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Abstract. With the exponential increase in the amount of XML data
on the Internet, information retrieval techniques on tree-structured XML
documents such as keyword search become important. The search results
for this retrieval technique are often represented by minimum connect-
ing trees (MCTs) rooted at the lowest common ancestors (LCAs) of the
nodes containing all the search keywords. Recently, effective methods
such as the stack-based algorithm for generating the lowest grouped dis-
tance MCTs (GDMCTs), which derive a more compact representation
of the query results, have been proposed. However, when the XML doc-
uments and the number of search keywords become large, these methods
are still expensive. To achieve more efficient algorithms for extracting
MCTs, especially lowest GDMCTs, we first consider two straightforward
LCA detection methods: keyword B+trees with Dewey-order labels and
superimposed code-based indexing methods. Then, we propose a method
for efficiently detecting the LCAs, which combines the two straightfor-
ward indexing methods for LCA detection. We also present an effective
solution for the false drop problem caused by the superimposed code. Fi-
nally, the proposed LCA detection methods are applied to generate the
lowest GDMCTs. We conduct detailed experiments to evaluate the ben-
efits of our proposed algorithms and show that the proposed combined
method can completely solve the false drop problem and outperforms
the stack-based algorithm in extracting the lowest GDMCTs.

1 Introduction

Recently, there has been an exponential increase in the amount of data, such as
life science data [20,22], bibliography data [24] and online encyclopedia data [23],
that are disseminated and shared over the Internet in the form of XML docu-
ments. These are often modeled as ordered labeled trees. Information retrieval
techniques on tree-structured XML documents such as keyword search are there-
fore important. Keyword search allows users to find relevant information without
any prior knowledge of the schema of the underlying data or any need to learn
complex queries [1,2,4,11,14,25]. For example, assume an XML document con-
sists of Shakespeare’s plays in Figure 1. Users might be interested in finding the



       [root,1] 
(shakespear)

[p1,1.1]
  (play)

[t1,1.1.1]
    (title)

[a1, 1.1.2]
   (act1)

[l1,1.1.1.1]
  (Hamlet)

[p2,1.2]
 (play)

[t2,1.2.1]
   (title)

[a2, 1.1.3]
   (act2)

  [l2,1.1.2.1]
(King, Mother)

[l3,1.1.3.1]
  (Brother)

[a3, 1.2.2]
   (act1)

[a4, 1.1.3]
   (act2)

[l4,1.2.1.1]
(King, Lear)

   [l5,1.2.2.1]
(Mother, Duke)

[l6,1.2.3.1]
    (King)

Fig. 1. An example XML document tree (labeled by Dewey number)

1.1.3.1 1.1.1.1
1.1.2.1

1.2.1.1

1.2.3.1

1.2.2.1 1.2.1.1
1.1.2.1 

1.2.2.1

DukeBrother King Lear MotherHamlet

Fig. 2. An example keyword B+tree

relationship between the query keywords king and mother. The search system
returns the relevant answers corresponding to the query keywords that might all
appear within the same act or in different acts but within the same play, and so
on.

In keyword searches over XML documents, the search results are often rep-
resented by minimum connecting trees (MCTs) rooted at the lowest common
ancestors (LCAs) of the nodes containing all the query keywords. Therefore,
keyword searching over XML document trees resolves the problem of detecting
the LCAs of the nodes that contain all the query keywords. For example, the an-
swer for the query by keywords king and mother over the XML tree of Figure 1
might be the subtrees rooted at [a1] and [p2].

Recently, many studies have been conducted on detecting the LCAs of the
nodes containing query keywords over XML documents [8,12,14,18,25]. However,
these methods only focus on finding LCAs and do not consider techniques for
extracting XML subtrees rooted at the LCAs. To provide effective query answers
to the users, the query system must efficiently extract the MCTs that are the
subtrees rooted at the LCAs containing all the keywords. Hristidis et al. [10] pro-
pose an efficient stack-based algorithm for computing the MCTs and the lowest
grouped distance MCTs (GDMCTs) that derive more compact representation of
the query results. However, Hristidis’s algorithm still results in expensive time
complexity when handling large XML documents with complex keyword queries.



Therefore, a more efficient algorithm for extracting MCTs, especially the lowest
GDMCTs containing all the query keywords, is necessary.

We make the following main technical contributions in this paper: 1) To ef-
fectively detect the LCAs of the nodes containing all the query keywords, we first
consider two straightforward indexing methods: keyword B+trees with Dewey-
order labels and superimposed code-based methods. In the first method, the
nodes of the XML tree are labeled by Dewey numbers and stored in a B+tree
index. Then, the LCAs of the nodes containing the query keywords can be found
by comparing the Dewey-order label of each node containing the corresponding
keyword. In the superimposed code-based method, fixed-length superimposed
codes (signatures) are first assigned to the nodes of the XML tree. Second, the
query signature is determined by the logical OR of the signatures of all the
query keywords. Finally, the LCAs of nodes containing all the query keywords
are determined by the logical AND of the query signature and the signature
of each node of the XML tree. However, false drop problems may occur in the
superimposed code-based method; 2) Keyword B+trees with Dewey-order labels
and superimposed code-based methods are effective in finding the LCAs but ex-
pensive in query cost. To reduce the query cost, we propose an efficient LCA
detection method that combines the keyword B+tree with the Dewey-order la-
bel and the superimposed code-based indexing methods. In this method, both
the superimposed codes and the Dewey-order labels of the nodes are first stored
in a B+tree index. Second, it searches for the leaf nodes in the B+tree by the
signature of any one query keyword. After finding the leaf nodes, the LCAs are
determined by a logical AND operation between the query signature and those
of the corresponding nodes. The combined method reduces the comparisons of
many internal nodes and the query can be completed using only one query key-
word. Therefore, it is superior in performance compared with the two original
methods. However, the false drop problem still cannot be avoided; 3) We also
present an effective method to solve the false drop problem. In this method, the
signatures of all the keywords are used to find the corresponding leaf nodes in
the B+tree index. Then, the LCAs can be determined by detecting the common
Dewey-order labels of the corresponding nodes; 4) We apply the proposed LCA
detection methods to generate the lowest GDMCTs. We perform experiments to
evaluate the performance of detecting LCAs comparing the proposed combined
method with the original ones. The experimental results indicate that our pro-
posed LCA detection method is cost-efficient and can completely solve the false
drop problem. We also conduct experiments to compare the query time using
our proposed methods with that using the stack-based method. The experimen-
tal results show that the proposed combined method can completely solve the
false drop problem and outperforms the previously known stack-based method
in extracting the lowest GDMCTs.

The remainder of the paper is organized as follows. In Section 2, we briefly
introduce related work. Section 3 describes the notation and definitions of LCAs
and MCTs. In Section 4, we discuss two straightforward methods for finding
LCAs and propose an efficient method combining the two methods. In Section 5,



we describe the lowest GDMCTs extraction algorithms based on the proposed
LCA detection methods and compare the query costs of the proposed methods
and the SA algorithm. Section 6 describes the experimental evaluation, shows
the benefits of our approach and compares it with the stack-based algorithm.
Finally, Section 7 concludes this paper and outlines future work.

2 Related Work

The first research area relevant to this work is LCA computation to detect the
LCA of two or more nodes over tree-structured data such as XML documents.
Computation of the LCA of two nodes has been intensively studied over the past
30 years. References [3] and [21] first introduced the problem of finding LCAs
in trees. In [9], Harel and Tarjan introduced upper and lower bounds for the
problem of LCAs. In [17], Schieber et al. presented a simpler algorithm with
optimal asymptotic bounds for finding the LCAs in trees. References [9] and [15]
showed that the LCA query can be computed in constant time after linear-time
preprocessing in arbitrarily directed trees. However, these algorithms are still
too complicated to implement effectively. In [25], Xu et al. proposed efficient
algorithms for computing the smallest LCAs in XML databases using Dewey-
order labels. Computing the LCA of nodes utilizing these labels does not require
any disk access that would degrade the performance of the query. The concept
of a binary superimposed code was first introduced by Kautz and Singleton [13].
Since then, it has been extensively studied and applied to many areas such as
data security and cryptology [7, 19], broadcasting in radio networks [5] and so
on. In our proposed method, we use Dewey-order labels and superimposed codes
to find the LCAs.

The second area of research relevant to this paper is the work on keyword
search over XML documents. XRANK [8] considered the problem of producing
ranked results for keyword search queries in hierarchical and hyperlinked XML
documents. A specific document fragment, namely the subtree, is returned as
the keyword search results in XRANK. In [6], Cohen et al. proposed a semantic
search engine over XML documents that employed more techniques of informa-
tion retrieval than XRANK. However, these studies did not consider the prob-
lem of extracting the MCTs containing the query keywords. In [10], Hristidis et
al. proposed an effective stack-based algorithm (SA) for computing the lowest
GDMCTs rooted at the LCAs of nodes containing the query keywords. However,
as XML documents and the number of query keywords become larger because
of more complex queries, Hristidis’s algorithm still causes high query costs.

3 Notation and Definitions

In this section, we introduce notation and definitions of the LCAs and MCTs
used in this paper5. An XML document is represented by the conventional order

5 Some notation and definitions described in this section refer to the reference [10].



labeled tree T . Each node v of the XML tree T corresponding to an XML element
or leaf is labeled with a tag or string value λ(v). Each node is assigned a unique
id id(v) and a Dewey-order label lab(v) as a 2-tuple column [id(v), lab(v)], as
shown in Figure 1.

Definition 1 (LCA). Given a set of n nodes v1, ..., vn and an input XML tree
T , the LCA of the set of nodes v1, ..., vn, lca(v1, ..., vn) is defined as the node v

in T that is ancestor to all the nodes v1, ..., vn, and is farthest from the root.

Definition 2 (MCT). Given a set of n nodes v1, ..., vn and an input XML
tree T , the MCT of nodes v1, ..., vn is the minimum subtree Tm that connects
v1, ..., vn. Conversely, the MCT of nodes v1, ..., vn is the subtree rooted at the
LCA of v1, ..., vn.

Given a list of m keywords, k1, ..., km, the MCT of keywords k1, ..., km is the
MCT of nodes v1, ..., vn that contain k1, ..., km. For example, given two query
keywords (King, Mother) for the XML tree in Figure 1, the MCTs containing
both keywords are shown in (1 − 6) as follows, where each root of (1 − 6) is an
LCA that contains the two keywords.

root → p1 → a1 → l2

↘ p2 → t2 → l4 (1)

p2 → t2 → l4

↘ a3 → l5 (2)

root → p1 → a1 → l2

↘ p2 → a1 → l5 (3)

a1 → l2 (4)
root → p1 → a1 → l2

↘ p2 → a4 → l6 (5)

p2 → a3 → l5

↘ a4 → l6 (6)
Assume a list li(1 ≤ i ≤ m) of nodes that contain keywords ki. The number

N of MCTs for keywords k1, ..., km can be determined by the length of the list
|li| as follows:

N = |l1| × |l2| × ... × |lk|. (7)

Therefore, larger numbers of query keywords generate more MCTs. To reduce
the redundancy of MCTs, a set of MCTs can be combined into grouped distance
trees. We first define the distance MCT (DMCT) as follows.

Definition 3 (DMCT). Given a set of nodes v1, ..., vn and an input XML tree
T , the DMCT Td of the MCT Tm of nodes v1, ..., vn is the tree such that:

1. Td contains v1, ..., vn;
2. Td contains lac(vi, vj), where vi, vj ∈ [v1, ..., vn], i 6= j; and
3. there is an edge labeled with the distance d between each node v1, ..., vn and

lac(vi, vj).

The DMCTs corresponding to (1 − 6) are shown in (8 − 13) as follows:

root
3
→ l2

3

↘ l4 (8)

p2
2
→ l4

2

↘ l5 (9)

root
3
→ l2

3

↘ l5 (10)



a1
1
→ l2 (11)

root
3
→ l2

3

↘ l6 (12)

p2
2
→ l5

2

↘ l6 (13)
However, because the number of DMCTs is the same as the number of MCTs,

the problem of exponential explosion in the number of subtrees still cannot be
resolved. Next, we define grouped DMCTs as follows.

Definition 4 (GDMCT). A grouped DMCT (GDMCT) Tg contains the DMCT
Td if Td and Tg are isomorphic. Assume M is the mapping of the nodes in Td

to those in Tg, and M′ is a corresponding mapping of the edges of Td to those
of Tg, which must meet the following conditions.

1. If vd and vg are nodes of Td and Tg, respectively, and M(vd) = vg, then the
label of vg contains the ID of vd.

2. If ed and eg are edges of Td and Tg, respectively, and M′(vd) = vg, then the
labels of vd and vg are the same.

For example, the following GDMCTs (14), (15) and (16) contain DMCTs (8, 10, 11),
(9, 13) and (12), respectively.

root
3
→ [l2, l5]

3

↘ [l2, l4, l6] (14)

p2
2
→ [l5]

2

↘ [l4, l5] (15)
a1

1
→ [l2] (16)

Therefore, grouping the DMCTs into GDMCTs can effectively reduce the
number of results. However, there might be some GDMCTs with roots that are
ancestors of other GDMCTs. The lowest GDMCT rooted at the smallest LCA
does not contain any roots of other GDMCTs. The following gives the definitions
of the smallest LCA and lowest GDMCT.

Definition 5 (Smallest LCA). Given a set of nodes v1, ..., vn in an input tree
T , the smallest LCA of v1, ..., vn is the node v such that:

1. v is the LCA of v1, ..., vn; and

2. v is not an ancestor of any other LCAs of v1, ..., vn.

Definition 6 (Lowest GDMCT). Given a set of nodes v1, ..., vn in an input
tree T , a GDMCT is a lowest GDMCT if it is rooted at the smallest LCAs of
v1, ..., vn.

For the same example we used before, the lowest GDMCTs of GDMCT (14),
(15) and (16) are as follows:

p2
2
→ [l5]

2

↘ [l4, l5] (17)
a1

1
→ [l2] (18)



4 LCA Detection Method

In this section, we first consider two straightforward methods for detecting LCAs
of nodes containing query keywords: the method using keyword B+trees with
Dewey-order labels and the method based on superimposed codes. However, the
query cost is expensive using these methods because both require traversal of
all the nodes of the XML tree. To reduce the query cost, we propose an efficient
method combining both methods. We also present an effective solution for the
false drop problem caused by the superimposed code.

4.1 Keyword B+tree with the Dewey-order Label Method

Dewey order assigns a vector to each node representing the path from the root of
the tree to the node. The containment relationship (parent-child and ancestor-
descendant relationships) between two nodes can be conveniently and simply
detected by the path: the common ancestor of a set of nodes can be found by
comparing the Dewey-order labels of the nodes. For example, assume a query by
keywords (Hamlet, King) in the XML tree of Figure 1. The common ancestor
of the nodes [l1, 1.1.1.1] and [l2, 1.1.2.1] that contain the query keywords can be
found by their Dewey-order labels: their common ancestor is the node [p1, 1.1],
which has the common label of [l1, 1.1.1.1] and [l2, 1.1.2.1].

In this method, each query keyword is assigned to a B+tree index, and each
entry of the B+tree stores all the leaf nodes that contain the keyword, together
with their Dewey-order labels. For example, the XML tree of Figure 1 can be
transformed into the B+tree shown in Figure 2. In the query phase, assume a
query with keywords (Hamlet, King). We scan the keyword B+tree for each query
keyword to find the corresponding leaf nodes. In this example, the correspond-
ing node for keyword Hamlet is [a1, 1.1.1.1], and those for keyword King are
[a2, 1.1.2.1], [a4, 1.2.1.1] and [a6, 1.2.3.1]. Therefore, the LCA for the two query
keywords is the node [s1, 1.1], because of the common label between node a1

and a2. This method is effective for finding the LCAs, but it results in expensive
query cost, as we will discuss in Section 5.2.

4.2 Superimposed Code-based Method

Signature file partitioning techniques based upon superimposed codes are widely
applied in such research areas as information retrieval and data security. Assume
the size of the signature file F is S; according to superimposed coding, each query
keyword yields a word signature, i.e., a bit sequence of size S. These bit sequences
are OR-ed together to form the signature file F . To create a word signature, each
word is hashed to m bit positions in the range 1 − S. The corresponding bits
are set to “1”, while all the other bits are set to “0”. For example, consider the
two files F1 and F2 of Table 1. The signature of each file can be generated by
OR-ing the word signatures of all the keywords.

Given a query signature Q, for the signature Si of file Fi, if Q ∧ Si = Q, Fi

is a candidate of the query result, which is called a drop. However, some drops



F1 F2

Keyword Signature Keyword Signature
Lear 1000001 Hamlet 0100001
King 0100010 King 0100010
Duke 0101000 Mother 0100100

Brother 1100000 Brother 1100000
File signature 1101011 File signature 1100111

Table 1. Examples of file signatures

Query keywords Query signature F1 F2

King, brother 1100010 actual drop actual drop
King, mother 0100110 no match actual drop
Lear, King 1100011 actual drop false drop

Table 2. Examples of drops

actually do not correspond to all the query keywords. These drops are called
false drops, while the drops that actually satisfy the query predicate are called
actual drops. Table 2 shows example drops for different queries.

In this section, we propose an LCA detection method based on superimposed
codes. Assume the set of keywords of an XML document is K and the keywords
in the leaf node KNi are kj ∈ K(1 ≤ j 5 |KNi|). The superimposed code Si

for the leaf node KNi can then be calculated by OR-ing the signatures of the
keywords S(kj):

Si = S(k1) ∨ S(k2) ∨ . . . ∨ S(k|KNi|). (19)

Next, the superimposed code Spi of the parent node PNi can be computed
by:

Spi = Sc1 ∨ Sc2 ∨ . . . ∨ Scm, (20)

where Sc1, Sc2, . . . , Scm denotes the signatures of the child nodes CN1, CN2, . . . , CNm

of PNi.
In the query, the query signature Q is determined by OR-ing the signature

of each query keyword. Then, we investigate whether the query signature and
each node signature NSi satisfy the condition:

Q ∧ NSi = Q. (21)

All the nodes satisfying the above condition are candidate LCAs that may
contain all the query keywords. However, there may be some false drops in the
candidate LCAs.

4.3 Combined Method

The B+tree with the Dewey-order label and superimposed code-based methods
are effective in finding the LCAs. However, they result in expensive query costs.
To reduce the query cost, in this section we propose an efficient method that
combines B+trees with Dewey-order labels and superimposed codes.



1100000 1.1.3.1 0100001 1.1.1.1
0100110 1.1.2.1
1100011 1.2.1.1
0100010 1.2.3.1

0101100 1.2.2.1 1000001 1.2.1.1 0100110 1.1.2.1 
0101100 1.2.2.1

Duke Brother King Lear  MotherHamlet

Fig. 3. An example keyword B+tree with superimposed codes

XML Tree

w

N

[log2N] +1

...

B+tree(fanout:k)

F

K

[logkK] +1

...

(a)XML tree (b) Keyword B+tree

Fig. 4. Notations for query cost comparison

In the combined method, each node of the XML tree is assigned a superim-
posed code as in the original superimposed code-based method, and then both
the superimposed code and the Dewey-order labels of nodes are stored in a key-
word B+tree, as shown in Figure 3. Assume a query with keywords k1, . . . , km.
The query signature Q is determined by OR-ing the signature of each keyword
Si, 1 ≤ i ≤ m, namely, Q = S1 ∨S2)∨ . . . ,∨Sm. The candidate LCAs can be de-
termined by scanning the B+tree with any keyword ki, 1 ≤ i ≤ m of the query, if
the query signature Q and the node signature NS corresponding to the keyword
satisfy the condition Q∧NS = Q. However, the candidate results may still have
false drops.

We present an effective resolution for the false drop problem. For any keyword
ki, 1 ≤ i ≤ m in the query, it is evident that the node with signature NS in the
B+tree satisfying Q∧NS = Q must contain the keyword ki itself. For 1 ≤ i ≤ m,
we can obtain the node sets N1, N2, . . . , Nm for each query keyword ki, 1 ≤ i ≤ m

by using the condition Q ∧ NS = Q. Each node set Ni, 1 ≤ i ≤ m must contain
the corresponding keyword ki, 1 ≤ i ≤ m. Assume the Dewey-order label sets
of Ni, 1 ≤ i ≤ m are Li, 1 ≤ i ≤ m. The nodes that have the common label
among Li, 1 ≤ i ≤ m are the LCAs that must contain all the query keywords.
The algorithm for false drop resolution is shown in Figure 5.



getLCA(w1 , ...wk){
Q = H(w1) ∨ ...H(wk);
For (i = 0 to k){

NSi=getNodeSignature(wi );//Get the word

signature of wi from the keyword B+tree
Li=getResultSI(Q, NSi);

}
Return getTrueDropLCA(L1 , ...Lk);

}
getResultSI(Q, NS){

L=Null;
For (i = 0 to |NS|){

If (Q ∧NS(i) = Q){
L.add(NS(i));

}
}
Return L;

}
getTrueDropLCA(L1 , ...Lk){

N.addAll(L1);
For (i = 1) to |L1|}

For (j = 1 to k){
For (s = 1 to |Lj |){

If(L1(i) = Lj (s)){

Break;
}
If(j = |Li|){

N.remove(L1(i));
}

}
}

}
Return N;

}

Fig. 5. False drop resolution algorithm

getLowestGDMCT(l1 , ...ln, KL1, ...KLk){
Assume L represents the list of (l1, ...ln) and G

represents the list of GDMCT
L=getSmallestLCA(l1 , ...ln, KL1, ...KLk);
For (i = 0 to n){

G=getGDMCT(l1, ...ln, KL1, ...KLk, i);
Return (L, G);

}
}
getSmallestLCA(l1 , ...ln, KL1, ...KLk){

L=Null;
For (i = 0 to n){

For (j = 0 to k){
If (i! = j){

If (lj .substring(li)){

Break;
}
If (j = n){

L.add(li);
}

}
}

}
Return G;

}
getGDMCT(KL1, ...KLk, n){

For (i = 0 to k){
For (j = 0 to |KLi|){

If(KLi(j).subtring(n)){
G← KL(j);

}
}

}
Return G;

}

Fig. 6. Lowest GDMCT detection algo-
rithm

5 Extracting Lowest GDMCTs

5.1 KBDLM and KBSIM

In this section, we present two methods for computing the lowest GDMCTs
based on the keyword B+tree with Dewey-order labels method and the combined
method, which are called the keyword B+tree with Dewey-order label method
(KBDLM) and the keyword B+tree with superimposed code method (KBSIM),
respectively. In the KBDLM and KBSIM, the LCAs are first determined by the
keyword B+tree with Dewey-order labels or the superimposed codes. Then, the
smallest LCAs, i.e., the root of the lowest GDMCTs, can be found by comparing
the Dewey-order labels among the LCAs. The length of each edge can be com-
puted by comparing the length between the label of the root and that of each
leaf node. The lowest GDMCT detection algorithm is illustrated by Figure 6.

5.2 Query Cost Comparison

In this section, we evaluate the query cost for the proposed methods, KBDLM
and KBSIM, and the SA algorithm. Firstly, we give some notation for query cost
comparison shown in Table 3; some parameters are illustrated in Figure 4.

Query Cost of the SA Algorithm According to reference [10], the query
cost of the SA algorithm is:

O(log2N ∗ F 2m) = O(logN ∗ N2m). (22)



notation description notation description
m number of query keywords K number of keyword

k fanout (node entries) of B+tree N number of leaf nodes in the XML tree
w mean number of keywords in each node F mean number of nodes for each keyword
b comparison cost for one bit B comparison cost for one string
r mean number of strings of the labels l bit length of the signature
n mean string length of the query keywords d mean length of the Dewey-order labels

Table 3. Notation for query cost comparison

Query Cost of the KBDLM In the KBDLM, the height of the keyword
B+tree is [logkK] + 1, as shown in Figure 4 (b). In the worst case, with one
query keyword, it is necessary to scan all the entries of the B+tree. The number
of required comparisons for finding the nodes containing the keyword is m ×
k × ([logkK] + 1). Therefore, the cost of finding the nodes containing all the m

keywords is:

m × k × ([logkK] + 1) × n × B. (23)

The cost for finding the LCAs by comparing their Dewey-order labels is:

F m−1 × d × B. (24)

In the worst case, the number of parents of the lowest GDMCTs is N , so the
cost for computing the lowest GDMCT is N ×m×F . Therefore, the total query
cost of KBDLM is the sum of the above costs:

m × k × ([logkK] + 1) × n × B + F m−1 × d × B + N × m × F. (25)

F can be represented by N and K, because F = wN
K

. Therefore, the query
cost of the KBDLM can be expressed by the following equation in terms of the
order of N :

O((
wN

K
)m−1 + (

wN2

K
)) = O(Nm−1 + N2). (26)

When m ≤ 3, the cost is O(N2); when m ≥ 4, it is O(Nm−1).

Query Cost of the KBSIM In the KBSIM, the cost for finding the nodes
containing the keywords is the same as for the KBDLM. Then, the cost for
detecting the LCAs of the nodes containing the keywords is b× l× (F − 1)×m.
Next, in the worst case, the cost of finding the false drops in the detected LCAs
is (m − 1)N2. Finally, the cost for computing the lowest GDMCTs is the same
as the KBDLM, N ×m × F . Therefore, the total query cost of the KBSIM can
be calculated by:

m × k × ([logkK] + 1) × n × B + b × l × (F − 1) × m

+(m − 1)N2 + N × m × F.
(27)



CPU AMD Opteron 2.2 GHz
Memory 6 GB

OS Linux version 2.6.9
Database PostgreSQL 8.1.3
Hard Disk DRAILD

Java 1.5.0 07

Table 4. Experimental environment

1 MB, 2 keywords 5 MB, 2 keywords
Original method R = 7.6% R = 10.3%

Combination method R = 0% R = 0%

Table 5. False drop rate of detected LCAs

The total cost of the KBSIM is O(N 2) by substituting F = wN
K

in the above
equation. Therefore, when m > 2, the proposed combined method KBSIM has
lower costs than either the KBDLM or SA algorithms.

6 Experimental Evaluation

We conducted experiments to evaluate the benefits of the proposed combined
method, KBSIM. Firstly, we show that the KBSIM can completely solve the
false drop problem in contrast to the original superimposed code-based method.
Then, we compare the execution time for keyword queries using the KBSIM
with that using the KBDLM and SA algorithms with different numbers of query
keywords and different sizes of XML documents.

The experiments were performed in the environment shown in Table 4. The
XML data collections used in the experiments were generated by xmlgen of the
XMark benchmark [16]. Three kinds of data were generated by using different
scaling factors of 0.01, 0.05 and 0.1, respectively. The sizes of the generated
XML data are about 1 MB, 5 MB and 10 MB, respectively. The experiments
were performed using sets of keywords having different frequencies introduced
in [10]. Namely, low, corresponding to keywords with frequencies between 1 and
10, medium, corresponding to keywords with frequencies 11–200, and high, cor-
responding to keywords with frequencies greater than 200.

6.1 Evaluating False Drop Resolution

We applied the original superimposed code-based method and the combined
method with false drop resolution to detect the LCAs using the XMark data of
1 MB and 5 MB with two query keywords. Table 5 shows the false drop rates
R of the detected LCAs. We can see that the proposed combined method can
completely solve the false drop problem in LCA detection caused by the original
superimposed code-based method.
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6.2 Evaluating Query Performance

To evaluate the query performance of the proposed algorithms, we firstly per-
formed experiments to observe and compare the query time with different num-
bers of query keywords using the KBSIM, KBDLM and SA algorithms. The
size of the XMark data used in the experiments was 10 MB, and the keyword
frequencies ranged from low to high. Figure 7 presents the performance of each
method as the number of keywords increases for keywords at low frequencies. It
shows that the SA performs slightly better than both proposed algorithms for
the low-frequency keywords. Figure 8 shows the query time as the number of
keywords with medium frequency increases. This figure indicates that both the
proposed algorithms are superior to the SA algorithm, and the KBSIM performs
better than the KBDLM at these keyword frequencies. Figure 9 presents the re-
sults of query time as the number of keywords at high frequencies increases. It
is evident that KBSIM is overwhelmingly superior to the other two methods.
However, the query time using the KBDLM increases extremely quickly when
the number of high-frequency keywords is more than four6.

We next conducted experiments to observe the performance of the KBSIM
and SA algorithms with different sizes of XML documents. We measured the
query times for XMark data of 1 MB, 5 MB and 10 MB with four high-frequency
query keywords. Figure 10 represents the query time of the two methods for each
XML document. This figure shows that as the XML document becomes larger,
the proposed KBSIM performs more efficiently than the SA algorithm.

7 Conclusion and Future Work

6 The query time using the KBDLM for more than four keywords is not shown in
Figure 9.
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With the exponential increase in the amount of XML data on the Internet, infor-
mation retrieval techniques on tree-structured XML documents such as keyword
search become important. In keyword searches over XML documents, the search
results are often represented by MCTs rooted at the LCAs of the nodes contain-
ing all the query keywords. In this paper, we first considered two straightforward
LCA detection methods: keyword B+trees with Dewey-order labels and superim-
posed code-based indexing methods. Then, we proposed a method for efficiently
detecting the LCAs, which combines the two straightforward indexing methods.
We also presented an effective resolution for the false drop problem caused by the
superimposed codes. Finally, we applied the proposed LCA detection method to
generate the lowest GDMCTs over XML documents. We also conducted detailed
experiments to evaluate the benefits of our proposed algorithms and to show that
the proposed combined method can completely solve the false drop problem and
outperform the previously known stack-based algorithm in extracting the lowest
GDMCTs.

In the future, we plan to consider more sophisticated keyword searches over
XML documents such as the user context-based keyword search. We will also
work on the issue of search result ranking so that we can provide more effective
search results to the users.
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