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Abstract. Properly-designed bulk-loading techniques are more efficient
than the conventional tuple-loading method in constructing a multidi-
mensional index tree for a large data set. Although a number of bulk-
loading algorithms have been proposed in the literature, most of them
were designed for continuous data spaces (CDS) and cannot be directly
applied to non-ordered discrete data spaces (NDDS). In this paper, we
present a new space-partitioning-based bulk-loading algorithm for the
NSP-tree — a multidimensional index tree recently developed for
NDDSs . The algorithm constructs the target NSP-tree by repeatedly
partitioning the underlying NDDS for a given data set until input vec-
tors in every subspace can fit into a leaf node. Strategies to increase the
efficiency of the algorithm, such as multi-way splitting, memory buffering
and balanced space partitioning, are employed. Histograms that charac-
terize the data distribution in a subspace are used to decide space par-
titions. Our experiments show that the proposed bulk-loading algorithm
is more efficient than the tuple-loading algorithm and a popular generic
bulk-loading algorithm that could be utilized to build the NSP-tree.

1 Introduction

Applications that require multidimensional indexes often involve a large amount
of data, where a bulk-loading (BL) approach can be much more efficient than the
conventional tuple-loading (TL) method in building the index. In this paper, we
propose an efficient bulk-loading algorithm for a recently-developed index tree,
called the NSP-tree [14], in non-ordered discrete data spaces (NDDS).

A non-ordered discrete data space models vector data whose components are
discrete with no inherent ordering. Such non-ordered discrete domains as the
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gender and profession are quite common in database applications. To support
efficient similarity queries in NDDSs, the space-partitioning-based NSP-tree was
proposed in [14]. The conventional TL algorithm of the NSP-tree inserts one vec-
tor at time into a leaf node of the tree. When a leaf overflows, its corresponding
data space is split into two subspaces and its vectors are moved into one of the
subspaces to which they belong. While the TL method is capable of constructing
a high-quality NSP-tree, it may take too long to index a large data set, which
is typical for many contemporary applications. For example, genome sequence
databases, with non-ordered discrete nucleotides ‘a’, ‘g’, ‘t’ and ‘c’, have been
growing rapidly in size in the past decade. The size of the GenBank, a popu-
lar collection of publicly available genome sequences, increased from 71 million
residues (base pairs) and 55 thousand sequences in 1991, to more than 65 billion
residues and 61 million sequences in 2006 [8]. Hence, an efficient bulk-loading
technique is essential in building an NSP-tree for such applications. Unfortu-
nately, there is no bulk-loading algorithm specially designed for the NSP-tree.

Bulk-loading has been an important research topic for multidimensional index
structures. There are a number of bulk-loading algorithms proposed for multidi-
mensional indexes in continuous data spaces (CDS), such as the R-tree [9]. One
major category of such bulk-loading algorithms is based on sorting, which can
be further divided into the bottom-up approach and the top-down approach [1].
In the bottom-up approach [6,11,12,16], vectors to be indexed are sorted accord-
ing to certain global one-dimensional criteria and then placed in the leaves in
the sorted order. The minimum bounding rectangles (MBR) of the leaves are
sorted using the same criteria to build the first non-leaf level. The index is thus
recursively constructed level by level until all MBRs can be fit into one node.
In the top-down approach [2,7], all vectors are sorted using certain criteria and
then divided into M subsets of roughly equal size, where M is the size of the
root. The MBRs of the subsets are stored in the root. Subtrees corresponding to
the subsets are recursively constructed in the same manner until vectors in the
subsets can be fit into a leaf node. Unfortunately, these sorting-based algorithms
cannot be directly applied in the NDDS, where no ordering exists.

Another category of bulk-loading algorithms is called the generic bulk-loading.
Instead of sorting, these algorithms utilize some basic operations/interfaces (e.g.,
splitting an overflow node) from the corresponding TL algorithm of the target
index tree. Therefore, generic bulk-loading algorithms can be applied to every
target index tree having required operations although they may not be optimized
for the index tree due to their generic nature. One such popular generic bulk-
loading algorithm [3], denoted by GBLA in this paper, employs a buffered tree
structure to reduce disk I/Os by accumulating inserted vectors in the buffer of
a tree node and pushing the buffered vectors into child nodes when the buffer is
full. The leaf nodes of the target tree are built first. The MBR of the leaves are
then used to build their parent nodes. The target tree is, therefore, built level by
level from bottom up. Another type of generic bulk-loading algorithms utilizes
a sample-based approach [5,4]. A seed index is first built in memory based on
sample vectors from the data set. The remaining vectors are then assigned to
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individual leaves of the seed structure. The leaves are processed in the same way
recursively until the whole target index is constructed.

Recently, a bulkloading algorithm named NDTBL [17] was proposed for the
ND-tree [13,15], a data-partitioning-based indexing method for NDDSs. NDTBL
first builds linked subtrees of the target ND-tree in memory. It then adjusts those
subtrees to form a balanced target ND-tree. Some operations in the TL algorithm
for the ND-tree are extended and utilized to choose and split data sets/nodes
during the process.

In this paper, we propose a new bulk-loading algorithm for the NSP-tree,
called NSPBL (the NSP-tree Bulk-Loading). It is a space-partitioning-based al-
gorithm that employs a bottom-up process. Vectors to be loaded are first placed
into a solo (typically oversized) leaf node of an intermediate tree structure. The
leaf node(s) are repeatedly divided into a number of normal or oversized leaf
nodes based on space partitions, while the tree structure grows upward as corre-
sponding non-leaf nodes are created and split. Histograms that record the space
distribution of the vectors in a leaf are used to find balanced splits of the sub-
space for the leaf. Memory buffers are adopted in the bulk-loading process to
reduce unnecessary disk accesses. A multi-way splitting strategy that allows an
oversized node to be directly split into more than two new nodes is employed to
reduce splitting overhead. The final intermediate tree has the same structure as
that of the target NSP-tree. Therefore, no post-processing is needed. Our exper-
imental study demonstrates that NSPBL is more efficient than the conventional
TL algorithm and the popular generic GBLA in constructing the NSP-tree. The
quality of the built NSP-trees is comparable among these three methods.

The rest of this paper is organized as follows. Section 2 introduces the essential
concepts and notation for the NDDS and the NSP-tree. Section 3 discusses
the details of NSPBL. Section 4 presents the experimental results. Section 5
concludes the paper.

2 Preliminaries

The concepts of NDDSs were discussed in [13,15], while the NSP-tree was intro-
duced in [14]. For completion, we briefly describe some relevant concepts here.

2.1 Concepts and Notation

A d-dimensional NDDS Ωd is defined as the Cartesian product of d alphabets:
Ωd = A1×A2× ...×Ad, where Ai(1 ≤ i ≤ d) is the alphabet of the i-th dimension
of Ωd, consisting of a finite set of letters with no natural ordering. For simplicity,
we assume Ai’s are the same in this paper. As shown in [15], the discussion can
be readily extended to NDDSs with different alphabets. α = (a1, a2, ..., ad) is
a vector in Ωd, where ai ∈ Ai (1 ≤ i ≤ d). A discrete rectangle R in Ωd is
defined as R = S1 × S2 × ... × Sd, where Si ⊆ Ai(1 ≤ i ≤ d) is called the
i-th component set of R. R is also called a subspace of Ωd. For a given set SV
of vectors, the discrete minimum bounding rectangle (DMBR) of SV is defined
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as the discrete rectangle whose i-th component set (1 ≤ i ≤ d) consists of all
letters appearing on the i-th dimension of the given vectors. The DMBR of SV
is also called the current data space for the vectors in SV . The DMBR of a
set of discrete rectangles can be defined similarly. For a given space (subspace)
Ω′

d = A′
1 ×A′

2 × ...×A′
d, a space split of Ω′

d on the i-th dimension consists of two
subspaces Ω′1

d = A′
1×A′

2×...×A′1
i ×...×A′

d and Ω′2
d = A′

1×A′
2×...×A′2

i ×...×A′
d,

where A′1
i ∪ A′2

i = A′
i and A′1

i ∩ A′2
i = ∅. The i-th dimension is called the split

dimension, and the pair A′1
i /A′2

i is called the dimension split (arrangement) of
the space split. A partition of a space (subspace) is a set of disjoint subspaces
obtained from a sequence of space splits.

As discussed in [13,14], the Hamming distance is a suitable distance measure
for NDDSs. The Hamming distance between two vectors gives the number of
mismatching dimensions between them. A similarity (range) query is defined as
follows: given a query vector αq and a query range rq of Hamming distance, find
all the vectors whose Hamming distance to αq is less than or equal to rq .

2.2 NSP-Tree Structure

The NSP-tree [14] is designed based on the space-partitioning concepts. Let Ωd

be an NDDS. Each node in the NSP-tree represents a subspace from a partition
of Ωd, with the root node representing Ωd. The subspace represented by a non-
leaf node is divided into smaller subspaces for its child nodes via a sequence of
(space) splits.

The NSP-tree has a disk-based balanced tree structure. A leaf node of the
NSP-tree contains an array of entries of the form (key, optr), where key is a
vector in Ωd and optr is a pointer to the indexed object identified by key in
the database. A non-leaf node contains the space-partitioning information, the
pointers to its child nodes and their associated auxiliary bounding boxes (i.e.,
DMBRs). The space-partitioning information in a non-leaf node N is represented
by an auxiliary tree called the Split History Tree (SHT). The SHT is an unbal-
anced binary tree. Each node of the SHT represents a split that has occurred
in N . The order of all the splits that have occurred in N is represented by the
hierarchy of the SHT, i.e., a parent node in the SHT represents a split that has
occurred earlier than all the splits represented by its children. Each SHT tree
node has four fields: i) sp dim: the split dimension; ii) sp pos: the dimension
split arrangement; iii) l pntr and r pntr: pointers to an SHT child node (internal
pointer) or a child node of N in the NSP-tree (external pointer). l pntr points
to the left side of the split, while r pntr points to the right side. Using the SHT,
the subspace for each child of N is determined. The pointers from N to all its
children are, in fact, those external pointers of the SHT for N . Note that, from
the definition, each SHT node SN also represents a subspace of the data space
resulted from the splits represented by the SHT nodes from the root to SN (the
root represents the subspace for N in the NSP-tree).

Figure 1 illustrates the structure of an NSP-tree. In the figure, a tree node is
represented as a rectangle labeled with a number. Each non-leaf node contains
an SHT. There are two DMBRs for each child. DMBRij represents the j-th
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(1 ≤ j ≤ 2) DMBR for the i-th (1 ≤ i ≤ M) child at each node, where M is the
maximum fan-out of the node, which is determined by the (disk) space capacity
of the node. Figure 2 shows an example SHT. Each SHT node is represented as
a circle. A solid pointer in the figure represents an internal pointer that points
to an SHT child node, while a dotted pointer is an external pointer that points
to a child of the relevant non-leaf node of the NSP-tree that contains the SHT.

3 Space-Partitioning-Based Bulk-Loading

3.1 Key Idea of the Algorithm

The key idea of our bulk-loading algorithm NSPBL is to first load all vectors
into one (large) node and then keep splitting overflow nodes until an NSP-tree
structure is eventually constructed in a bottom-up fashion. Instead of splitting
a node by directly dividing the relevant data (vectors) set, NSPBL partitions
the underlying space for the relevant data (vectors) set into subspaces and then
places the relevant vectors into the subspaces (nodes) that they belong to.

To achieve a good target NSP-tree and reduce the I/O cost for bulk-loading,
NSPBL adopts the following strategies: (i) Partitioning current data space. In-
stead of partitioning a whole NDDS, NSPBL partitions the current data space
(see Section 2.1) for a given set of input vectors. This improves the target tree
quality because partitioning subspaces that contain no input vectors is not only
wasting but also making the target tree unnecessarily larger. (ii) Utilizing his-
tograms of letters appearing on each dimension for the input vectors. One chal-
lenge for building an index tree using space partitioning is to make each partition
as balanced as possible so that both space utilization and search performance of
the resulting tree are high. NSPBL tackles this challenge by using the global data
distribution information from the histograms to properly split a data space. (iii)
Seeking a balanced multi-way splitting. The conventional two-way splitting is in-
efficient for bulk-loading. NSPBL adopts a multi-way splitting strategy to allow
an overflow node (space) to be split into more than two new nodes (subspaces).
In fact, a multi-way split is still determined by a series of two-way splits of the
current data space for the overflow node. However, the spliting is propagated up
to the parent node only once, rather than multiple times as required by the con-
ventional two-way splitting. During the series of two-way splits, NSPBL always
pick the subspace with the most vectors to split so that a balanced multi-way
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split can be achieved in the end. (iv) Adopting a memory buffer (page) for each
new leaf node resulting from splitting. When an overflow leaf node (space) is
split, its vectors should be distributed into the new leaf nodes. Using a memory
buffer for each new leaf node can significantly reduce the number of I/Os needed
to write to the new leaf nodes.

NSPBL employs an intermediate disk-based tree structure (see Figure 3),
called the Space-partitioning Bulk-Loading tree (SBL-tree). The structure of
the SBL-tree is similar to that of the target NSP-tree (see Section 2.2): (1) the
entry structures of a leaf node and a non-leaf node are the same as those in an
NSP-tree, (2) the maximum number of entries for a non-leaf node is the same
as that in an NSP-tree, i.e., M , and (3) each non-leaf node contains an SHT,
which stores the space splitting history information for the node.

The SBL-tree differs from the
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NSP-tree by having two types
of leaf nodes: normal leaves and
buffered leaves. A normal leaf
has at most M entries, like that
in an NSP-tree. If a leaf node
has more than M entries, it is
a buffered (i.e., non-final) leaf.
A buffered leaf overflows
according to the target NSP-
tree. Hence it needs to be split.
To facilitate the splitting, each buffered leaf node N maintains a histogram for
each dimension D to record the frequencies (in percentage) of letters that ap-
pear on D in the indexed vectors in N . Once NSPBL turns all buffered leaves
into normal leaves by space partitioning, the target NSP-tree can be obtained
by outputting the final SBL-tree with corresponding DMBRs computed.

3.2 Main Procedure

The main procedure of algorithm NSPBL is given as follows. It invokes functions
SplitBufferedLeaf and SplitNonLeafNode to repeatedly split overflow nodes until
the target NSP-tree for the given set of input vectors is constructed.
Algorithm 3.1 : NSPBL
Input: a set SV of input vectors in a d-dimensional NDDS.
Output: an NSP-tree TgtT ree for SV on disk.
Method:
1. create an SBL-tree BT with an empty leaf N as root;
2. load all vectors in SV into N and create relevant histograms for N ;
3. if size of N ≤ M then {
4. create target NSP-tree TgtT ree with single node N ; }
5. else {
6. let Bleafset = {N};
7. while Bleafset �= ∅ do {
8. fetch an overflow leaf CN ∈ Bleafset and let Bleafset = Bleafset − {CN};
9. [rleafset, adoptSHT ] = SplitBufferedLeaf(CN);
10. add leaves with size > M in rleafset into Bleafset;
11. calculate two DMBRs for every leaf with size ≤ M in rleafset;



410 G. Qian et al.

12. if CN is not the root of BT then {
13. replace entry for CN in its parent PN with entries for nodes in rleafset;
14 incorporate adoptSHT into PN ; }
15. else {
16. create a non-leaf node PN as the new root;
17. add entries for nodes in rleafset into PN ;
18. add adoptSHT into PN ; }
19. if PN overflows then {
20. [rnodeset, adoptSHT ] = SplitNonleafNode(PN);
21. if PN is not the root of BT then {
22. replace entry for PN in its parent P with entries for nodes from rnodeset;
23. incorporate adoptSHT into P ; }
24. else {
25. create a non-leaf node P as the new root;
26. add entries for nodes in rnodeset into P ;
27. add adoptSHT into P ; }
28. propagate overflow/splitting up to the root of BT when needed; } }
29. create target NSP-tree TgtT ree based on BT , and create DMBRs for non-leaf

nodes in their corresponding entries in parents ; }
30. return TgtT ree.

Algorithm NSPBL initially loads all input vectors into one leaf node (steps 1
- 2). Relevant histograms are computed during the loading (note that these
histograms reflect the global data distribution of the whole data set). If this leaf
is not oversized, the target NSP-tree has been obtained (steps 3 - 4). Otherwise,
the oversized leaf node is put into a set that keeps track of buffered leaves during
the bulk-loading process (step 6). For each buffered leaf, NSPBL invokes function
SplitBufferedLeaf to split it into multiple new leaves using its histograms (steps
8 - 9). Some of the new leaves may be normal leaves whose two DMBRs are
computed (step 11) and stored into their corresponding entries in their parents
(steps 13 or 17). The others may still be buffered leaves that need further splitting
(step 10). In fact, eventually every leaf will be a normal leaf node that can
be directly copied into the target NSP-tree in step 29. NSPBL constructs the
non-leaf nodes of the SBL-tree in a bottom-up fashion (steps 12 - 28). Unlike
the TL algorithm for the NSP-tree, NSPBL does not require a top-down look-
up phase (i.e., ChooseSubtree). It effectively uses the maintained histograms
and the derived splitting history information (SHTs) to decide proper nodes
(subspaces) for input vectors. In addition, it adopts a multi-way splitting rather
than a conventional two-way splitting. Hence NSPBL is expected to be more
efficient than the conventional TL approach. When an SHT adoptSHT for a set
of new nodes resulting from a split is incorporated into an existing non-leaf node
PN or P (steps 14 and 23), NSPBL replaces the external pointer of the current
SHT of existing PN or P that points to the original node before splitting (i.e.,
CN or PN) with an internal pointer that points to the root of adoptSHT . For
a new root, adoptSHT is simply added to it as its SHT (steps 18 and 27). The
target NSP-tree is obtained when no buffered leaf exists (steps 4 and 29). The
two DMBRs for leaf and non-leaf nodes are computed at different times (steps
11 and 29) to reduce the bulk-loading I/Os. The algorithms used for computing
the DMBRS are the same as those for the NSP-tree[14].
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3.3 Splitting a Buffered Leaf Node

Function SplitBufferedLeaf splits a buffered leaf node CN into multiple new leaf
nodes. It does this by repeatedly invoking function SplitSpace to split the un-
derlying data space for CN into subspaces. The splitting decisions are recorded
in an SHT. At the end of the function, the vectors in CN are loaded into the
resulting subspaces (leaf nodes) and the histograms for each node are updated.

To achieve a balanced space partition for the buffered leaf node N , in the
process of multi-way splitting, SplitBufferedLeaf always pick the subspace with
the most vectors to split. Since it is too expensive to actually count the vectors
in subspaces, SplitBufferedLeaf uses the maintained histograms for N to esti-
mate the number of vectors in a subspace. Such a heuristic assumes that the
dimensions are mutually independent for the given data set.

As mentioned earlier, NSPBL associates a memory buffer (page) to each new
leaf node (subspace). If there are B pages of memory space available, we can-
not split the given data space into more than B subspaces. In addition, it is
unnecessary to split a leaf node with ≤ M vectors. Hence, the number of sub-
spaces resulted from multi-way splitting is bound by B and the number of sub-
spaces/leaves with ≤ M vectors.

Function 3.1 : SplitBufferedLeaf
Input: (1) a buffered leaf node N containing a set of input vectors in a d-dimensional
NDDS; (2) the number B of memory buffer pages.
Output: (1) a set NS of new leaf nodes; (2) the corresponding SHT T for the adopted
split.
Method:
1. create the current data space Ω′ based on the histograms for N ;
2. create an empty priority queue PQueue of SHT node pointers;
3. create a pseudo SHT node pointer P that corresponds to Ω′;
4. insert P into PQueue with priority key |N | (i.e., size of N);
5. set the number of used memory buffers cur buf cnt = 0;
6. while PQueue is not empty do {
7. dequeue the next SHT pointer CP from PQueue with priority key value vec cnt;
8. if cur buf cnt ≥ B then {
9. set CP as an external pointer; }
10. else {
11. if CP is the pseudo SHT node pointer P then {
12. [dim, lset, rset, lratio, rratio] = SplitSpace(Ω′, histograms for N);
13. create a new SHT node SHT N with split information dim, lset and rset;
14. construct SHT T with SHT N as its root; }
15. else {
16. construct subspace DS based on both Ω′ and the space split information in

the SHT T from its root to CP ;
17. [dim, lset, rset, lratio, rratio] = SplitSpace(DS, histograms for N);
18. create a new SHT node SHT N with split information dim, lset and rset;
19. set CP as an internal pointer that points to SHT N ; }
20. lcnt, rcnt = vec cnt ∗ lratio, rrtatio;
21. if lcnt, rcnt > M ∗ SPLIT RATIO then {
22. enqueue SHT N.l pntr, r pntr with priority key lcnt, rcnt; }
23. else { set SHT N.l pntr, r pntr as an external pointer; }
24. cur buf cnt++; } }
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25. create a set NS of cur buf cnt new SBL-tree leaf nodes to which the external
pointers of T point;

26. load each vector in N into one N ′ of the new leaf nodes in NS according to
the subspaces given by T and update the histograms for N ′ accordingly;

27. return NS and T .

Function SplitBufferedLeaf first uses the histograms for N to determine the cur-
rent data space Ω′ represented by N (step 1). The letters in the D-th component
set of Ω′ are those letters with frequencies > 0 in the histogram for dimension
D. A priority queue PQueue of SHT node pointers are maintained by Split-
BufferedLeaf (step 2). The SHT node pointers in PQueue are those pointers in
the SHT T returned at the end of the function. Each pointer corresponds to a
subspace of Ω′ (step 16) and the estimated vector count in that subspace is used
as the priority key for PQueue. This allows SplitBufferedLeaf to always pick the
subspace with the largest estimated number of vectors to split (step 7) so that a
balanced space partition can be achieved. The multi-way splitting process starts
from Ω′, which is represented by a pseudo SHT node pointer P (steps 3 - 4).
The process does not stop until all the pointers in PQueue are exhausted (step
6). When there is no memory buffer page left (step 8), space-splitting stops.
The remaining pointers in PQueue are all set to be external pointers (step 9).
Otherwise, function SplitSpace is invoked to split the subspace corresponding to
the current pointer CP , and the SHT T is constructed and grown (steps 11 -
19). Steps 20 - 23 estimate the vector counts in the two new subspaces resulted
from the space split. Depending on the estimated vector count in a subspace,
the corresponding SHT node pointer is either enqueued or set to be an external
pointer (no more split on that subspace). SplitBufferedLeaf terminates when all
buffer pages are used up or there is no subspace to split. New leaf nodes for the
subspaces are then created based on the SHT T , and loaded (steps 25 - 26).

SplitBufferedLeaf uses an additional adjustable parameter SPLIT RATIO(≥
1) to further control whether a subspace should be split or not (step 21). Ob-
viously, the greater the value of SPLIT RATIO, the more bulk-loading I/Os
are needed, since SplitBufferedLeaf will potentially produce less subspaces. The
benefit of a greater SPLIT RATIO value is that the space utilization of the
target tree may be improved, since more vectors may be fit in a subspace. Our
experimental results show that for uniform data sets, different SPLIT RATIO
values make no much difference in the space utilization of the target tree. Thus,
a SPLIT RATIO value of 1 can be used for uniform data. On the other hand,
when the data set for bulk-loading is skewed, that is, the frequencies of different
letters in the alphabet are quite different, a greater SPLIT RATIO value may
result in a target tree with a better space utilization.

Function SplitSpace splits a given subspace into two subspaces and returns the
split information. Two heuristics are adopted when choosing the split dimension:
H1: choose the dimension with a larger span, i.e., more distinct letters appearing
in contained vectors; H2: choose the dimension that has a more balanced split.
Histograms are used to support the two heuristics.
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Function 3.2 : SplitSpace
Input: (1) a d-dimensional subspace DS; (2) histograms H for all the dimensions.
Output: space split information: (1) dim; (2) lset; (3) rset; (4) lratio; (5) rratio.
Method:
1. max span = max{spans of all dimensions in DS};
2. dim set = the set of dimensions with max span;
3. best balance = 0;
4. for each dimension D in dim set do {
5. sort into list L0 in descending order the letters on the D-th dimension of DS

based on their frequencies recorded in H for dimension D;
6. set lists L1, L2 to empty, weight1 = weight2 = 0;
7. for each letter l in L0 do {
8. if weight1 ≤ weight2 then {
9. weight1 = weight1 + frequency of l on Dth dimension;
10. add l to the end of L1; }
11. else {
12. weight2 = weight2 + frequency of l on Dth dimension;
13. add l to the beginning of L2; } }
14. concatenate L1 and L2 into L3;
15. for j = 2 to |L3| do {
16. set1 = {letters in L3 whose position < j};
17. set2 = {letters in L3 whose position ≥ j};
18. fi = sum of letter frequencies in seti for i = 1, 2;
19. if f1 ≤ f2 then { current balance = f1/f2; }
20. else { current balance = f2/f1; }
21. if current balance > best balance then {
22. best balance = current balance;
23. dim = D, lset = set1, rset = set2; lratio, rratio = f1, f2/(f1 + f2); } } }
24. return dim, lset, rset, lratio, rratio.

Function SplitSpace first picks those dimensions with the maximum span (steps
1 - 2). For each such dimension D, it first sorts the letters appearing on D based
on their frequencies into a “U”-shaped list, i.e., letters with higher frequencies
are placed at two ends (steps 5 - 14). It then finds the most balanced dimension
split (steps 15 - 23).

3.4 Splitting a Non-leaf Node

Function SplitNonleafNode splits a non-leaf node N into several new non-leaf
nodes. The main idea is to break the SHT of N into several subtrees so that
the number of external pointers (to SBL-tree nodes) under each subtree is ≤ M .
The function then splits N into new non-leaf nodes according to the subtrees
of the SHT. Let ext set(SN) denote the set of external pointers in a subtree
rooted at node SN from an SHT in the following description.

Function 3.3 : SplitNonLeafNode
Input: an overflow non-leaf node N of an SBL-tree BT in a d-dimensional NDDS.
Output: a set SS of new normal non-leaf nodes and the corresponding SHT N.SHT
for the adopted split.
Method:
1. let S = { SN | SN is an SHT node in N.SHT and |ext set(SN)| ≤ M and

|ext set(SN.parent)| > M };
2. for each SN in S do {
3. create a new non-leaf node N ′ for given SBL-tree BT ;
4. move subtree ST ′ rooted at SN from N.SHT into N ′;
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5. change the internal pointer pointing to ST ′ in SN.parent of N.SHT to
the external pointer pointing to N ′;

6. move those entries in N that correspond to external pointers in ext set(ST ′)
to N ′ and create a new entry for N ′ in N ;

7. add N ′ into the set SS of new non-leaf nodes for BT ; }
8. return SS and the updated N.SHT .

Function SplitNonleafNode essentially uses the split history information in the
SHT of the given overflow non-leaf node N to find a set of subspaces that contain
as many child nodes as possible without overflowing (step 1). It then creates a
new non-leaf node for each subspace, links them to the SBL-tree, and adjusts
the SHT and relevant entries in the original N (steps 2 - 7).

4 Experimental Results

To evaluate NSPBL, we conducted extensive experiments. Typical results from
the experiments are reported in this section.

Our experiments were conducted on a PC with Pentium D 3.40GHz CPU,
2GB memory and 400 GB hard disk. Performance evaluation was based on the
number of disk I/Os with the disk block size set at 4 kilobytes. The available
memory sizes used in the experiments were simulated based on the program con-
figurations rather than real physical RAM changes in hardware. The data sets
used in the presented experimental results included both real genome sequence
data and synthetic data. Genomic data (geno) was extracted from bacteria
genome sequences of the GenBank [8], which were broken into q-grams/vectors of
25 characters long (i.e., 25 dimensions). Two synthetic data sets were generated
using the Zipf distribution [18] with parameter values of 0 (zipf0 – uniform) and
3 (zipf3 – very skewed), both of which were 40 dimensional and had an alphabet
size of 10 on all dimensions. For comparison purposes, we also implemented both
the conventional TL algorithm (TL) of the NSP-tree [14] and the representative
generic bulk-loading algorithm GBLA [3]. All programs were implemented in
C++. According to [3], we set the size (disk block count) of the external buffer
(pages on disk) of each index node of the buffer-tree in GBLA at half of the node
fan-out, which was decided by the available memory size.

4.1 Effect of Adjustable Parameter

Function SplitBufferedLeaf uses an adjustable parameter SPLIT RATIO to
provide an additional control on whether a subspace should be split or not. The
number of bulk-loading I/Os and the space utilization of the bulk-loaded NSP-
trees by NSPBL for different SPLIT RATIO values are presented in Table 1.
From the table, we can see that greater SPLIT RATIO values always result
in more bulk-loading I/Os. For uniform data (zipf0), different SPLIT RATIO
values yield almost the same space utilization for the bulk-loaded NSP-trees. For
very skewed data (zipf3), increasing the value of SPLIT RATIO significantly
improves of the space utilization. Genomic data, which is much less skewed than
zipf3, has a behavior more similar to that of zip0 than that of zipf3. Based on
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Table 1. Effect of different SPLIT RATIO values

zipf0 zipf3 geno
SPLIT RATIO io ut% io ut% io ut%

1 418,620 65.7 612,189 44.2 279,694 75.7
2 769,079 65.8 765,348 60.1 431,425 80.5
4 976,624 65.7 969,844 65.8 529,228 82.8
6 1,112,688 65.7 1,113,127 64.2 533,578 82.7

the result, we can conclude that, for data with a distribution close to the uniform
one, a SPLIT RATIO value of 1 is acceptable; for skewed data sets, although
a greater SPLIT RATIO value causes more bulk-loading I/Os, the benefit of a
high quality target tree is overwhelming. For the experimental results presented
in the following subsections, we used a SPLIT RATIO value of 1 for geno and
zipf0 data, and a SPLIT RATIO value of 2 for zipf3 data.

4.2 Efficiency Evaluation

Figure 4 (logarithmic scale in base 10 for Y-axis) shows the number of I/Os
needed to construct NSP-trees using the TL algorithm, GBLA, and NSPBL for
synthetic and genomic data sets of different sizes. The memory available for the
algorithms was set to 4 megabytes. From the figure, we can see that NS PBL
significantly outperformed the conventional TL algorithm. On average, NSPBL
was about 80 times faster than the TL algorithm in our experiments. For uniform
synthetic data and genomic data, when the database size was small, GBLA was
more efficient than NSPBL. This is because GBLA employs an in memory buffer-
tree and can almost build the entire NSP-tree in memory in such a case, while
NSPBL only uses memory as I/O buffers. As the database size became much
larger than the available memory size, NSPBL was much more efficient than
GBLA. For example, on average, NSPBL was 5.4 times faster than GBLA when
bulk-loading 10 million genomic vectors. NSPBL is particularly efficient in bulk-
loading the very skewed data set zipf3. This shows that the strategies adopted
by NSPBL, such as balanced multi-way splitting, were effective.

Experiments were
also conducted to
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Fig. 4. Bulk-loading performance comparison

study the effect of
different memory
sizes on the perfor-
mance of GBLA and
NSPBL. Table 2
shows the number
of I/Os needed by
these two algorithms
to construct the NSP-
trees for 4 million vectors of synthetic and genomic data under different sizes
of available memory. From the table, we can see that NSPBL was always more
efficient than GBLA. When the memory size was small comparing to the data-
base size, the performance of NSPBL was significantly better than that of GBLA.
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Table 2. Effect of memory size on bulk-loading performance

zipf0 zipf3 geno
Memory io io io io io io

GBLA NSPBL GBLA NSPBL GBLA NSPBL
64KB 4,723,892 626,686 18,365,289 1,077,452 3,906,983 399,954
4MB 1,819,533 418,620 10,862,459 765,348 1,046,984 279,694

256MB 659,238 322,019 7,382,932 641,957 375,590 216,599

On the other hand, when the memory was very large so that almost the entire
NSP-tree could be fit in it, the performance difference between the two algo-
rithms became smaller. In real applications such as genome sequence searching,
since the available memory size is usually small comparing to the huge database
size, NSPBL has a significant performance benefit. In other words, for a fixed
memory size, the larger the database size is, the more performance benefit the
NSPBL can provide. This can also be observed in Figure 4.

4.3 Quality Evaluation

To evaluate the effectiveness of NSPBL, we compared the quality of the NSP-
trees constructed by all algorithms. The quality of an NSP-tree was measured
by its query performance and space utilization. Table 3 shows the query perfor-
mance of the NSP-trees constructed by the TL algorithm, GBLA, and NSPBL
for synthetic and genomic data. These trees are the same as those presented
in Figure 4. Query performance was measured based on the average number
of I/Os for executing 100 random range queries at Hamming distance 3. The
results show that for uniform synthetic data and genomic data, the NSP-trees
constructed by NSPBL have comparable performance as those constructed by
the TL algorithm and GBLA. For very skewed data, the performance of the
NSP-trees from NSPBL is much better. This shows the advantage of applying
histograms in NSPBL, which are capable of capturing global data distribution
information, resulting a better tree structure. On the other hand, both the TL
algorithm and GBLA only partition the space/data based on vectors already
indexed in their structures, which may not accurately reflect the actual global
distribution of the whole data set.

Table 4 shows the space utilization of the same set of NSP-trees for synthetic
and genomic data. From the table, we can see that the space utilization of
those NSP-trees constructed by NSPBL varied more than that of the NSP-
trees from the other algorithms. This is because, as a space-partitioning-based
approach, NSPBL does not guarantee the minimum space utilization. However,
the space utilization of those NSP-trees was reasonably good due to the heuristics
employed by NSPBL to find a balanced split in the bulk-loading process. The
result for zipf3 was even better than those for TL and GBLA.

Besides the experiments reported above, we have also conducted experiments
with data sets of various alphabet sizes and dimensionalities. The results were
similar. Due to the space limitation, they are not included in this paper.
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Table 3. Query performance comparison

zipf0 zipf3 geno
key# io io io io io io io io io

TL GBLA NSPBL TL GBLA NSPBL TL GBLA NSPBL
100000 136 144 148 605 596 433 192 192 207
400000 269 238 246 1,534 1,497 1,019 344 342 344
1000000 400 400 400 2,718 2,704 1,542 476 468 518
4000000 679 680 680 6,010 6,007 2,502 771 766 782
10000000 1,053 1,032 1,039 9,704 9,611 3,489 1,046 1,048 1,104

Table 4. Space utilization comparison

zipf0 zipf3 geno
key# ut% ut% ut% ut% ut% ut% ut% ut% ut%

TL GBLA NSPBL TL GBLA NSPBL TL GBLA NSPBL
100000 59.5 63.4 63.7 54.0 52.6 60.6 69.5 69.7 63.2
400000 60.4 58.0 56.1 53.6 52.4 62.4 69.5 70.2 69.3
1000000 65.7 65.7 65.7 54.2 53.9 60.9 78.8 79.6 66.6
4000000 65.7 65.7 65.7 54.4 54.0 60.1 76.1 76.5 75.7
10000000 81.8 81.1 80.0 54.6 54.1 60.7 65.8 65.9 55.8

5 Conclusions

There is an increasing demand for applications such as genome sequence search-
ing that involve similarity queries on large data sets in NDDSs. Index structures
such as the NSP-tree [14] are crucial to achieving efficient evaluation of similarity
queries in NDDSs. Although many bulk-loading techniques have been proposed
to construct index trees in CDSs in the literature, no bulk-loading technique has
been developed specifically for the NSP-tree in NDDSs.

In this paper, we present a space-partitioning-based algorithm NSPBL to
bulk-load the NSP-tree for large data sets in NDDSs. NSPBL constructs a tar-
get NSP-tree by repeatedly partitioning the underlying space of the data set
rather than partitioning the data set directly. To avoid accessing individual in-
put vectors, it partitions the space based on the histograms for component let-
ters of the vectors. To achieve better efficiency and effectiveness of bulk-loading,
NSPBL adopts several strategies including partitioning the current space rather
than the whole space, splitting an overflow node into multiple nodes rather than
always two nodes, applying effective heuristics to choose balanced space splits,
and associating a buffer page to each leaf node.

Our experimental results demonstrate that NSPBL significantly outperforms
the conventional TL method and the popular generic bulk-loading algorithm
GBLA [3], especially when being used for large data sets, for skewed data sets,
and with limited available memory. The target NSP-trees obtained from all the
algorithms have comparable searching performance and space utilization.
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