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Abstract. We address the problem of maintaining continuous skyline
queries efficiently over dynamic objects with d dimensions. Skyline queries
are an important new search capability for multi-dimensional databases.
In contrast to most of the prior work, we focus on the unresolved issue
of frequent data object updates. In this paper we propose the ESC al-
gorithm, an Efficient update approach for Skyline Computations, which
creates a pre-computed second skyline set that facilitates an efficient and
incremental skyline update strategy and results in a quicker response
time. With the knowledge of the second skyline set, ESC enables (1)
to efficiently find the substitute skyline points from the second skyline
set only when removing or updating a skyline point (which we call a
first skyline point) and (2) to delegate the most time-consuming skyline
update computation to another independent procedure, which is exe-
cuted after the complete updated query result is reported. We leverage
the basic idea of the traditional BBS skyline algorithm for our novel
design of a two-threaded approach. The first skyline can be replenished
quickly from a small set of second skylines - hence enabling a fast query
response time - while de-coupling the computationally complex mainte-
nance of the second skyline. Furthermore, we propose the Approximate
Ezclusive Data Region algorithm (AEDR) to reduce the computational
complexity of determining a candidate set for second skyline updates. In
this paper, we evaluate the ESC algorithm through rigorous simulations
and compare it with existing techniques. We present experimental results
to demonstrate the performance and utility of our novel approach.

1 Introduction

Skyline query computations are important for multi-criteria decision making
applications and they have been studied intensively in the context of spatio-
temporal databases. Skyline queries have been defined as retrieving a set of
points, which are not dominated by any other points. An object p dominates p’,
if p has more favorable values than p’ in all dimensions. Some of the prior work on
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skyline queries assumed that data objects are static [13,15]. Other approaches
assumed that the skyline computation involved only a partial of dynamic di-
mensions [4]. In this paper, we address Efficient Updates for Continuous Skyline
Computations over dynamic objects (ESC for short), where objects with d dy-
namic dimensions move in an unrestricted manner. Each dimension represents
a spatial or non-spatial value. Towards an efficient continuous skyline computa-
tion the following challenges must be addressed: an effective incremental skyline
query result update mechanism that is needed provides a fast response time of
reporting the current query results, and an efficient strategy to reduce the search
space dimensionality is required.

Existing work [6, 14, 19] generally computes a number of data point subsets,
each of which is exclusively dominated by one skyline point. Therefore, when a
skyline point moves or is deleted, only its exclusively dominated subset must be
scanned. The determination of such an exclusive data set is very computationally
complex in higher dimensions and it incurs a serious burden for the system
in a highly dynamic environment. Therefore, these systems are often unable
to provide up-to-date query results with a quick response time. We propose
the ESC algorithm to efficiently manage the query results by delegating the
time-consuming skyline update computations to another independent procedure,
which is processed after the query processor reports the latest skyline query
results. The key idea is to maintain a second skyline (or S2) set which is a
skyline candidate set pre-computed when a traditional skyline (which we refer
as the first skyline, S1) point requests an update. With the knowledge of the
second skyline set, the skyline query result can be updated within a limited
search space and the expensive computations (e.g., searching for new second
skylines to substitute a promoted second skyline point) can be decoupled from
the first skyline update computations.

Figure 1 shows the framework of the ESC system. The query processor ini-
tially computes the first and second skyline points. Any updates (A) performed
on the data set are also submitted to the query processor. First, Task (B) ex-
amines whether the update request (e.g., inserting or removing a data point)
affects the first skyline set. If the request point becomes a new S1 point, Task B
inserts the new S1 point into the current S1 set and removes the current skyline
points that are dominated by the new S1 point. These discarded S1 points (new
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S2 points) are processed by Task (D) later to update the S2 set. In case that
an update request stems from a removed or moving S1 point, some exclusive
points are left un-dominated. The query processor searches for new substitute
S1 points only from the S2 set. The query results (C) are immediately output
as soon as Task (B) is completed. The processing time of the sequence of Tasks
(A)(B)(C) is the system response time to a skyline query update. Task (D)
maintains the S2 points when any S2 point is inserted or removed. To enhance
Task (D), which involves the expensive computation of determining exclusive
data points where (D) searches for new or substitute S2 points from the rest of
the data set, we also propose an approximate exclusive data region computation
with lower amortized cost than existing techniques [14,19]. The remainder of
this paper is organized as follows. Section 2 describes the related work. Section 3
presents and details our continuous skyline query processing design. We exten-
sively verify the performance of our technique in Section 4 and finally conclude
with Section 5.

2 Related Work

Borzsonyi et al. [1] proposed the straightforward non-progressive Block-Nested-
Loop (BNL) and Divide-and-Conguer (DC) algorithms. The BNL approach re-
cursively compares each data point with the current set of candidate skyline
points, which might be dominated later. BNL does not require data indexing
and sorting. The DC approach divides the search space and evaluates the sky-
line points from its sub-regions, respectively, followed by merge operations to
evaluate the final skyline points. Both algorithms may incur many iterations
and they are inadequate for on-line processing. In [17], Tan et al. presented two
progressive processing algorithms: the bitmap approach and the inder method.
Bitmap encodes dimensional values of data points into bit strings to speed up
the dominance comparisons. The index method classifies a set of d-dimensional
points into d lists, which are sorted in increasing order of the minimum coor-
dinate. Index scans the lists synchronously from the first entry to the last one.
With the pruning strategies, the search space is reduced. The nearest neigh-
bor (NN) method [5] indexes the data set with an R-tree. NN utilizes nearest
neighbor queries to find the skyline results. The approach repeats the query-
and-divide procedure and inserts the new partitions that are not dominated by
some skyline point into the to-do list. The algorithm terminates when the to-do-
list is empty. In [13], a branch and bound skyline (BBS) algorithm traverses an
R-tree to find the skyline points. Although BBS outperforms the NN approach,
the performance can deteriorate due to many unnecessary dominance checks.
Finally, many of the recent techniques aim at continuous skyline support for
moving objects and data streams. Lin et al. [8] present n-of-N skyline queries
against the most recent n of N elements to support on-line computation against
sliding windows over a rapid data stream. Morse et al. [11] propose a scalable
LookOut algorithm for updating the continuous time-interval skyline efficiently.
Sharifzadeh et al. [16] introduce the concept of Spatial Skyline Queries (SSQ).
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Given a set of data points P and a set of query points @), SSQ retrieves those
points of P which are not dominated by any other point in P considering their
derived spatial attributes to query points in ). For moving query points, a con-
tinuous skyline query processing strategy is presented in [4] with a kinetic-based
data structure. However, prompt query response is not considered in the design.
A suite of novel skyline algorithms based on a Z-order curve [3] is proposed
in [6]. Among the solutions, ZUpdate facilitates incremental skyline result main-
tenance by utilizing the properties of Z-order curve. Other related techniques
can be found in the literature [2,19,9, 12, 18]. However, all the aforementioned
studies differ from the main goal of this research — supporting frequent skyline
data object updates efficiently while providing a quick response.

3 ESC Algorithm

3.1 The Problem Definition of Continuous Skyline Queries
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The formal definition of skyline points in d-dimensional space is a distinct
object set P, where any two objects p = (21, ...,24) and ¢ = (y1,...,y4) in the
set satisfy the condition that if for any k,zr < yg, there exists at least one
dimension of m < d that satisfies x,,, > y,. We say p dominates ¢ (p I ¢ for
short), iff zx < yg, Yk (1 < k < d). The general setup of the problem consists
of a set of dynamic query and data objects with d dimensions. Moving objects
can freely move in an unrestricted and unpredictable fashion, meaning that their
parameters x; may arbitrarily change their values. The major challenging issue
of a continuous skyline query is to avoid unnecessary dominance checking on
irrelevant data points for skyline query result updates. After observing the BBS
algorithm [13], we deduced that when evaluating the skyline query result, a set
of second skyline (S2) points can always be obtained with little extra work while
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retrieving the first skyline (S1) points. We refer to the traditional skyline query
result as the first skyline, consisting of S1 = {si,...,s7}. The second skyline
S2 = {s},..., 55} is defined as follows:

Definition 1: A data point p is a second skyline point iff p € (P — S1)
and fip’ € (P — S1 —p), p' I p. Informally, all S2 points are dominated by S1
and the rest of the data points (P — S1 — S2) are dominated by both S1 and
S2.

When a S1 point s¢ is removed or at least one value of its dimensions changes,
the S2 points are naturally considered as new S1 point candidates to “substitute”
st. The features of a S2 set are as follows: (1) it is a pre-computed set that
covers all the new S1 candidate points, and (2) S2 is a relatively small data set.
Therefore, with the knowledge of S2, the query processor can efficiently update
the query result and provide a quicker response time to the query point. An
example is shown in Figure 2. If a S1 point s? moves to Region I, the search
space for ESC to update the query result only involves the S1 set and the S2 set.
In this case, s? remains a S1 point, but it dominates si. ESC needs to remove s{
from the S1 set and si becomes a new S2 point, since no existing S2 point can
dominate it. Due to the movement of s?, ESC searches for new S1 points from
the S2 set. Since s3 (an exclusive data point) is left un-dominated, s3 becomes
a new S1 point and is removed from the S2 set. The ESC algorithm delegates
the necessary S2 maintenance (an independent procedure from S1 updates) to
the query processor after S1 updates are completed. For example, new S2 points
must be retrieved to substitute s3. To avoid scanning through the entire data
points in Region I11 for new S2 points, we propose an approzimate exclusive
data region (AEDR) computation in contrast to a traditional exclusive data
region (EDR) computation. Based on our observation and analysis, we provide
the lemmas for incrementally updating the skyline query results in the following
sections. Table 1 summarizes the symbols and functions we use throughout the
following sections.

Symbols Descriptions

P Number of data objects

d Number of dimension

S1 First skyline point set (traditional skyline query result set)
S2 Second skyline point set

DataRtree Disk-based Rtree for indexing P

S1Rtree Main-memory Rtree for indexing S1 points

S2Rtree Main-memory Rtree for indexing S2 points

EDR(p) A set of data points in the exclusive data region

AEDR(p) A set of data points in the approximate exclusive data region
W (p) A set of skyline points in the dominance area of p
p.DomArea  |The dominance area of p

Table 1. Symbols and functions

3.2 Second Skyline Computation

The existing work [14,19] performs the time-consuming exclusive data point
computations for the skyline query result updates. In Figure 3, the gray areas
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represent the traditional EDRs that contain exclusive data points. An EDR
is not usually pre-computed because of the complexity of the calculation. In
contrast, since the S2 points (new S1 candidates) can be easily computed before
any S1 point issues an update, the query processor is able to satisfy a query
request with the latest query result and with a quicker response time. To further
reduce the search space of visiting S2 points to update the skyline query result,
we introduce and define a dominance set for each S1 point si. A dominance set
contains a group of S2 points which are dominated by s{ (denoted by D(s?))
to substitute a removed or moving s{ point when dominance relationship has
changed. For example in Figure 3 the dominance set of s? includes s3. If s?
is removed, ESC only checks the S2 points in D(s?), instead of the entire S2
points. In this example, s3 becomes a new S1 point, so it is removed from S2.
We formally define a dominance set and establish Lemma 1 which states that a
dominance set must contain all the necessary S1 candidate points as follows:
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Fig. 3. Dominance set v.s. EDR set

Definition 2: (Dominance Set: D(s}))
A dominance set of a skyline point s¢ (denoted by D(s%) = {s5,...s5}) is a
S2 subset where Vs¥ € D(si), st  s¥, and 0 < (s¥.mindist — si.mindist) <
(s¥.mindist — si.mindist), Vsi € (S1 — st). Each D(s!) is exclusive from any
other dominance set; therefore, S2 = D(S1), where D(S1) = D(s1)+...+D(s7")
and m is the size of S1.

Lemma 1: Given a D(s}). Let A be the skyline points extracted from
EDR(st). D(s%) must contain A (A is a subset of D(s?)).

Proof: (By contradiction) Let p € A be a point not included in D(st). This is a
contradiction, since p is only dominated by s%. Therefore, it must be in D(s}).
Therefore, D(s}) must contain all points in A.l

In Figure 3, D(s?) = {s},s3} contains two S2 points in the set which is
a superset of A = {s3}. One can observe that some non-exclusive S2 points
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(e.g., s and si) can be assigned to different dominance sets. Intuitively, the
S1 point with the minimal mindist to the query point (which has the largest
dominance area) may contain the most S2 points. Thus, it might produce a
load imbalance problem because the query processor needs to perform many
dominance checks when a skyline point with a short mindist moves. To ensure
that each dominance set has evenly distributed S2 points, the ESC algorithm
inserts a non-exclusive S2 point s into D(s]), where s7 has the minimal value of
(s¥.minsit — s{.mindist) among all other S1 points. In our algorithm, we utilize
the BBS approach to initially compute the skyline query results. Along with the
query evaluation, S2 points and the dominance set of each S1 point are computed
during the execution of the modified BBS dominance-checking procedure which
runs a window query to determine a set of candidate skyline points. Let e be the
next discarded entry during the process of the dominance-checking procedure
(e is dominated by some S1 point). Therefore, the algorithm proceeds to insert
e into a dominance set and examine whether e is a S2 point. Given is a heap
H = {s¢...s}} that is the set of the existing skyline points whose entries intersect
with e. Since BBS always visits entries in the ascending order of their mindist,
we have Vs € H, s.mindist < e.mindist. With the sorting of H by the mindist in
descending order, 3s] € H, s] - e and the value of (e.minsit — s].mindist) > 0
is minimal among all other S1 points. Next, Lemma 2 is provided to prove the
correctness of the S2 extraction.

Lemma 2: Given a point p which is dominated by S1’ = {sﬁs{}, where
S1" C S1. If Vst € D(S1'), s ¥ p, p must be a S2 point.

Proof: Since p is not dominated by (S1—S1’), p can never be dominated by any
S2 point in D(S1 — S1’) either, by transitivity. Therefore, if p is not dominated
by any S2 point in D(S1’), p is guaranteed to be a final S2 point.li

The pseudo code is shown in Algorithm 1, where the additional conditions
(Lines 10-16 and 19-27) are inserted into the dominance-checking code for re-
trieving S2 points and determining the dominance sets. Line 4 sorts the heap in
descending order of the mindist such that the skyline points with larger mindist
are examined first. Line 12 obtains the dominating skyline point e, for p which
is inserted into D(e,.) later. Based on Lemma 2, Lines 13-15 check whether p is a
S2 point. Lines 20-23 ensure that each S2 is a data point. If e is an intermediate
node, BBS is performed to retrieve local skyline points from the entry. Lines 23
and 25 insert the final S2 points O’ into S2 and updates the S2 set by deleting
those S2 points that are dominated by O’. To find such a set, the algorithm
performs S2Rtree.W(0O'), which is a window query that finds the S2 points in
the dominance areas of O’.

3.3 Description of the ESC Algorithm

The main procedures of the ESC algorithm include S1FEvaluation for the S1
updates and S2FEvaluation for the S2 set maintenance. ESC delegates most of
expensive computations that are irrelevant to S1 query results to S2Fvaluation.
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Algorithm 1 ESC dominance-check(p)

1: insert all entries of the root R in the heap
2: isDominated = false, e, = ¢
3: while heap not empty do

4 remove top heap entry e //the heap is sorted in descending order of mindist.
5 if (e is an intermediate entry) then

6: for (each child e; of e) do

7 if (e; intersects with p) then insert e; into heap

8 end for

9 else

10: if (e p) then

11: isDominated = true;

12: let e, = e, if e, is not empty //e,: the first S1 point dominating p
13: for (each S2 skyline point s; € D(e)) do

14: if (s5 F p) then set p as a regular data point and return isDominated
15: end for

16: end if

17: end if

18: end while
19: if (isDominated) then

20: if (p is an intermediate entry) then

21: perform DataRtree.BBS(p) that returns a skyline point set O
22: let O’ € O be the data set that is not dominated by S2.

23: S2 = S2+ O’ — S2Rtree.W(0O’) and insert O’ into D(e,)
24:  else

25: S2 = S2+ p — S2Rtree.W (p) and insert p into D(e;)

26: end if

27: end if

28: return isDominated

To improve the performance of S2Evaluation, we introduce the concept of an
approximate exclusive data region (AEDR) that helps to reduce the amortized
cost of the S2 updates. When d = 2, the traditional EDR is a regular rectangle.
However, a EDR has an irregular shape in higher dimensions. For example, in
Figure 4(a), s is a skyline point to delete. The EDR is a irregular rectangle after
deleting the overlapping area with the dominance area of s§ and sj. Based on
this observation, we can obtain a regular shaped EDR only when we consider the
skyline points which have a value x? larger than that of s} in only one dimension.
Because these points are completely “outside” of the EDR, they can trim the
entire areas that represent the upper dimensional value z°.

Definition 3: (AEDR)
Let sb = (x',22,...,2%), and s} = (y*, 9%, ...,y?). AEDR(s%) = sb.DomArea —
(sh.DomArea N s}.DomArea), s} € (52 — s3), there exists exactly one % < y*,
1<k<d.

For example, in Figure 4(b), s} is the skyline to delete and the solid rectangle
box is an AEDR, which is a regular shape resulting from trimming the overlap-
ping dominance areas of s§ and sj. ESC utilizes the AEDR to search for the
new S2 points by traversing the R-tree. Each MBR e extracted from the heap
is checked whether it intersects with the AEDR. If true, ESC checks whether e
is dominated by the existing S2 points.

When a S1 point p is newly inserted into the system or when it moves,
ESC needs to re-group a new dominance set for p. A simple solution is to check
every S2 point which currently belongs to a dominance set of some S1 point
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(a) 3-d EDR example (b) AEDR example
Fig. 4. Traditional EDR v.s. AEDR

and migrate the S2 point to the dominance set of p if necessary. Instead, we
provide FindDomSet, (the pseudo code is presented in Algorithm 2) applying
the following Lemma that presents a heuristic to avoid checking the entire S2
set.

Lemma 3: Given a new S1 point s, re-group the points in D(s}), only
where Vsi € (S1 — s¥), si.mindist < s¥.mindist.

Proof: Proof by definition. Let s}’ be a S1 point that has the value of (s{.mindist
> sh.mindist). Vp € D(s¥), the value of (p.mindist — s*.mindist) must be
smaller than the value of (p.mindist — s¥.mindist). p must remain in the same
dominance set of s{’. Therefore, it is not necessary to re-group these points in

D(s¥). I

Algorithm 2 FindDomSet(s%)

1: for (each p € D(s!), where s% € (S1 — s¥) and s} .mindist < s¥.mindist ) do
2: if (s¥ F p) then

3: D(s%).remove(p)
4: D(s¥).insert(p)
5. end if
6:

end for

The ESC algorithm is implemented in an event-driven fashion to handle
the skyline query updates. The main procedures include S1Evaluation (Algo-
rithm 3) and S2FEwvaluation (Algorithm 4). When the query processor receives
a request (S1, S2, or regular data point), it first performs S1FEvaluation to ex-
amine whether the request affects the S1 set (the query result) and outputs
the updated S1 points if the set has been modified. Then S2Fvaluation pro-
cesses the rest of non-S1-related computations. In the S1Fvaluation procedure,
Line 6 performs the S1Rtree.dominace-descending function where the dominance
checks access the S1Rtree in the descending order of the mindist of the entries.
We use the same principle of the ESC dominance-check algorithm (discussed in
Section 3.2) to find the dominating S1 point s¥ (Line 7) for a request point p. If
p becomes a new S2 point evaluated by S2Evaluation, p is inserted into D(s¥).
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Lines 9—10 update the S1 set if p is a new S1 point and delete the I set, which
is an existing S1 set dominated by p. I is obtained by executing a window query
S1Rtree.W (p), using the dominance area of p as the range on the S1Rtree. Line
11 inserts the new S1 point p into S1 1 and S1Evaluation will later pass this set
to S2Fvaluation where FindDomSet(S1) is performed to find a S2 set for D(p).
Since all the points in I become new S2 points (inserted into S2 in Line 12),
the S2 set is updated later in S2Fvaluation by adding the 52 set. Lines 15—24
basically check all the S2 points € D(p’) whether they are still dominated by
p after p moves or is removed from the system. In Line 18, since o (new S1
point after p moves) can never dominate any S1 point, o is added to the S1 set
directly. This is because o is an exclusive data point, and therefore o must not
dominate any existing S1 points.

Algorithm 3 S1Evaluation(p)

: let S1 = ¢ be a new S1 point set
let S2 = ¢ be a new S2 point set
let S2 = ¢ be the existing S2 points to remove
p’ be the last-updated point of p
S1=81-p’,if p was a S1 point
. isDomByS1 = S1Rtree.dominace-descending(p)
let slf be the S1 point with the minimal (p.minsitfslf.mindist) value among all other S1 points
if (isDomByS1 == false) then
I = S1Rtree.W (p)
10: S1=814+p—-1
11:  Sl.insert(p)
12:  S2.insert(I)
13:  D(p).insert(i), Vi € I
14: end if
15: if (p was a S1 point) then
16:  for (each o € D(p’)) do

17: if (S1Rtree.dominace-descending(o) == false) then
18: S1=S1+4o0

19: D(p).remove(o)

20: S1l.insert(o)

21: 'S2.insert (o)

22: end if

23:  end for

24: end if

25: output the updated S1 set and continue S2Evaluation(p, isDomByS1, s’f, SArl, SArQ, 'S2) procedure

S2Fvaluation is a more expensive procedure than S12Fvaluation, because
it involves AEDR computations to find a set of new S2 points to substitute a
moving or removed S2 point. Lines 6—7 are processed if p is a new S2 point.
The insertion of p may dominate some existing S2 points; therefore, Line 6 finds
the dominated S2 points (S2Rtree.W (p)) and removes them from the S2 set.

Similarly, in Line 10, since each point in S2 was originally a S1 point, the D(gé)
set is directly removed from the S2 set without performing a window query to
look for the dominated points. The deletion of the S2 point set S2 is executed in
Lines 11—12 and A contains the substitute S2 points, after S2 is removed from
the S2 set. Finally, FindDomSet is performed to find a group of S2 points for
each point in S1.
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Algorithm 4 S2FEvaluation(p, isDomByS1, s¥, ﬁ, ?2, S52)

1: Let p’ be the last-updated point of p
2: S2.insert(p’), if p was a S2 point
3: if (isDomByS1 == true)) then

4 isDomByS2 = S2Rtree.dominace(p)

5 if (isDomByS2 == false)) then

6: S2 = S2+ p — S2Rtree.W (p)

7 D(s¥).insert(p) and D(s)fl).remove(p), where s)f/(;é s¥) was the dominating point of p
8:  end if

9: end if

10: S2 = 82+ §2 — D(52)

11: A = DataRtree-AEDR(S2), where A is a regular data set and is not dominated by S2 points.
12: S2 = S2 — 52 + A //A substitutes S2

13: FindDomSet(évl)

4 Experimental Evaluation

We evaluated the performance of the ESC algorithm by comparing it with
the well-known BBS approach [14] and the DeltaSky algorithm [19]. For the
EDR computations in BBS, we adopt the ABBS (Adaptive Branch-and-Bound
Search) [19] to avoid complex irregular-shaped EDR computations. ABBS ba-
sically traverses the R-tree and determines whether an intermediate MBR e;
intersects with the dominance area of a skyline to delete. If this is true, it fur-
ther checks whether any existing skyline dominates e;. All of these algorithms
utilize R-trees as the underlying structure for indexing the data and skyline
points. We use the Spatial Index Library [7] for the R-tree index. A page size
of 4Kbytes is deployed, resulting in node capacities between 94 (d = 5) and 204
(d = 2). S1 and S2 sets are indexed by a main-memory R-tree to improve the
performance of the dominance checks. Our data sets are generated on a terrain
service space of [0,1000] with the random walk mobility model [10]. Each object
moves with a constant velocity until an expiration time. The velocity is then re-
placed by a new velocity with a new expiration time. We generated from 100,000
to 1,000,000 normal distributed data points with a dimension in the range of 2
to 5. The object update ratio is set in a range from 1% to 10%. Experiments are
conducted with a Pentium 3.20 GHz CPU and 1 GByte of memory. The query
results are evaluated in an event-driven approach. Therefore, the query processor
calls different procedures based on each specific event type. The main measure-
ment in the following simulations is the response CPU time (from receiving a
data update request to the S1 update completion time or the evaluation time of
S1Evaluation) and the overall CPU time (the evaluation time of S1Evaluation
plus S2Fvaluation). For ABBS and DeltaSky the overall CPU time also repre-
sents the response time. Our experiments use several metrics to compare these
algorithms. Table 2 summarizes the default parameter settings in the following
simulations.

Parameter Default Range

P 100,000 100,000, 500,000, 1,000,000
d 5 2,3,4,5

Fupdate 10% 1%, 5%, 10%

Table 2. Simulation parameters
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4.1 Update Ratio

First, we evaluated the impact of the update ratio. Figures 5(a) and (b) show the
response time and overall CPU time as a function of update ratio, respectively,
and Figure 5(c) illustrates the I/O cost for the three methods. We fix the data
cardinality at 100,000 and dimensionality at 5. The ESC approach achieves a
better performance than ABBS and DeltaSky for all update rates. The degrada-
tion of DeltaSky is caused by the expensive Maximum Coverage computations
scanning over the projection lists and the increase of skyline point size which
incurs bigger projection lists. ESC also outperforms both methods in terms of
the overall CPU time, since the amortized cost of the AEDR computations and
exclusive data evaluation is lower than the other two methods.

600
3 o oot - g
o &
E 400 g .
2 300 S S
N 5 Q
% 200 [ e =
g g
2 100 3
o -

o0& — 0
1 5 10 1 5 10
(a) Response CPU time (b) Overall CPU time (c) I/O cost

Fig. 5. Performance v.s. Update Ratio (P = 100k, d = 5)

4.2 Dimensionality

Next we report on the impact of the dimensionality on the performance of all
three methods. Figures 6(a)(b)(c) show the CPU overheads and I/O cost v.s. the
dimensionality ranging from d = 2 to 5, respectively. When d increases, the per-
formance of all methods is degraded because the exclusive data point computa-
tions are complex and R-trees fail to filter out irrelevant data entries in higher
dimensions. From all the figures, we can see that ESC outperforms ABBS and
DeltaSky in terms of the CPU time and I/O cost.

250
ESC
DeltaSky
200 ABBS

150

ESC
DeltaSky -
ABBS -

ESC
DeltaSky -
ABBS -

1/0 Cost

100 =3

Response CPU Time (sec)
W
]
1S]
Overall CPU Time (sec)
(4]
&
IS

(a) Response CPU time (b) Overall CPU time (c) I/O cost
Fig. 6. Performance v.s. Dimensionality (P = 100k, fupdate = 10%)
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4.3 Cardinality

Figures 7(a)(b) show the response and overall CPU time as a function of the
number of data points, respectively, and Figure 7 (¢) illustrates the corresponding
I/0 cost. Overall, the CPU overheads increase as a function of the number of data
points. ESC achieves a significant reduction in terms of the response CPU time
compared to ABBS and DeltaSky. ESC takes advantage of the pre-computed
S2 points retrieved by the latest S2FEvaluation procedure and quickly locates
relevant new S1 candidates for substituting a removed or moving S1 point. As
we can see from the experimental results, the adoption of AEDR helps ESC to
achieve better overall CPU performance and competitive I/O cost with DeltaSky.
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8 6000 | DeltaSky =& 5 6000 [ DeltaSky -->¢-- 1400 -| DeltaSky -
o ABBS Y- 3 ABBS Y- - 1200 ABBS K-
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(a) Response CPU time (b) Overall CPU time (c) I/O cost

Fig. 7. Performance v.s. Cardinality (d =5, fupdate = 10%)

5 Conclusions

In this paper, we propose an incremental skyline update approach. Our ESC
algorithm achieves a faster response time and overall CPU performance. With
the adoption of the pre-computed S2 sets, ESC can efficiently update the sky-
line query results and delegate the most complex computations to a separate
procedure that executes after the updates of the query results are completed.
An approximate exclusive data region (AEDR) is proposed and our experiments
confirm the feasibility of AEDR which has a low amortized cost of the exclu-
sive data evaluation in high dimensional and dynamic data environments. The
S1FEvaluation procedure first examines all the incoming data requests and up-
dates the S1 result if necessary and the S2Fvaluation procedure integrates our
lemmas and heuristics to achieve a low CPU overhead and reduced I/O cost.
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