Skip to main content

A New Band Selection Strategy for Target Detection in Hyperspectral Images

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5179))

Abstract

This manuscript presents a novel methodology for band selection (BS) for hyperspectral sensors (HSs) tailored to target detection applications. The new selection strategy chooses a subset of bands that maximizes an objective function suitable for target detection. In particular, it extracts the subset of bands that optimizes the probability of detecting a target (P D ) in a given background, for a fixed probability of false alarm (P FA ). An experimental example of the methodology effectiveness is given. In the example the well-known Adaptive Matched Filter (AMF) detector and synthetic data derived from an AVIRIS hyperspectral image are considered. The results obtained show that the the new strategy outperforms two existing BS algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stevenson, B.: The Civil Air Patrol ARCHER Hyperspectral Sensor System. In: Proc. Int. SPIE Conf. Airborne ISR Systems, Bellingham, WA, May 2005, pp. 17–28 (2005)

    Google Scholar 

  2. Miaohong, S., Healey, G.: Hyperspectral texture recognition using a multiscale opponent representation. IEEE Trans. Geosci. and Remote Sensing 41(5), 1090–1095 (2003)

    Article  Google Scholar 

  3. Richards, J.A., Jia, X.: Remote sensing digital image analysis: an introduction, 3rd edn. Springer, Heidelberg (1999)

    Google Scholar 

  4. Farrell, M.D., Mersereau, R.M.: On the impact of PCA dimension reduction for hyperspectral detection of difficult targets. IEEE Trans. Geosci. and Remote Sensing Letters 2(2), 192–195 (2005)

    Article  Google Scholar 

  5. Manolakis, D.: Taxonomy of detection algorithms for hyperspectral imaging applications. Opt. Eng. 44(6), 1–11 (2005)

    Article  Google Scholar 

  6. Landgrebe, D.: Signal Theory Methods in Multispectral Remote Sensing. John Wiley & Sons Press, Chichester (2003)

    Google Scholar 

  7. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)

    MATH  Google Scholar 

  8. Serpico, S.B., Bruzzone, L.: A New Search Algorithm for Feature Selection in Hyperspectral remote Sensing Images. IEEE Trans. Geosci. and Remote Sensing 39(7), 1360–1367 (2001)

    Article  Google Scholar 

  9. Jain, A., Zongker, D.: Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Analysis and Machine Intelligence 19(2), 153–158 (1997)

    Article  Google Scholar 

  10. Keshava, N.: Distance metrics and Band Selection in hyperspectral processing With Application to Material Identification and Spectral Libraries. IEEE Trans. Geosci. and Remote Sensing 42(7), 1552–1565 (2004)

    Article  Google Scholar 

  11. Kanodia, A., Hardie, R.C., Johnson, R.O.: Band Selection and Performance Analysis for Multispectral target Detectors Using Truthed Bomem Spectrometer Data. In: Proc. Int. IEEE Conf. National Aerospace and Electronics, Dayton, OH, May 1996, pp. 33–40 (1996)

    Google Scholar 

  12. Chang, C.-I., Wang, S.: Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. and Remote Sensing 44(6), 1575–1585 (2006)

    Article  Google Scholar 

  13. Robey, F.C., Fuhrmann, D.R., Kelly, E.J., Nitzberg, R.: A CFAR adaptive matched filter detector. IEEE Trans. on Aerospace and Electronic Systems 28(1), 208–216 (1992)

    Article  Google Scholar 

  14. Acito, N., Corsini, G., Diani, M.: Adaptive Detection Algorithm for Full Pixel Targets in Hyperspectral Images. IEEE Proc. Vision, Image and Signal Processing 152(6), 731–740 (2005)

    Article  Google Scholar 

  15. Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A., Ratkovski, A.J., Felde, G., Hoke, M.L.: Validatio of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. In: Proceedings SPIE, vol. 5806, pp. 668–679 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diani, M., Acito, N., Greco, M., Corsini, G. (2008). A New Band Selection Strategy for Target Detection in Hyperspectral Images. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85567-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85567-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85566-8

  • Online ISBN: 978-3-540-85567-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics