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Abstract. Enforcement in normative agent societies is a complex issue,
which becomes more problematic as these societies become more decen-
tralized and open. A new distributed mechanism is presented to enforce
norms by ostracizing agents that do not abide by them in their interac-
tions with other agents in the society. Simulations are run to check the
mechanism’s impact in different types of societies. The simulations have
shown that complete ostracism is not always possible, but the mechanism
substantially reduces the number of norm violations.

1 Introduction

In an open multi-agent system (MAS), there is no easy control over who is
allowed to join the system. Open MAS are composed of autonomous agents of
all types, without a pre-defined structure. In a normative MAS a set of norms are
added to restrict the set of available actions in order to improve the coordination
between agents. An autonomous agent has the choice whether or not to support
a norm. It is up to the agent to decide if it benefits itself to abide by the norm.
A utility maximizer agent will follow a norm if it is profitable for it, it is in the
agent’s own interest to act as the norm establishes. But some norms make it
worthwhile for an agent to not abide by it if all other agents abide by them. For
this kind of norms, an agent that does not adhere (i.e., a violator) will profit at
the expense of the agents that adhere.

Gnutella1 is a suitable real life application to show how a multi-agent system
may behave when norms are added. The scenario we will use in this paper is
based on a simplification of this application. Gnutella is a pure peer-to-peer
(P2P) file sharing application without centralized servers. Peers can share files
on their hard drives so that others can download them. Each peer knows other
peers (i.e., friends or neighbours) with which it can interact. A peer can carry
out two actions: search for peers that have a file it wants, and download the file
from any of them. Peers are found by asking neighbouring peers if they or any of
their neighbours have the file. This process is recursive. Once a list of peers that
share the file are returned to the querying peer, it can choose one of them from
1 http://www.gnutella.org



which to download the file. Anyone with a Gnutella compliant software can join
the society as long as it has a list of other peers with which to interact.

This system works even though users can use the network to download files
without sharing any files themselves. Therefore, the burden of sharing is carried
only by some of them, while the rest benefit from the service. In order to solve
this problem the following norm could be added: “Users must share files in order
to be allowed to download files themselves”. But since the norm is not built into
the Gnutella protocol, Gnutella peers can choose whether or not to adhere to it.
A mechanism is needed so that norms can be enforced in any P2P network such
as Gnutella.

This paper presents a new distributed mechanism that ostracises norm vio-
lating agents in an open MAS, thus attaining norm compliance. The test scenario
in this paper allows agents in the MAS to interact with each other. The agents
are structured in a network, in which agents can interact with the agents they
are linked to directly or indirectly through a path of links (i.e., agents can in-
teract with direct neighbours, with neighbours of neighbours, and with their
neighbours and so on...). The interaction initiator will search for a path in the
society structure that leads to an interaction partner. All the agents in the path
that are not the initiator or the partner agent are called mediator agents (i.e.,
agents mediating the interaction).

A game-theoretic approach to interactions has been implemented. Interac-
tions are modelled as a two-player game with two possible strategies; abide and
violate. The utility function will be that of a prisoner’s dilemma (see Figure
1), since the total utility gained by both players is maximized if both players
abide by the norm, and the maximum utility to be gained by a single agent is
maximized if it violates the norm while the other abides by it.

PD Abide Violate

Abide 3,3 0,5

Violate 5,0 1,1

Fig. 1. Prisoner’s Dilemma Payoff Matrix

Violators are better off if they interact with norm-abiding agents, since they
gain more utility. In order to attain norm enforcement the violators are not
allowed to interact. Some agents in the society can enforce the norm through
the ability to stop interacting with violators, and to stop them from interacting
with the enforcer’s own neighbours. When all the neighbours of a violator are
enforcers, and they use this ability against it, it is ostracised.

The motivation for this technique comes from the study of enforcement in
primitive societies [12]. A member of a community that repeatedly ignores its
customs is forced to leave upon general consent. No one in the community will
interact with the ostracized member from then on. Therefore, the harsh nat-
ural conditions surrounding those communities mean death for the ostracised



member. Ostracism is achieved in human societies through force and physical
constraint. If the ostracised member tried to return he may be killed. Achiev-
ing ostracism of electronic entities is a bit trickier, since they don’t suffer pain.
Inspiration has been sought from the network security area, where the most
commonly used component is a firewall. Firewalls block those communications
which appear to be harmful. The problem with firewalls is that they are usu-
ally set up by humans through complex rules, which must be updated manually.
The enforcer agents in this paper will use gossip as a way to inform each other
about the maliciousness of other agents. Thus building a distributed reputation
measure.

Fig. 2. Ostracizing a violator

The ostracism process is shown in Figure 2. Before a violator interacts, it is
undetected (the dark gray node), and can interact with all the other agents (light
gray nodes are liable to interact with the violator). When the violator interacts
and violates the norm, if its partner is an enforcer, it will start blocking its
interactions (black nodes are blocking agents, and white nodes are agents that
the violator cannot interact with). When a violator is partially blocked, it is still
able to reach part of the network. But when all the violator’s neighbours block
it, it is ostracised.

In order to find out information about other agents in a distributed envi-
ronment, gossip between them can be used. The enforcement technique uses
gossip as part of the enforcement strategy prior to ostracising agents. Since gos-
sip should not take up too many resources, the outcome of interactions is only
gossipped to the interaction mediators. If the violator agent interacts with an
enforcer agent, the enforcer agent will spread this information to all mediator
agents so they may block the violator in the future.

To study under which conditions the mechanism works, and give measures
of its success (such as the violations received or the utility gained), a set of
simulations have been run. The data extracted from them is used to support the
following hypotheses:



– H1 - Norm violations are reduced by applying a simple local blocking rule.
– H2 - Network structure influences the enforcement capabilities.
– H3 - The enforcement strategy used by enforcer agents can reduce the num-

ber of violations received by meek agents (i.e., norm abiding agents which
do not enforce the norm).

– H4 - Enforcement makes abiding by the norm a rational strategy.

This paper is divided into five sections. Section 2 describes related work in
the area of norm enforcement. Section 3 presents a detailed description of the
scenario employed in the simulations. Section 4 describes the simulations and
analyses the resulting data. Finally, Section 5 presents future work that will
follow from this research.

2 Related Work

The problem of norm enforcement is not new. It has been dealt with in human
society (also an open MAS) through the study of law, philosophy, and the so-
cial sciences. Recently studies in computer science deal with it, specially as a
coordination mechanism for multi-agent systems. The application of norms from
an evolutionary perspective was first studied by Axelrod in [1]. Where enforce-
ment is seen as a meta-norm dictating that agents which do not punish violators
should be punished themselves. The norm game is modelled as an N-Player It-
erated Prisoner’s Dilemma [1, 8]. Since the norm is specified to maximise the
society’s utility, agents are expected to cooperate. Enforcement techniques are
sought to ensure that agents prefer cooperation. In [4, 7, 13, 16] norms are seen
as a way to avoid aggression or theft. In these cases agents gain utility by collect-
ing items that they find while they move around or by receiving them as gifts.
But agents also have the ability to steal items from agents they find through
aggression. A norm is added that dictates when a good is possessed by an agent.
In which case it cannot be stolen by another. Therefore, a norm-abiding agent
will not steal food possessed by another agent.

Two main lines of research in norm enforcement exist: sanctions and rewards
to change the utilities of the game [2, 3, 8, 15], and the spread of gossip in order
to avoid interaction with violators [4, 6, 7, 13, 16]. Both approaches are based on
making norm adopters better off than norm violators. But there is a downside
to this [4, 7], since all agents benefit from the norm while only normative agents
bear the cost of enforcing it. Therefore, some agents are tempted to abide by
the norm, but not to enforce it. Which makes it a recursive problem.

Norm enforcement models have been suggested in [2, 6]. They show that
norm-violation becomes an irrational strategy when non-normative behaviour is
punished. Nonetheless these models assume the following: (i) agents are able to
monitor other agents’ activities; and (ii) agents have the ability to influence the
resulting utility of interactions. Assumption (i) can be brought about by having a
central agent mediate all interactions as done in [2]. Another way in which agents
have information of other agents is trough direct interaction or gossip [4]. The
first solution does not scale, since the mediator agent is the bottleneck in a large



system. The second scales, but it is less efficient since detection of all violations
is not always possible, furthermore gossip is an extra cost. Assumption (ii) can
be carried out through third-party enforcement [2], or self-enforcement [6]. Using
a third party does not scale because the third party can easily be overwhelmed
by enforcement petitions of agents. Also the third party must have access to
a resource that all other agents need, and this is not always the case in real
systems. Self-enforcement means that each agent takes care of those violators
that affect it. Thus, all agents must have the ability to affect the outcome utility
of interactions, by applying sanctions or spreading gossip.

Axelrod’s mechanism for norm enforcement is based on self-enforcement and
sanctions. He terms it the “shadow of the future” [1]. Defection by an agent is
unlikely if it will interact often with the other agent. In which case the other
agent will retaliate in future interactions. Nonetheless, this mechanism affects
the utility of both agents because in the future they will both defect, and the
utility will be less than if they had both cooperated. Futhermore, if the norm is
to cooperate, then the enforcer is forced to violate the norm in order to retaliate,
thereby becoming a violator.

Another mechanism for norm enforcement is the threat of ostracism. By
avoiding interaction with violators, an agent can use the time to interact with a
normative agent and achieve a higher payoff. Furthermore, violators eventually
have no one with which to interact and may starve. Younger has studied [16] the
possibility of avoiding interaction with norm-violators, but this is just one part of
ostracism. An ostracised agent cannot interact with anyone in the society, which
implies preventing it from interacting with anyone else. Human societies have
used ostracism as a means to deal with norm violators [12]. In primitive societies
the violator was expelled from the village and had to wander in no-man’s land,
or try to find another village that would take him. In modern societies, all land
is owned by some state, thus violators are placed in a special area so that they
cannot interact with the rest of society (e.g., prisons), but this measure has the
associated cost of maintaining these areas. The electronic network in this article
resembles a primitive society, an agent that has been ostracised wanders a sort
of virtual no-man’s land.

Emergence of norms in a structured multi-agent system has been studied
in [9]. The first approach was to study regular graphs, hierarchies, and trees.
This work was followed by another [5] that studied emergence in complex graphs
with properties such as scale-free and small-world. Furthermore, the relationship
between norm emergence and other graph parameters such as clustering factor
and diameter are studied [10]. In recent work, the notion of role models has been
studied and its effect in norm emergence in networks [11].

The scenario presented in this paper, is used to justify how agents can monitor
other agents’ activities, and how they can influence future interactions. A mix of
techniques have been used to accomplish this; the spread of normative reputation
through gossip, and sanctioning norm-violators by blocking their access to the
network in order to achieve ostracism. Norm enforcement is studied using these
techniques in societies with differing structures.



3 The Scenario

The multi-agent system in this paper is structured as a network. Thus, it is
modelled as an undirected, irreflexive graph: MAS = 〈Ag,Rel〉, where Ag is
the set of vertices and Rel the set of edges. Each vertex models an agent and
each edge between two vertices denotes that the agents are linked. Agents can
communicate through their links. Three kinds of graphs have been chosen for
their significance: Tree, Random, and Small-World. A tree is a graph in which
each node is linked to one parent and some number of children; only one node,
the root node, has no parent, and the leave nodes have no children. A tree has
a large average distance between nodes, and no clustering. A random graph, on
the other hand, does not have any regular structure. The nodes in this type of
graph can be linked to any other one with a given probability. Random graphs
have a small average distance between nodes, but the clustering factor is very
low. Small-world graphs reside half way between regular, structured graphs, and
random ones. The average distance between nodes is as small as in a random
graph with the same number of nodes and edges, but its clustering factor is orders
of magnitude higher [14]. The small-world graphs in the simulations have been
created by starting with a regular graph2, and rewiring enough random edges to
make the average distance between any two vertices significantly smaller. The
different graph structures have been generated to have a similar average number
of links per node.

A game-theoretic approach is used to model interactions between agents.
Interactions are two-player prisoner’s dilemma games. Agents ought to choose
the abide action given by the norm (i.e., an agent disobeys the norm by choosing
the violate action). An agent is capable of interacting with another if there must
be a path in the graph between the two. An initiator agent searches for a path
that leads to a partner agent with which to interact. The mediator agents are
those agents in the path between the initiator and the partner. The partner
finding process is explained below, but first some terms need to be formally
described.

An agent’s ai neighbours are the agents it is linked to directly in the graph:
N(ai) = {aj ∈ Ag | (ai, aj) ∈ Rel}. Each agent maintains a set of agents it blocks
(an agent cannot block itself ): B(ai) ⊆ Ag\{ai}. An agent ai can search through
the network by querying other agents aj for a list of their neighbours. Since
agents are autonomous, when queried for their neighbours agent aj can respond
with any subset of its real neighbours. RN(ai, aj) ⊆ N(aj) are the reported
neighbours aj will return queh queried by ai. The set of reported neighbours
depends on the blocking strategy of aj . The strategies used in the simulations
are explained below. A path is the route (without cycles) in the graph structure
through which interaction messages are delivered. Paths are represented as finite
sequences of agents p = [a1, a2, . . . , an] such that for all i with 1 ≤ i ≤ n−1 and
n ≥ 2 it follows that ai+1 ∈ N(ai), and for all i, j with 1 ≤ i, j ≤ n and i 6= j it

2 CN,r is a regular graph on N vertices such that vertex i is adjacent to vertices
(i + j) mod N and (i− j) mod N for 1 ≤ j ≤ r.



follows that ai 6= aj . The initiator agent will always be the first element in the
path, the partner agent will be the last, while the remaining ones are mediators.

The process through which an initiator agent ai finds a path to a partner
agent an is as follows. First ai creates the path p = [ai]. Since an agent cannot
interact with itself, the path with one agent is not valid. Then the initiator agent
queries the last agent in the path (the first time it will be itself) to give it a list
of its neighbours. It will choose one of the reported neighbours3 (aj) and add
it to the end of the path p = [ai, ..., aj ]. At this point the initiator can choose
agent aj as the partner, if aj allows it. Otherwise, it can query agent aj for its
neighbours and continue searching for a partner. If the path’s last element is an
agent an that refuses to interact with the initiator agent, and an does not report
any neighbours when queried, backtracking is applied. Agent an is removed and
a different agent is chosen from the list of an−1’s reported neighbours and added
to the end of the list.

A prisoner’s dilemma game is played between the initiator and the partner,
when the first has chosen the latter. Each interacting agent has complete knowl-
edge of the game results and mediating path. Interacting agents may gossip the
game results to all the mediators in the path. The information contained in gos-
sip is a tuple with the agents’ names and their strategy choices for the given
game: Gossip = 〈agi, choicei, agj , choicej〉, where choicei and choicej are either
abide or violate.

During the whole process agents can execute any of the following actions:

– Return a list of neighbouring agents when asked for its neighbours.
– Choose one of the agents of a list as a mediator.
– Request an agent to become the interaction partner.
– Accept or reject an invitation to interact.
– Choose a strategy to play in the PD game when interacting.
– Inform mediators of the outcome of the interaction.

The society of agents is composed of three types of agents, each one charac-
terised by a different strategy for the actions it can execute. The meek agent will
always abide by the norm, it will always report all its neighbours to any agent,
and it will always accept an offer to interact from any agent. When searching for
an interaction partner, a meek agent will request the last agent in the current
path to become its partner with probability p, and with probability 1 − p it
will ask for its neighbours4, and it will choose an agent randomly from the list
of reported neighbours. Finally, a meek agent will not gossip the results of its
interactions. A violator agent follows the strategy of a meek agent, except that
it never abides by the norm, therefore it is not a norm-abiding agent.

Finally, enforcer agents have the ability to block violators, which is essential
to achieve their ostracism. Enforcer agents have the same strategy of meek agents
3 To avoid loops, an agent that is already part of the path cannot be chosen again.
4 The value of p is set to 0.3 in all simulations. Since the path length follows a geometric

distribution Pr(L = n) = (1 − p)n−1p, the path’s length expected value is E(L) =
1/p = 3.33 and its variance var(L) = (1 − p)/p2 = 7.77. In future work we plan to
relax the constraints on partner searching.



with the following exceptions: They will add agents that they know to have
violated the norm to the set of blocked agents, and when they interact with a
violator they gossip the interaction results to all mediators. Enforcer agents will
never choose an agent in their blocked set as a partner, and will reject requests
to interact from agents in their blocked set. Therefore, enforcers never interact
with a violator more than once. When an agent ai queries an enforcer agent
am for its neighbours, if ai is in the enforcer’s blocked set it will return an
empty reply. On the other hand, if ai is not on the blocked set, two different
strategies are possible: The Uni-Directional Blockage (UDB) strategy, where all
its neighbours will be returned (RN(ai, am) = N(am)). And the Bi-Directional
Blockage (BDB) strategy, where only those neighbours not in its blocked set are
returned (RN(ai, am) = N(am) \B(am)).

Choosing one enforcement strategy over another entails a tradeoff. When
the BDB strategy is chosen, violators will be more efficiently ostracized, the
tradeoff is that initiator agents may also be blocked from reaching certain parts
of the network, the cost is freedom. Intuitively, one can see that enforcer agents
are better off with the UDB strategy. An enforcer will never interact with a
violator, but it can use it as a mediator to reach other parts of the society. Meek
agents, on the other hand, do not hold a memory of violating agents. Therefore,
meek agents may choose violators unknowingly as their partner repeatedly. The
BDB protects meek agents, by reducing the chances of them choosing violator
agents.

In order to focus on the aspects such as network structure and simple blocking
strategies, the following assumptions have been made to limit the number of
variables:

– Agents cannot change their interaction strategy.
– Agents cannot lie when sending gossip.
– There are no corrupt enforcer agents.
– There is no noise (i.e., an agent knows its opponent’s chosen strategy).

These assumptions imply that modelling an agents’ reputation is simple, and
there is no redemption for violators. Since gossip is always truthful and there
is no noise, the validity of information is permanent. Therefore, if there is any
evidence that an agent has violated it must be a violator. Furthermore, since a
violator will never change its strategy, sanctions must be indefinite. Relaxation of
these assumptions will be studied in future work. Thus allowing for sophisticated
violators which could trick enforcers into blocking other enforcers by giving them
false information through gossip.

4 Simulations

This section shows the results of the simulations that have been run following
the scenario specified in Section 3. In order to focus the experiments to see
the effect of certain variables, the rest have been set with the same value for
all simulations. Each simulation consists of a society of 100 agents, with 1000



rounds per simulation. In each round agents take turns to find a partner with
which to interact. If an agent cannot find a partner its turn is skipped. As said
before, interactions consist of the prisoner’s dilemma game specified in Figure 1.

The parameters that change in each simulation can take up the following
values:

– Percentage of Violators (V) - from 10% to 90% in 10% increments.
– Percentage of Enforcers (E) - from 0% to 100% in 10% increments5.
– Type of Graph (G) - either tree, small world, or random.
– Enforcement Type (ET) - Uni-Directional Blockage (UDB), or Bi-Directional

Blockage (BDB).

Exhaustive simulations have been run with all the possible combinations
of parameter values. Each simulation is repeated 50 times in order to obtain
an accurate average value. The following metrics have been extracted for each
simulation: number of games played, violations received, and utility gained by an
agent. The metrics have been calculated for the whole society and for each type
of agent. Furthermore for each metric, both the mean and the variance have been
calculated. The data gathered from the simulations support our hypotheses.

(H1) Norm violations are reduced by applying a simple local block-
ing rule. The different graphs in Figure 3 contain eight different lines, each one
represents a different percentage of violating agents. The x-axis represent the
enforcer to meek agent ratio, and the y-axis the average violations received by
agents of each type. In all cases, the higher the percentage of violators, the higher
the violations received by agents, which is intuitive. On the other hand, a higher
ratio of enforcer to meek agents reduces the number of violations received by
the society as a whole, and by norm abiding agents particularly. But this is not
true for meek agents and violator agents, which receive more violations when
the ratio of enforcers increases.

The improvement in the society as a whole is not significant, as seen in Figure
3(a). When just norm-abiding agent are taken into account, the reduction in
violations received is much greater (see Figure 3(b)). This happens because when
the enforcer ratio is high, most norm-abiding agents are enforcers. Enforcers will
only interact with each violator at most one time, therefore violations received
by norm-abiders are greatly reduced. Therefore, violators end up interacting
with the few agents they have access to. This is the meek agents not being
protected by enforcers and other violators. Both of which increase the number
of violations received as the ratio of enforcers increases (see Figures 3(c) and
3(d)). Since meek agents are a small portion of the norm supporters, the fact
that they receive more violations does not influence the total violations received
by norm supporters as a whole. The number of games played by violator agents
also supports this hypothesis. In average, violators play less games when the
number of enforcer agents is high, because enforcers manage to ostracize some
violators.
5 The percentage of meek agents is computed through the following formula: M =

100%− V − E. Therefore, V + E cannot be more than 100%.



(a) all agents (b) norm-abiding agents

(c) meek agents (d) violator agents

Fig. 3. Local blocking rule reduces violations

(H2) Network structure influences the enforcement capabilities.
The simulations show that different multi-agent system organisational struc-
tures have different effects on norm enforcement. Figures 4(a) and 4(b) show
the average norm violations (y-axes) for each of the different structures tested:
Random, Small World, and Tree. They represent the simulations where violator
agents account for 10% and 20% of the population respectively. Therefore, at
most there will be 90% or 80% of enforcers, respectively. The x-axes plots the
percentage of enforcer agents. Both random and small world networks have an
almost identical graph line. The tree structure has an altogether different graph
line which greatly improves the enforcement capabilities. The fact that in a tree
there is only one path between any two agents is the determining factor in making
the society more secure to violations. In random and small world graphs, many
paths can be usually found between any two agents. From the simulations it is
deduced that the higher the number of paths that unite agents, the more vulner-
able they are to non-normative attacks. On the other hand, the main difference
between small world graphs and random graphs is their clustering coefficient.
Since the two types of graphs have very similar results, the clustering coefficient
can be ruled out from the variables that have an impact in norm-enforcement.



As an interesting side note, the tendency is that the more enforcer agents, the
less violations. But in random and small world networks, when the percentage
of enforcer agents reaches its maximum the percentage of violations received
are increased (see Figure 4(b)). This happens because in both these networks
violator agents manage to find paths that link them. Since at this point there are
few meek agents for them to prey on, they are forced to interact with each other.
Figures 3(c) and 3(d) show that the number of violations received by meek and
violator agents increases with higher enforcer ratio. In an interaction between
two violator agents, two violations are being accounted for and the average of
violations is increased. A sub-society of violating agents is formed. This has been
observed in all simulations with a ratio of violator agents of 20% and above, but
it is not so acute in the simulations with 10% of violators (see Figure 4(a)).
When the ratio of violator agents is low enough, enforcers manage to ostracise
more of them, and they cannot interact with each other. When this happens, no
sub-society of violating agents exists, they are completely blocked.

(a) 10% violators (b) 20% violators

Fig. 4. Enforcement capabilities vary depending on structure

(H3) The enforcement strategy used by enforcer agents can reduce
the number of violations received by meek agents. The x-axes in Fig-
ure 5(a) shows the enforcer to meek agent ratio. A higher ratio implies more
enforcer agents. The y-axes measures the increment in efficiency at protecting
meek agents from violations. Efficiency is calculated as the increment in percent-
age of the violations received by meek agents when enforcers use uni-directional
blockage over bi-directional blockage (see Equation 1). A positive efficiency value
means that BDB managed to stop more violations than UDB.

∆Efficiency = ((ViolationsUDB/ViolationsBDB )− 1)× 100 (1)

In Figure 5(a) it can be observed that in random and small world networks
the efficiency is always positive for any enforcer to meek agent ratio. It is also
observed that for low ratio values the efficiency is increasing. But after a rate



of 3 enforcers per meek agent the efficiency hits a ceiling. The results show that
Bi-Directional Blockage has a higher efficiency at protecting meek agents from
violator agents in these cases. The case of the tree network is different. The
efficiency increment stays along the 0% line with some deviations. In networks
organized as trees, the choice of enforcement strategy does not have a significant
influence in the outcome. The reason being that the tree network ostracises
violators quickly, independently of the blockage strategy used.

(a) Violations Received by Meek (b) Utility Gained by Enforcers

Fig. 5. Enforcement strategy influences outcomes

The gain in efficiency at guarding meek agents comes at a cost. When en-
forcers use the BDB strategy they can ostracise themselves. This is the case
when the enforcer is completely surrounded by violators. If the enforcer uses
the UDB strategy it will use its neighbours as mediators, independently of their
type. But when using the BDB strategy an enforcer is not be able to do this and
therefore it cannot interact with anyone. Thus ostracising itself. This is a rare
case but it can reduce the average utility gained by enforcer agents by up to 3%
(see Figure 5(b)). The metric used to calculate the difference in utility can be
seen in equation 2. A negative number means that the agent gains more utility
when using a UDB strategy.

∆Utility = ((UtilityUDB/UtilityBDB )− 1)× 100 (2)

(H4) Enforcement makes supporting the norm a rational strategy.
The simulation data that refers to the utility gained by agents has been used
to support this hypothesis. In the context of this paper, a strategy is said to
be rational if the the agent will maximize the utility gained in the game. What
has been tested is whether following the norm maximizes the agent’s utility,
and in which conditions. The simulation data has shown that when the ratio of
enforcers passes a certain threshold, norm-abiding agents will gain more utility
than norm-violating ones. This threshold depends on the amount of violating
agents in the system. In a society with 10% of violator agents, five enforcers are



needed for every four meek agents to make supporting the norm the rational
strategy. For a society with 50% of violator agents, the ratio needs to be higher
than 0.7 enforcers for each meek agent. The rest of simulations have inflection
points between those two values. Strangely, societies with higher percentage of
violators need a smaller ratio of enforcers to meek agents.

Finding a partner is a random walk through the network. Therefore, when a
violator searches for a partner in a society where they are the majority, chances
are that it will interact with another violator. When two violators interact the
get a very low utility, thus a small number of enforcers interacting amongst
themselves can easily win more utility than the violators, and even make up for
the meek agents which are being preyed upon.

Figure 6(a) and 6(b) show the utility gained (y-axes) by norm supporting
agents and violators respectively. Their x-axes show the enforcer to meek agent
ratio. Each of the lines in the figures represent simulations with different per-
centage of agents in the society. As the number of enforcers increases norm
supporters gain more utility. The opposite effect is observed for violator agents.
When the enforcer to meek agent ratio is low, the utility gained by violator
agents is much higher than the one gained by norm supporters. As the number
of enforcer agents grows the values are reversed. The inflection point depends
on the percentage of violator agents.

Interestingly, even though meek agents receive more violations as the rate
of enforcer agents grows (see Figure 3(c)), the utility gained by them is not
decreased. It surprisingly increases (see Figure 6(c)). This is due to the fact
that meek agents are still able to interact with other norm supporters. Enforcer
agents will never interact with violators more than once, so they are restricted
to interacting with other enforcers or meek agents. This helpful interaction from
enforcers makes their utility increase despite receiving more violations. The ratio
of violations to normative actions is lowered and the utility is increased.

5 Future Work

This paper is part of ongoing research on norm enforcement. Many other vari-
ants of this model will be simulated. In future work the set of assumptions about
agents will be relaxed, by giving them the ability to change their strategies, to
lie, and to allow enforcer agents to violate the norm (i.e., corrupt enforcers).
The perfect information assumption will be relaxed by adding uncertainty and
noise. In these cases enforcer agents will need elaborate gossip techniques and
reputation management to allow them to pick the right targets for enforce-
ment. Futhermore, the agent’s reputation can also be modelled by having the
interaction mediators overhear the conversations they mediate. If overhearing is
possible, there is no need to wait for interacting agents to report the interaction
outcome. More so, other conservative blocking strategies can be studied; such as
blocking off agents that mediate norm violators, or blocking agents until they
are shown to be norm-abiders by interacting with the mediators.



(a) norm-abiding agents (b) norm-violating agents

(c) meek agents (d) enforcer agents

Fig. 6. Utility gained by agents

The process an agent uses to search for a partner can influence the utility
it gains. All agents in the simulations searched for partners using the same
procedure, which was random. The process could be modified in many ways.
For instance, the probability with which an agent is chosen as the interaction
partner can be modified to make the average path length longer or shorter, this
modification could be for all agents, or they could each have different average
path length. Also, agents could choose an agent as the partner first and then try
to find a path to it. These changes are not mutually exclusive, many combinations
could be studied.

The impact of other network parameters (e.g., clustering factor, diameter,
number of links per agent, number of paths between agents) on norm enforcement
should also be studied in future work. It has seen shown that a tree network is
better from an enforcement perspective. Further studies could also relax the
assumption of fixed networks. In order to find realistic models to be used in
real networks, dynamic links must be allowed. Links could be added between
agents dynamically and test how it affects norm enforcement. New enforcement
techniques should be used that take advantage of the dynamic nature of the
network.



Finally, related work has shown that when enforcement conveys a cost to the
agent, the efficiency of enforcement diminishes [1, 8]. The scenario in this paper
does not consider such a cost associated to blocking violators. A cost could be
associated to blocking interactions in order to test the enforcing efficacy in such
a scenario. Enforcers would bear the cost of enforcement if they were not able to
reject interactions. In such a case they would spare other agents from receiving
norm-violations by receiving them themselves.

All these scenario modifications can also be used to research into the nec-
essary conditions for norm emergence. Our goal is to find ways to apply this
work to more realistic scenarios, such as security from malicious agents in open
multi-agent systems over the internet.
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