) arithmetic operations and yields a
polynomial fred, which coefficients are of size bounded by O(d + τ) (see section
5.1). This step is not necessary in Sturm method.

The initialisation step costs ÕB(d3(d + τ)) (Sec. 5.2).
Then we run the main loop of the subdivision algorithm. The cost of a sub-

division step at level h is ÕB(d2(d + τ + h)) (Sec. 5.3).
By Prop. 4, the number of subdivisions and the depth h of any node of the

subdivision tree is Õ(d τ). Therefore, the overall complexity of both subdivision

solvers is ÕB(d2(d + τ + d τ) d τ) = ÕB(d4τ2). ⊓⊔
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6 Real Algebraic Numbers

The real algebraic numbers, i.e. those real numbers that satisfy a polynomial
equation with integer coefficients, form a real closed field denoted by Ralg = Q.
From all integer polynomials that have an algebraic number α as root, the prim-
itive one (the gcd of the coefficients is 1) with the minimum is called minimal.
The minimal polynomial is unique (up to a sign), primitive and irreducible [47].
Since we use Sturm-Habicht sequences, it suffices to deal with algebraic numbers,
as roots of any square-free polynomial and not as roots of their minimal ones.
In order to represent a real algebraic number we choose the isolating interval
representation.

Definition 3. The isolating-interval representation of real algebraic number α ∈
Ralg is α ∼= (f(x), I), where f(x) ∈ Z[x] is square-free and f(α) = 0, I = [a, b],
a, b,∈ Q and f has no other root in I.

Using the results of Sec. 2 and 3 we can compute the isolating interval represen-
tation of all the real roots a polynomial f , with deg(f) = d and L (f) = τ , in

ÕB(d4τ2) and the endpoints of the isolating intervals have bit size O(dτ).

Comparison and sign evaluation. We can use Sturm-Habicht sequences in
order to find the sign of a univariate polynomial, evaluated over a real algebraic
number and to compare two algebraic numbers. We improve existing bounds by
one factor.

Corollary 2. Let g(x) ∈ Z[x], where deg(g) = d and L (g) = τ , and a real

algebraic number α ∼= (f, [a, b]). We can compute sign(g(α)) in ÕB(d3τ).

Proof. By Th. 5, sign(g(α)) = sign(Wf,g[a, b] · f ′

(α)). Thus we need to perform
two evaluations of StHa(f, g) over the endpoints of the isolating interval of α.

The complexity of each is ÕB(d3τ) (Th. 3), which is also the complexity of the
operation. ⊓⊔

Corollary 3. We can compare two real algebraic numbers in isolating interval
representation in ÕB(d3τ).

Proof. Let two algebraic numbers γ1
∼= (f1(x), I1) and γ2

∼= (f2(x), I2) where
I1 = [a1, b1], I2 = [a2, b2]. Let J = I1 ∩ I2. When J = ∅, or only one of γ1 and
γ2 belong to J , we can easily order the 2 algebraic numbers. If γ1, γ2 ∈ J , then
γ1 ≥ γ2 ⇔ f2(γ1) · f

′

2(γ2) ≥ 0. We obtain the sign of f
′

2(γ2), using Cor. 2, thus

the complexity of comparison is ÕB(d3τ). ⊓⊔

Simultaneous inequalities. Let f , A1, . . . , An1
, B1, . . . , Bn2

, C1, . . . , Cn3
∈

Z[x], with degree bounded by d and coefficient bit size bounded by τ . We wish
to compute the number of and the real roots, γ, of f such that Ai(γ) > 0,
Bj(γ) < 0 and Ck(γ) = 0 and 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3. Let
n = n1 + n2 + n3.
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Corollary 4. There is an algorithm that solves the problem of simultaneous
inequalities (SI) in ÕB(d4τ max{n, τ}).

Proof. First we compute the isolating interval representation of all the real roots
of f in ÕB(d4τ2) (Th. 7). There are at most d. For every real root γ of f ,
for every polynomial Ai, Bj , Ck we compute the sign (Ai(γ)), sign (Bj(γ)) and

sign (Ck(γ)). Sign determination costs ÕB(d3τ) (Cor. 2) and in the worst case

we must compute n of them. Thus the overall cost is ÕB(max{nd4τ, d4τ2}).

This improves the known bounds by one or two factors in the bit complexity
model.

7 Implementation and Experimentations

In this section, we describe the package for algebraic numbers available in the
library synaps [33]. The purpose of this package is to provide a set of tools, for
the manipulation of algebraic numbers, needed in applications such as Geomet-
ric modeling, and non linear computational geometry. In the problems encoun-
tered in these domains, the degree of the involved polynomials is not necessarily
very high (< 50), but geometric operations require an intensive use of algebraic
solvers. Namely, algebraic numbers are involved as soon as one wants to compute
intersections points of curves or surfaces. Predicates such as the comparison of
coordinates of points have to be evaluated at such algebraic numbers.

For this reason, in this section we focus on univariate equations of small degree
in opposition with the first sections, but the input bit size is beyond machine
precision. We analyse the behavior of our solvers, in this range of problems which
appear in our geometric applications and for which the asymptotic bounds may
not be pertinent indicators. We do not consider large degree problems, where
memory management issues might influence the solving strategy.

In synaps, there are several solver classes, their interface is as follows

template < class T > struct SOLVER {
typedef NumberTraits<T>::RT RT;

typedef NumberTraits<T>::FT FT;
typedef NumberTraits<T>::FIT FIT;

typedef UPolDse<T> Poly;
typedef root_of<T, Poly> RO_t;

... };

where RT is the ring number type (typically Z), FT is the field number type
(typically Q), FIT is the interval type, Poly is the univariate polynomial, RO t

is the type for real algebraic numbers, etc.
Algebraic numbers are of the form:

template <class T, class UPOL=UPolDse<T> >

struct root_of {

NumberTraits<T>::Interval_t interval_;

UPOL polynomial_;

... };
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parameterized by the type of coefficients and univariate polynomials. This allows
flexibility and an easy parameterisation of the code.

In order to construct a real algebraic number the user may select from several
different univariate solvers, that we are going to describe hereafter. The other
functionalities that we provide are the comparison, bool compare(const RO t&

a, const RO t& b) and the valuation of signs int sign at(const Poly& P,

const RO t& a), based on interval evaluation and if necessary on the computa-
tion of Sturm-Habicht sequences. This involves on several additional functions
for computing subresultant sequences with various methods (Euclidean, Subre-
sultants, Sturm-Habicht, etc), for computing the GCD, the square-free part, etc.
We also provide the four operations, i.e. {+,−, ∗, /}, of RO t with RT’s (integer
type) and FT’s (rational type).

Bivariate problems are also treated in this package, but not reported here (see
[18]). Perhaps the most important operation is the construction of real algebraic
numbers, i.e real root isolation of univariate polynomials. Several subdivision
solvers have been tested for the construction of these algebraic numbers. We
report here on the following solvers:

(S1) solve(f,IslSturm<ZZ>());

(S2) solve(f,IslBzInteger<QQ>());

(S3) solve(f,IslBzBdgSturm<QQ>());

These solvers take as input, polynomials with integer or rational coefficients
and output intervals with rational endpoints. All use the same initial interval.

S1 (IslSturmQQ in the plots) is based on the construction of the Sturm-
Habicht sequence and subdivisions, using rational numbers or large integers
provided by the library gmp.

S2 (IslBzIntegerZZ in the plots) is an implementation of the Bernstein
subdivision solver, using integer coefficients. The polynomial is converted to the
Bernstein representation on the initial interval, using rational arithmetic. Then,
the coefficients are reduced to the same denominator, and the numerators are
taken. Finally, the integer version of de Casteljau algorithm ∆± is applied at
each subdivision step.

S3 (IslBzBdgSturmQQ in the plots) is a combination of two solvers. In a first
part, the polynomial is converted to the Bernstein representation on the initial
interval, using rational arithmetic and its coefficients are rounded to double

intervals. The Bernstein subdivision solver is applied on this interval representa-
tion and stops when it certifies the isolation of a root or when it is not possible
to decide the existence and uniqueness of a root from the “sign” (−, +, ?) of the
interval coefficients. In this case, the solver S2 is used on the intervals which
are suspect (caching the Sturm-Habicht computation), in order to complete the
isolation process.

We also compare with the time needed for computing the Sturm-Habicht
sequence (SturmSeq in the plots). We test against core [25] (CORE in the plots)
and mpsolve a numerical solver based on Aberth’s method [4] and implemented
by G. Fiorentino and D. Bini [5] (SlvAberthQQ in the plots), that are open source
tools with real solving capabilities. Other libraries such as [23], or Exacus with
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Leda [3], or RS [40], have not been tested, due to accessibility obstacles. Namely
Leda is a commercial software and RS can be used only through its maple (v.
9.5) interface which do not have at the time of the experiments.

For experiments against these libraries and the package of Rioboo [39] in
Axiom, for degree ≤ 4, the reader may refer to [17].

Our data4 are polynomials of degree d ∈ {3, . . . , 40} and coefficient bit size
τ ∈ {10, 20, 30, 40, 50} with various attributes. Namely Dτ

1 denotes random
polynomials with few real roots and Dτ

2 random polynomials with multiple real
roots. Dτ

3 denotes polynomials with d (multiple) integer real roots and Dτ
4 poly-

nomials with d (multiple) rational real roots. Dτ
5 denotes Mignotte polynomials,

i.e xd − 2(Kx− 1)2, Dτ
6 polynomials that are the product of two Mignotte poly-

nomials and Dτ
7 Mignotte polynomials with multiple roots.

For reasons of space in the Appendix we present the average times over a run
of 100 different polynomials only for D30

1 , D50
1 , D30

2 , D50
2 , D30

5 , D50
5 , D30

7 and D50
7 .

The experiments performed on an Pentium (2.6 GHz), using g++ 3.4.4 (Suse 10).
We have to emphasize that we do not consider experimentation as a competition,
but rather as a starting point for improving existing implementations.

For polynomials with few, distinct and well separated real roots, this is the
case for D1 and D2, S1 is clearly the worst choice, since the huge time for the
computation of the sequence dominates the time for its evaluation. In such data
sets, Bernstein or even approximate solvers are the solvers of choice. However
when there are multiple roots, or when there are roots that are very close (D5,
D7) then the computation time of the Sturm-Habicht sequence is negligible (for
the experiments that we performed). In such cases a combined solver is the
solver of choice, since it isolates the well separated roots and also provides good
initial intervals for the S2, if needed. Notice that neither CORE, nor SlvAberthQQ
compute the multiplicities of the roots. For the latter special care should be
taken so as to get the correct, if possible, results.

In conclusion, the most interesting solver is S3, which is a combination of
solvers: it is fast on random instances and comparable to S2 on all the other
instances.

In some geometric problems, it is more important to have controlled approx-
imation of the roots that to isolated them. This is the case in the following
example where we want to draw a curve defined by an implicit equation. In this
specific problem, the polynomial f(x, y) is of degree 43 in each variable with coef-
ficients of bit size 50 (see [7]). In order to get a picture of the implicit curve in the

box [a, b]× [c, d], we solve the univariate polynomials f(a + k (b−a)
N

, y)k=0,...,N−1

(N = 200) and then exchange the role of x and y. The subdivision is stopped,
when the precision of 10−4 is reached, without checking the existence and unique-
ness of the roots in the computed intervals.

Two types of solvers have been tested:

– The first one SlvBzStd<double> is a direct implementation of the Bernstein
solver with double arithmetic. It produces the left part of Fig. 7. We see

4 http://www-sop.inria.fr/galaad/data/upol/
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that in some regions, the solver is more sensible to numerical errors, and
behaves almost “like a random generator of points”.

– The second solver (SlvBzBdg<QQ>), similar to S3, uses exact (rational) arith-
metic to convert the input polynomial to its Bernstein representation. Then
it normalises the coefficients and rounds up and down the rational numbers
to the closest double numbers5. Then the main subdivision loop is performed
on double interval arithmetic, extending the sign count to this context. If all
the interval coefficients contain 0, we recompute the representation of the
initial polynomial (using exact rational arithmetic) and run again the round-
ing and subdivision steps with double arithmetic, until we get the require
precision. This produces the right part of Fig. 7.

Fig. 2. Left: Approximation with doubles. Right: Approximation with Bernstein solver and inter-

vals.

We see that the Bernstein solver based on interval arithmetic and using this
symbolic-numeric strategy can be applied efficiently (even for input polynomials
with large coefficient size) to geometric problems where (controlled) approximate
results are sufficient. It exploits the performance of machine precision arithmetic
for the main loop of the algorithm and the approximation properties of the
Bernstein representation. Notice that the size of the problem is prohibitive for
exact subdivision based solvers.

8 Current and Future Work

These experimenations show that combining symbolic and numeric techniques
leads to very interesting performances. Along these lines, we plan to improve the
existing implementation of solvers, which approximate with guarantees the roots
of a polynomial with exact coefficients. The applications of Bernstein methods
on polynomials with approximate coefficients is also under investigation. We are
also extending our package in synaps so that ist can handle computations in an
extension field.

Here are open questions: Is there any exact subdivision based solver with
complexity ÕB(d3τ), similar to the numerical solvers?

5 For that purpose, one can use for instance the function get double of mpfr

(http://www.mpfr.org/) with correct rounding mode.
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Is there any class of polynomials, with few real roots, such that the Bernstein
solver performs O(dτ) subdivisions steps but the Sturm solver perfomrs only a
constant number?
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