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Abstract. The family of R-trees is suitable for indexing various kinds of
multidimensional objects. TPR*-trees are R-tree based structures that
have been proposed for indexing a moving object database, e.g. a da-
tabase of moving boats. Region Quadtrees are suitable for indexing 2-
dimensional regional data and their linear variant (Linear Region Quad-
trees) is used in many Geographical Information Systems (GIS) for this
purpose, e.g. for the representation of stormy, or sunny regions. Al-
though, both are tree structures, the organization of data space, the
types of spatial data stored and the search algorithms applied on them
are different in R-trees and Region Quadtrees. In this paper, we examine
a spatio-temporal problem that appears in many practical applications:
processing of predictive joins between moving objects and regions (e.g.
discovering the boats that will enter a storm), using these two families
of data structures as storage and indexing mechanisms, and taking into
account their similarities and differences. With a thorough experimental
study, we show that the use of a synchronous Depth-First traversal order
has the best performance balance (on average), taking into account the
I/O activity and response time as performance measurements.

Keywords: Moving objects, TPR-trees, R-trees, linear quad-trees, query processing,
joins.

1 Introduction

The recent advances of technologies in mobile communications and global po-
sitioning systems have increased users attention to an effective management of
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information on the objects that move in 2-dimensional space. Those moving ob-
jects send their current positions, which can be forwarded periodically to the
users for different purposes (e.g. making decision, etc.). This position informa-
tion is spatio-temporal, since spatial locations of objects change with time. A
database that stores information for a large number of objects locations changing
with time is called a mowving object database.

Users queries issued on moving object databases can be categorized into
two types: past-time queries and future-time queries [17]. The past-time query
retrieves the history of dynamic objects movements in the past, while the future-
time query predicts movements of dynamic objects in the future [17]. In this
paper, we discuss join processing of future-time queries between regions and
moving objects.

Spatial data are collected and stored in two main generic formats, called vec-
tor and raster. The basic unit of spatial data in the vector format corresponds
to discrete real world features represented by points, lines or polygons. In the
raster alternative, the basic unit of spatial data takes the form of a square grid
cell, embedded within a grid of equally sized pizels (picture elements). On the
other hand, the spatial access methods can be classified according to the two
following approaches. First, data-driven spatial access methods are organized by
partitioning the set of spatial objects, and the partitioning adapts to the distri-
bution of the objects in the embedding space. An example of this approach is
the R-tree. Second, space-driven spatial access methods are based on partitioning
of the embedding two-dimensional space into cells of specific shapes and sizes,
independently of the distribution of the spatial objects (objects are mapped to
the cells according to some geometric criterion). An example of this approach is
the Quadtree. The books [16] and [12] provide excellent information sources for
the interested reader about Quadtrees and R-trees, respectively.

There are a number of variations of the R-tree all of which organize multi-
dimensional data objects by making use of the Minimum Bounding Rectangles
(MBRs) of the objects. We will concentrate on access methods that have the
capability of dealing with anticipated future-time queries of moving objects or
points (dynamic point of view). Generally, to support the future-time queries,
databases store the current positions and velocities of moving objects as linear
functions. Up to now, for processing current and future-time queries, several
indexing methods have been proposed belonging to the R-tree family and the
TPR*-tree [19] is the most widely-used index structure for predicting the future
positions of moving points, which can be used for future-time queries.

The Region Quadtree is a space-driven spatial access method, which is suit-
able of storing and manipulating 2-dimensional regional data (or binary images).
Moreover, many algorithms have been developed based on Quadtrees. The most
widely known secondary memory alternative of this structure is the Linear Re-
gion Quadtree [16]. Linear Quadtrees have been used for organizing regional
data in GIS [16].

The contributions of this paper consist in the following:



1. We present predictive join processing techniques between two different access
methods, TPR*-trees for moving objects (vector data) and Linear Region
Quadtrees for regions (raster data), in order to answer future-time (predic-
tive) queries appearing in practical applications, like “Retrieve all the boats
covering by a storm within 1 hour”. To the best of our knowledge, this is the
first study of spatio-temporal joins between different data formats (vector
and raster).

2. We distinguish between two types of such future-time queries, depending on
the required result: future-time-interval and future-time-parameterized join
queries, between vector and raster data.

3. We present a detailed experimental comparison of the alternative methods
and highlight the performance winner, for each experimental setting.

The paper is organized as follows. In Section 2, we review the related liter-
ature and motivate the research reported here. In Section 3, a brief description
of the TPR*-tree and the Linear Region Quadtree are presented. In Section 4,
we present the algorithms that perform the predictive join processing between
regions and moving objects. In Section 5, a comparative performance study of
proposed algorithms is reported. Finally, in Section 6, conclusions on the contri-
bution of this paper and future work are summarized.

2 Related Work and Motivation

In general, the spatial join combines two sets of spatial objects based on a spa-
tial predicate (usually overlap). Recently, an exhaustive analysis of several tech-
niques used to perform a spatial join taking into account a filter-and-refinement
approach has been published in [7]. Regarding spatial joins over static spatial
objects, we can classify the spatial join methods in three categories, depending
on whether the sets of spatial objects involved in the query are indexed or not.
When both sets are indexed, the most influential and known algorithm for join-
ing two datasets indexed by R*-trees was presented in [2], where additionally
several techniques to improve both CPU and I/O time have been studied. This
algorithm follows a Depth-First synchronized tree traversal order. A breadth-
first synchronized tree traversal version to reduce I/O cost was presented in [4].
In the case of just one set being indexed, several spatial join algorithms have
been proposed in the literature, and the most representative ones are [9, 13, 11].
In the last category, when both sets are not indexed, the most relevant publica-
tions are [14, 10, 6]. We must highlight that, when both sets are indexed, but with
incompatible type of indexes, such as by R-trees (hierarchical and non-disjoint
indexing for vector data) and by Linear Region Quadtrees based on BT-trees
(hierarchical and disjoint indexing for raster data), the only research work that
proposes join algorithms between the different data formats is [3]. The authors
proposed several algorithms to perform this spatial join, and the most novel
uses a complex buffering system and the FD-order [16] to reduce the I/O cost,
while searching in the B*-tree for the FD-code that overlaps with a point in the
R-tree.



From the dynamic point of view, the most representative joins on moving
objects have been proposed very recently. In [18], the authors present a set
of spatio-temporal queries so-called time-parameterized queries, including the
time-parameterized join query, which we will adapt later to our problem setting.
In [5], query maintenance algorithms for spatial joins on continuously moving
points that support updates were presented. And finally, in [20], the problem of
processing continuous intersection join over moving objects, using TPR*-trees,
has been addressed.

In practical applications, the need for spatio-temporal predictive joining be-
tween different data formats is common. For example, consider Figure 1, where
five boats (shapes A-E), along with their moving vectors (arrows) and a storm
(gray region) are depicted. At the time instant of Figure l.a (time I = now),
only boat B is in the storm. At the time instant of Figure 1.b (time IT = now+10
minutes), boat B has just exited the storm, while boats C and D have just en-
tered the storm. One possible query is: give me all the boats that will be under
the storm for the next 9 minutes and 59 seconds (this is an example of a future-
time-interval join and the result is: boat B). Note that we assumed that the
resolution of time is one second. Another possible query is: give me all the boats
that are under the storm now, the time point when this situation will change
and the event that will cause the change of the situation (this is an example of a
future-time-parameterized join and the result is: boat B is under the storm now,
the situation will change in 10 minutes, because boat B will exit and boats C
and D will enter the storm). It should be noted that both queries are predictive,
since they refer to the future and they are based on the assumption that the
moving vectors of a boats do not change (at least significantly) between subse-
quent updates of the position of a moving object. However, depending on the
application, the frequency of updates of objects positions and the possibility of
sudden changes of the movement vectors, the result such queries may be enough
accurate. Moreover, it should be noted that the storm data are considered static,
at least for time periods quite large in comparison to the update frequency of
the objects positions.

Although, the queries described above arise naturally in practical applica-
tions, the literature (to the best of our knowledge) does not include any tech-
niques for processing them, perhaps due to the different nature of regional and
vector data and the different methods used for storing and indexing them. In this
paper, we consider that the regional data (e.g. the storm) are stored and indexed
using Linear Region Quadtrees (a common choice in GIS systems). The codes of
the quad blocks are stored either in BT -trees [16], or in R*-trees (Oracle, in gen-
eral, recommends using R-trees over quadtrees [8]), for comparison purposes be-
tween the two different alternatives. At time periods large enough for significant
changes of the regional data, the whole storage and indexing structure is rebuilt.
In this paper, we study the situation within one such time period, during which
the regional data are considered static. Moreover, we consider that the chang-
ing vector data (e.g. moving boats) are stored and indexed using TPR*-trees
[19] (the most widely-used index structure for predicting the future positions of
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Fig. 1. Five moving boats and a storm at a time instant (a) and 10 minutes later (b).

moving points). Thus, we present and study the first algorithms for processing
future-time-interval and future-time-parameterized join queries, between vector
and raster data.

3 The two access methods

3.1 The TPR*-tree

We assume that the reader is already familiar with the R*-tree [1]. The TPR-
tree [15] extends the R*-tree, predicts the future locations of moving objects by
storing the location and the velocity of each object at a given time point. The
locations of moving objects are indexed using CBRs (Conservative Bounding
Rectangles) instead of MBRs (Minimum Bounding Rectangles). A CBR is com-
posed of an MBR, representing the region that covers a set of moving objects
at a specific time point, and the maximum and minimum moving velocities of
the objects within an MBR at each axis (velocity bounding rectangle, VBR).
The location of a moving object at any future-time point can be easily predicted
with the location and moving velocity stored in a CBR. The predicted region of
a node computed by using a current location of an MBR and its maximum and
minimum velocities at each axis is defined as a bounding rectangle.

According to [19], a moving object o is represented with (1) an MBR og that
denotes its extent at reference time 0, and (2) a velocity bounding rectangle
(VBR) oy = {ovi—,0vi+,0va_,0vat} where oy;— (oy;+) describes the veloc-
ity of the lower (upper) boundary of og along the i-th dimension (1 < i < 2).
Figure 2.a shows the MBRs and VBRs of 4 objects a, b, ¢, d. The arrows (num-
bers) denote the directions (values) of their velocities. For example, the VBR
of cis ey = {-2,0,0,2}, where the first two numbers are for the X-axis. A
non-leaf entry is also represented with an MBR and a VBR. Specifically, the
MBR (VBR) tightly bounds the MBRs (VBRs) of the entries in its child node.



In Figure 2.a, the objects are clustered into two leaf nodes N1 and N2, which
VBRs are N1y = {-2,1,-2,1} and N2y = {—2,0,—1, 2}. Figure 2.b shows the
MBRs at timestamp 1 (notice that each edge moves according to its velocity).
The MBR of a non-leaf entry always encloses those of the objects in its subtree,
but it is not necessarily tight.
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Fig. 2. Entry representation in a TPR*-tree.

The TPR*-tree [19] uses a set of improved algorithms to build the TPR-tree
and achieves an almost optimal tree. In general, the TPR*-tree basically uses
the same structure as the TPR-tree. During the update operations, however,
the TPR-tree employs the insertion and the deletion algorithms of the R*-tree
as they are, while the TPR*-tree employs modified versions that reflect objects
mobility. This makes it possible to improve the performance of updates and
retrievals in the TPR*-tree over the TPR-tree. Since the TPR-tree considers the
area, circumference, overlapping, and distance of an MBR only at the time of
updates of moving objects, it cannot reflect the property that objects move with
time. On the other hand, the TPR*-tree performs updates in such a way that it
minimizes the area of a sweeping region, which is an extension of the rectangle
that corresponds to a node with time after the updates of moving objects.

Taking into account the insertion strategy, the TPR-tree inserts a moving
object into such a node whose MBR extension required is minimum at the time of
the insertion. On the other hand, the TPR*-tree inserts a moving object into such
a node with a minimum extension of the bounding rectangle after the insertion.
Traversing from the root to lower-level nodes, their rectangle extensions required
for the insertion are computed, and also are stored into a priority queue. And
finally, the optimal node for the insertion is the one having the smallest value.
With this strategy, the TPR*-tree requires a cost higher than the TPR-tree for
updates. However, its compactness of bounding rectangle, it greatly improves
the overall query performance.



3.2 Region Quadtrees

The Region Quadtree is the most popular member in the family of quadtree-
based access methods. It is used for the representation of binary images, that
is 2" x 2™ binary arrays (for a positive integer n), where a 1 (0) entry stands
for a black (white) picture element. More precisely, it is a degree four tree with
height n, at most. Each node corresponds to a square array of pixels (the root
corresponds to the whole image). If all of them have the same color (black or
white) the node is a leaf of that color. Otherwise, the node is colored gray and
has four children. Each of these children corresponds to one of the four square
sub-arrays to which the array of that node is partitioned. We assume here, that
the first (leftmost) child corresponds to the NW sub-array, the second to the NE
sub-array, the third to the SW sub-array and the fourth (rightmost) child to the
SE sub-array. For more details regarding Quadtrees see [16].

Region Quadtrees, as presented above, can be implemented as main memory
tree structures. Variations of Region Quadtrees have been developed for sec-
ondary memory. Linear Region Quadtrees are the ones used most extensively.
A Linear Quadtree representation consists of a list of values, where there is one
value for each black node of the pointer-based Quadtree. The value a node is
an address describing the position and size of the corresponding block in the
image. These addresses can be stored in a efficient structure for secondary mem-
ory (such as an B-tree or one of its variations). There are also variations of
this representations where white nodes are stored too, or variations which are
suitable for multicolor images. Evidently, this representation is very space effi-
cient, although it is not suited too many useful algorithms that are designed for
pointer-based Quadtrees. The most popular linear implementations are the FL
(Fixed Length), the FD (Fixed Length-Depth) and the VL (Variable Length)
linear implementation. For more details regarding FL. and VL implementations
see [16].

In the rest if this paper, like in [3], we assume that Linear Quadtrees are
presented with FD-codes stored in a B*-tree or in an R*-tree. The choice of FD
linear representation is not accidental, since it is made of base 4 digits and is
thus easily handled using two bits for each digit. Besides, the sorted sequence of
FD-codes is a Depth-First traversal of the tree. Since internal and white nodes
are omitted, sibling black nodes are stored consecutively in the Bt-tree or, in
general, nodes that are close in space are likely to be stored in the same or
consecutive BT-tree leaves. This property helps at reducing the I/O cost of join
processing. Since in the same quadtree two black nodes that are ancestor and
descendant cannot co-exit, two FD-codes that coincide at all the directional
digits cannot exist neither. This means that the directional part of the FD-codes
is sufficient for building BT-tree at all the levels. At the leaf-level, the depth of
each black node should also be stored so that images are accurately represented
[3]. Since the FD-codes can be transformed in disjoint MBRs we can store the
sequence of FD-codes in an R*-tree, and apply of existing query algorithms over
this popular spatial index.



4 Future-time Join Algorithms

Before join processing, we must create the indexes that store the static region
(linear region quadtree stored in a Bt-tree, or an R*-tree) and moving points
(TPR*-tree). We have decided to store the sequence of FD-codes in an R*-tree,
as an alternative to a BT-tree, because Oracle, in general, recommends using R-
trees over quadtrees (due to higher tiling levels in the quadtree that cause very
expensive preprocessing and storage costs) [8]. Moreover, the correspondence of
the spaces covered by the two structures has been established in [3]. Finally,
we have to take into account the two types of future-time join queries that we
will study in this paper: future-time-interval join and future-time-parameterized
join.

Joining the two structures can be carried out following two join processing
techniques: (1) multiple queries and (2) synchronized tree traversal. Multiple
queries technique performs a window query on the TPR*-tree for each FD-code
indexed in the Bt-tree, or in the R*-tree. And the synchronized tree traversal
technique follows a Depth-First or Breadth-First order to traverse both struc-
tures during the query processing. More specifically, we have designed and im-
plemented the following five algorithms for future-time-interval join and one
algorithm for future-time-parameterized join between regions and moving ob-
jects.

4.1 Future-time-interval join

The future-time-interval join receives the time-interval of interest ([Tst, Teq]) and
returns the result, valid only during such as time-interval.

BT to TPR*-tree join (B-TPR) This algorithm follows the multiple queries
technique and it descends the BT-tree from the root to its leftmost leaf. It
accesses sequentially the FD-codes present in this leaf, and for each FD-code it
performs a predictive window (MBR of FD-code and VBR, which is 0, since the
region is static) query in the TPR*-tree (reporting intersections of this FD-code
and elements in the TPR*-tree leaves within [Ty, Teq]. By making use of the
horizontal inter-leaf pointers, it accesses the next BT-tree leaf and repeats the
previous step. Of course, the reverse alternative (from TPR* to BT, i.e. to scan
the entries of the TPR*-tree and perform window queries in the B¥-tree) can
be easily implemented, and we expect that the results will be very similar.

R* to TPR*-tree join (R-TPR) Assuming that we store the FD-codes in
an R*-tree, this algorithm follows the multiple queries technique as well, and it
traverses recursively the R*-tree, accessing the MBRs in each node in order of
appearance within the node. For the MBR (FD-code) of each leaf accessed, it
performs a predictive window (MBR and VBR (it is 0 since the region is static))
query in the TPR*-tree, reporting intersections of this MBR. and elements in the
TPR*-tree leaves within [Ty, Teq]. Of course, the reverse alternative (from TPR*



to R*, i.e. to scan the entries of the TPR*-tree and perform window queries in
the R*-tree) can be easily implemented, and we expect that the results will be
very similar.

Depth-First Traversal join (R-TPR-DFJ) This algorithm follows the syn-
chronized tree traversal technique, using a Depth-First order of both trees for
overlap join [2]. It is based on the enclosure property of R-tree nodes: if the
MBRs of two internal nodes do not overlap, then there can not be any MBRs
below them that overlap. In this case, to apply this technique on TPR*-tree
we need an additional function (compute_intersection_period) to check if two
dynamic entries (MBR and VBR) overlap in the required time-interval.

R-TPR-DFJ(nodeR, nodeTPR, Tst, Ted)
If nodeR and nodeTPR are leaves
For each pair of entries (Rentry, TPRentry)
Save Rentry in RenTPRentry
If compute_intersection_period(RenTPRentry, TPRentry, Tst, Ted)
Add TPRentry to the result
Else
For each pair of entries (Rentry, TPRentry)
Save Rentry in RenTPRentry
If compute_intersection_period(RenTPRentry, TPRentry, Tst, Ted)
nodeRaux = ReadNodeR(Rentry.p)
nodeTPRaux = ReadNodeTPR(TPRentry.p)
R-TPR-DFJ(nodeRaux, nodeTPRaux, Tst, Ted)

An advanced variant of the algorithm applies a local optimization (because it
improves the overlap computation with each node-pair join processing) in order
to reduce CPU cost. In particular, when joining two nodes, the overlapping
of entries is computed using a plane-sweep technique [2] instead of brute-force
nested loop algorithm. In general, the MBRs of each node are sorted on the x-
axis, and a merge-like algorithm is carried out, reducing significantly the number
of intersection tests. We will called to this variant, R-TPR-DFJ-PS.

Breadth-First Traversal join (R-TPR-BFJ) This algorithm follows the
synchronized tree traversal technique, using a Breadth-First order of both trees
[4]. The algorithm traverses down the two trees synchronously level by level. At
each level, the algorithm creates an intermediate join index (1JI) and deploys
global optimization techniques (e.g. ordering) to improve the join computation
at the next level. It terminates when the IJI is created by joining the leaf entries
in the R*-tree with the dynamic leaf entries in the TPR*-tree. Again, we need
the function (compute_intersection_period) to check if two dynamic entries (MBR



and VBR) overlap in the required time-interval. According to [4], we have imple-
mented two orderings of intermediate index join as global optimization: ordering
by the sum of the centers (OrdSum) and ordering by center point (OrdCen). In
this case, the MBR of the TPR*-tree is the bounding rectangle that covers the
VBR in the required time-interval.

B-TPR FD-buffer join (B-TPR-FD) This algorithm follows a particular
technique for join processing. It uses a complex buffering system and the FD-
order in the B*-tree to reduce the I/O cost for join processing between an R*-tree
(TPR*-tree) and a FD-linear quadtree stored in a Bt-tree [3]. In general, the
algorithm works as follows: (1) process each entry of the TPR*-tree root in FD-
order; (2) read as many FD-codes as possible for the current entry and store them
in the FD-buffer, (3) call recursively the join routine for this entry; (4) when the
join routine returns, empty the FD-buffer and repeat the previous two steps until
the current entry has been completely checked; (5) repeat for the next entry of
the TPR*-tree root. On the other hand, The join routine for a TPR*-tree node
and the required time-interval works as follows: (1) if the node is a leaf, check
intersections at the required time-interval using the compute_intersection_period
function and return; (2) If not (non-leaf node), for each child of the node that
has not been examined in relation to the FD-codes in FD-buffer, call the join
routine recursively.

4.2 Future-time-parameterized join (TP-Join)

In general, this type of future-time join does not receive any parameter and it
returns (1) the actual result at the time that the query (join) is emitted, (2) the
expiry time of the result given in; and (3) the change that causes the invalidation
of the result. That is, the answers are in format of triplets (R, T, C) [18].

A static spatial join returns all pairs of objects from two datasets that satisfy
some spatial predicate (usually overlap). The join result changes in the future
when: (1) a pair of objects, in the current result, ceases to satisfy the join con-
dition, or (2) a pair not in the result starts to satisfy the condition. In general,
we denote the influence time of a pair of objects (01,02) as Tryr(01,02), and
it the next timestamp that will change the result [18]. The influence time is 1,
if a pair will never change the join result, and the expiry time is the minimum
influence time. The influence time of two non-leaf entries, Tty r(E1, E2), should
be a lower bound of the Ty n (01, 02) of any two objects 01 and 02 in the subtrees
of the non-leaf entries Fy and FEs, respectively.

In general, our join algorithm works as follows: it traverses, in Depth-First
order, the two trees (R*-tree and TPR*-tree) simultaneously starting from the
two roots. Suppose F; and Fs to be two entries in non-leaf nodes, one from the
R*-tree and the other from the TPR*-tree. The traversals go down the subtrees
pointed by Ey and Ej if one of the following conditions holds: (1) the MBRs of
E; and E5 overlap, or (2) Tinr(E1, E2) is less than or equal to the minimum
influence time of all object pairs seen so far (in this case their subtrees may



contain object pairs that cause the next result change). Condition (1) finds the
current join pairs and condition (2) identifies the next timestamp. The traversals
stop when leaf levels are reached for both trees. Notice that to compute Ty g
we use the compute_intersection_period function that returns the time-interval
in which the two entries overlap for a given time-interval.

TP-Join(nodeR, nodeTPR)
If nodeR and nodeTPR are leaves
For each pair of entries (Rentry, TPRentry)

If TN (Rentry, TPRentry) < T
C = (Rentry, TPRentry);

T = TiNp(Rentry, TPRentry);

Else if Ty (Rentry, TPRentry) == T
C = C U (Rentry, TPRentry)

If Rentry overlaps TPRentry
R = R U (Rentry, TPRentry)

Else
For each pair of entries (Rentry, TPRentry)

If (TyNp (Rentry, TPRentry) < T) or (Rentry overlaps TPRentry)
nodeRaux = ReadNodeR(Rentry.p)
nodeTPRaux = ReadNodeTPR(TPRentry.p)
TP-Join(nodeRaux, nodeTPRaux)

Note that all the above algorithms are significantly different from existing
R-tree based join algorithms. The special properties of TPR*-trees for query pro-
cessing have been utilized, as well as, the function compute_intersection_period()
has been used. Besides, previous algorithms that combine FD-Linear-Quadtrees
stored in a Bt-tree and R*-trees have been adapted for use with TPR*-trees
(not a trivial task).

5 Experimental Results

In this section, we have evaluated the performance of our predictive join algo-
rithms over regional data (black-white images of 2!! x 2! pixels) and moving
points using synthetic (uniform distribution) and real data (24493 populated
places of north-america). The regional data correspond to visible spectrums of
areas of California (Sequoia data). Notice that, since n = 11, an FD-code for
such an image requires 2 X 11+ [log, (114 1)] = 26 bits. For the moving objects,
each object is associated with a VBR such that on each dimension, the velocity
value distribution is uniform in the range [0,5]. All experiments were performed
on an Intel/Linux workstation with a Pentium IV 2.5 GHz processor, 1 GByte
of main memory, and several GBytes of secondary storage, using the gcc com-
piler. The node size for the tree structures (B*-tree, R*-tree and TPR*-tree) is



1 KByte, according to [19]. The performance measurements are: (1) the number
of page accesses and (2) the response time (elapsed time) reported in seconds.

Our first experiment seeks the most appropriate LRU buffer size (nodes)
for our predictive join algorithms that will be used in the next experiments.
We have considered the following configuration: the number of moving objects
(synthetic-uniform) is 10000, the query time-interval is [0, 5], and the LRU buffer
size is variable (8, 32, 64, 128 and 512 Kbytes, or nodes). In Figure 3, the
results of 6 algorithms are shown. We have to highlight that R-TPR-DFJ-PS was
very similar to R-TPR-DFJ; and R-TPR-BFJ1 (OrdSum) obtained very similar
results to R-TPR-BFJ2 (OrdCen), for this reason we only show the results of
R-TPR-DFJ-PS (R-TPR-DFJ enhanced with the plane-sweep technique) and R-
TPR-BFJ1. B-TPR and R-TPR are the most I/O-consuming when the buffer
sizes are small, but when they are large enough (>32); these algorithms obtain
the best behavior (the best is B-TPR, 3112 node accesses for 512 nodes in the
LRU buffer). The reason of this excellent I/O behavior is due to the good spatial
locality of the TPR*-tree, there is a high probability that in the next predictive
window query over the TPR*-tree, a great part of this index remains in the LRU
buffer. On the other hand, these algorithms are the most time-consuming, due
to the join processing technique, i.e. multiple queries. R-TPR-DFJ-PS shows an
excellent behavior with respect to the I/O cost and response time, mainly due
to the use of synchronized tree traversal as a join processing technique. R-TPR-
BFJ1 does not improve the previous algorithms, due to the high cost of managing
the global IJI, although for big LRU buffer size the I/O activity is acceptable.
R-TPR-FD is an algorithm designed for reducing the number of node accesses,
and for this reason it gets good behavior for this performance measurement, but
it consumes a lot of time to return the final result, due to the continuous searches
the FD-codes in the B*-tree and the management of the FD-buffer. Finally, the
TP-join query gets a similar behavior to the R-TPR-DFJ-PS for I/O activity,
but the response time is slightly larger, since this algorithm has to report three
answers (R, T, C) and the influence time [18].
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Fig. 3. Performance comparison with respect to the LRU buffer sizes.



In the second experiment, we have studied the behavior of the predictive join
algorithms when the cardinality of the moving objects datasets varies. We have
the following configuration: LRU buffer size is 128 nodes, the query time-interval
[0, 5], and the cardinality of the datasets is variable (1000, 10000, 50000 and
100000). Figure 4 shows B-TPR and R-TPR get the best results for this LRU
buffer size, although they are time-consuming. B-TPR-FD obtains also good
behavior for I/O activity until the number of moving points is 100000. R-TPR-
BFJ1 needs many node accesses, although it needs an acceptable response time.
R-TPR-DFJ-PS is the fastest, although it needs more disk accesses than the join
algorithms that use multiple queries as the technique for the join processing. TP-
join has similar behavior than R-TPR-DFJ-PS, since they follow the same join
processing technique, although the response time is slightly larger.
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Fig. 4. Performance comparison with respect to the moving objects datasets sizes.

In the third experiment, we have compared the behavior of the predictive join
algorithms, varying the query time-interval. We have the following configuration:
LRU buffer size is 128 nodes, the cardinality of the moving objects dataset is
10000, and the query time-intervals are [0, 0], [0, 5], [0, 10] and [0, 20]. Since
TP-Join does not receive any query time-interval, the result is not reported. We
have to highlight that when the time-interval enlarges, the moving objects cover
more space along their movement and the MBRs that cover them grow as well.
This fact generates more overlaps between MBRs, and it increments the number
of operations necessary to solve the join.

Figure 5 shows again that B-TPR and R-TPR get the best results for the
number of node accesses (B-TPR needs less node accesses than R-TRP to per-
form the same query), although they are time-consuming. Moreover, B-TPR-FD
gets interesting results for small query time-intervals, but for larger ones it needs
more node accesses. The best performance balance corresponds to R-TPR-DFJ-
PS, which consumes a reasonable quantity of node accesses, but it is the fastest
for small query time-interval ([0, 0] and [0, 5]), but for [0, 10] and [0, 20] sizes it
is slightly slower than R-TPR-BFJ1. The join algorithm which uses a Breadth-
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Fig. 5. Performance comparison with respect to the query time-interval sizes.

First traversal order of both trees has a surprising behavior; it is I/ O-consuming,
but it is the fastest for large query time-intervals. It is mainly due to the applied
query processing technique, since it only considers the overlapped elements level
by level (there is no backtracking) and when the leaf nodes are reached, the
result is reported. Of course, it also needs additional main memory resources to
store the 1JI.

The last results reported here are a summary (representative set) of exper-
iments with real moving object datasets. In general, the tendencies are very
similar to the synthetic uniform data. For example, the left chart of Figure 6 is
very similar to the left chart of Figure 3, except for the LRU buffer size for B-
TPR and R-TPR, starting from which they become the best (>128). Moreover,
observe that in the right charts of Figures 5 and 6, the trends are quite simi-
lar, where R-TPR-DFJ-PS is the fastest for small query time-interval and for
larger ones R-TPR-BFJ1 consumes slightly less time to report the final result;
and B-TPR and R-TPR are the most expensive alternatives for response time
consumed (R-TPR is slightly faster than B-TPR for the same query).
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Fig. 6. Performance for real data, for LRU buffer and query time-interval sizes.



From the previous performance comparison (for synthetic and real data),
the most important conclusions are the following: (1) B-TPR and R-TPR are
appropriate when we have available enough resources for buffering. (2) The pre-
dictive join algorithms which use a Breadth-First traversal order of both trees
(R-TPR-BFJ) have a good behavior for large query time-interval and buffer
sizes, obtaining the best response time. (3) B-TPR-FD reports interesting re-
sults with respect to the I/O activity, but it is time-consuming due to the high
computational cost of managing the FD-buffer. (4) Finally, the predictive join
algorithms which use a synchronous Depth-First traversal order (R-TPR-DFJ-
PS and TP-join) have the best performance balance (on average) in all executed
experiments, taking into account the I/O activity and response time.

6 Conclusions and Future Work

The contribution of this paper falls within in the study of a spatio-temporal
problem that appears in real-world applications: processing of predictive joins
between moving objects and regions. To the best of our knowledge, this is the
first study of its kind. For this purpose: (1) We have considered two types of
future-time join queries: future-time-interval join and future-time-parameterized
join. To solve these queries, we have used the TPR*-tree, which is the most
widely-used index structure for predicting the future positions of moving points,
and the Linear Region Quadtree (FD Linear Quadtree, as pointerless represen-
tation) stored in a Bt-tree, or in R*-tree. (2) We have proposed several join
algorithms between these two indexes, following two join processing techniques:
multiple queries and synchronized tree traversal, to solve such future-time join
queries. (3) By extensive experimental results, we have shown that the use of
a synchronous Depth-First traversal order (R-TPR-DFJ-PS and TP-join) has
the best performance balance (on average), considering the I/O activity and
response time.

Future research may include the extension of our algorithms to perform con-
tinuous intersection joins [20], and the use of moving and/or changing, instead
of static, regions.
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