Skip to main content

Abstract

In pattern recognition and related fields, graph based representations offer a versatile alternative to the widely used feature vectors. Therefore, an emerging trend of representing objects by graphs can be observed. This trend is intensified by the development of novel approaches in graph based machine learning, such as graph kernels or graph embedding techniques. These procedures overcome a major drawback of graphs, which consists in a serious lack of algorithms for classification and clustering. The present paper is inspired by the idea of representing graphs by means of dissimilarities and extends previous work to the more general setting of Lipschitz embeddings. In an experimental evaluation we empirically confirm that classifiers relying on the original graph distances can be outperformed by a classification system using the Lipschitz embedded graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience, Chichester (2000)

    Google Scholar 

  2. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  3. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1), 49–58 (2003)

    Article  Google Scholar 

  4. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert spaces. Israel Journal of Mathematics 52(1-2), 46–52 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Duin, R., Pekalska, E.: The Dissimilarity Representations for Pattern Recognition: Foundations and Applications. World Scientific, Singapore (2005)

    Google Scholar 

  7. Hjaltason, G., Samet, H.: Properties of embedding methods for similarity searching in metric spaces. IEEE Trans. on Pattern Analysis ans Machine Intelligence 25(5), 530–549 (2003)

    Article  Google Scholar 

  8. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  9. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Chichester (1990)

    Google Scholar 

  12. Nene, S., Nayar, S., Murase, H.: Columbia Object Image Library: Coil-100. Technical report, Department of Computer Science, Columbia University, New York (1996)

    Google Scholar 

  13. Watson, C., Wilson, C.: NIST Special Database 4, Fingerprint Database. National Institute of Standards and Technology (1992)

    Google Scholar 

  14. DTP, D.T.P.: AIDS antiviral screen (2004), http://dtp.nci.nih.gov/docs/aids/aids_data.html

  15. Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for Web Content Mining. World Scientific, Singapore (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riesen, K., Bunke, H. (2008). On Lipschitz Embeddings of Graphs. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85563-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85563-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85562-0

  • Online ISBN: 978-3-540-85563-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics