
Service Architecture Design for E-Businesses:
A Pattern-Based Approach

Veronica Gacitua-Decar and Claus Pahl

School of Computing, Dublin City University, Dublin 9, Ireland
{vgacitua,cpahl}@computing.dcu.ie

Abstract. E-business involves the implementation of business processes over the
Web. At a technical level, this imposes an application integration problem. In
a wider sense, the integration of software and business levels across organisa-
tions becomes a significant challenge. Service architectures are an increasingly
adopted architectural approach for solving Enterprise Applications Integration
(EAI). The adoption of this new architectural paradigm requires adaptation or
creation of novel methodologies and techniques to solve the integration problem.
In this paper we present the pattern-based techniques supporting a methodolog-
ical framework to design service architectures for EAI. The techniques are used
for services identification, for transformation from business models to service
architectures and for architecture modifications.

1 Introduction

E-commerce, and more generally E-businesses, involve the implementation of business
processes over the Web. The processes could span different organisations and include
several software applications. At a technical level, the implementation of e-businesses
imposes an enterprise applications integration (EAI) problem.

Nowadays, Service-oriented Architecture (SOA) is considered a promising architec-
tural approach for EAI. Several methodologies such as [1],[2],[3] have been proposed
for service architecture development. However, even though they provide useful guide-
lines, they are still maturing in aspects such as the providing of techniques promot-
ing the automation of the architecture design process, and an adequate meta-modelling
framework for capturing both, business and software aspects.

In [4], we developed a framework for designing service architectures for EAI. The
framework is driven by business models and exploits patterns to support the design
of architectures. Software patterns are considered in the software community as archi-
tectural abstractions representing encapsulated practical design knowledge [5]. Simi-
larly, business reference models and business patterns provide encapsulated modelling
knowledge [6]. The methodological framework guides the creation of architectures
while incorporating the business and software dimensions of the integration problem.
The approach provides explicit traceability between business and software modelling
elements and uses patterns as central elements to provide improved changeability char-
acteristics to the resultant architectures.

The objective of this paper is to describe the pattern-based techniques required for
such a development framework. The framework is structured in a layered architecture,

c©



42 V. Gacitua-Decar and C. Pahl

Fig. 1. LABAS and pattern-enhanced activities of the design process

their main elements are summarised in section 2. The pattern-based techniques are de-
scribed in section 3. We finalise the paper with a discussion, revision of related work
and conclusions in sections 4 and 5.

2 Layered Architecture: Layers and Architecture Abstractions

The framework provides a layered architecture called LABAS1 for structuring the EAI
problem [4]. The development of architectures solutions with LABAS involves the
incremental transformation from business models into service architectures. The trans-
formation is supported by architectural abstractions and pattern-based techniques.
Fig.1-right side depicts the architecture layers and its elements. On the left side, the
involved architecture abstractions and the main steps of the development processes are
shown.

Layers. Layers in LABAS are the Business Modelling Layer (BML), the Application
Architecture Layer (AAL), the Business-Applications Intermediate Layer (BAIL) and
the Service Architecture Layer (SAL).

– BML is the container for the business model that represents the business context
of the integration problem. Models in BML are expressed in an enhanced BPMN
notation that includes domain model elements.

– AAL is the container for the application components supporting the business pro-
cesses in BML. AAL is structured in an applications architecture model.

– BAIL is the container for an enhanced business process model that integrates the
elements from BML and AAL, supported an explicit traceability model.

– SAL is the container for the service architecture that solves the integration prob-
lem. Services are categorised in two main types: business services and technical
services.

1 Layered Architecture for Business, Applications and Services.



Service Architecture Design for E-Businesses 43

Architectural Abstractions. In LABAS, business reference models, business patterns
and SOA patterns are the main considered architectural abstractions.

Business reference models provide a standard model and decomposition of a business
domain. They are originated from experience and combined with business patterns, they
can constitute business reference architectures.

Business patterns are micro-models describing standard decompositions of business
reference models. Similarly to software reference architectures, the business reference
architectures constrain the composition of business patterns. Two main business pat-
terns kinds are considered: process patterns and domain patterns. A further catego-
rization regarding specific domains might be also considered in LABAS, but it is not
mentioned in the paper.

SOA patterns are software design patterns that provide solutions for technical aspects
of service architectures, such as service invoking, service composition, security, among
others.

Business and SOA patterns have a semantic dimension and a structural dimension,
however process patterns add a behavioural dimension. In this paper, we will refer only
to structural aspects of patterns.

Layered architecture implementation. A meta-model and profile for the layers in
LABAS is provided. Most LABAS constructs are mapped to UML 2.0 constructs.
Traces in BAIL are an integral part of the LABAS profile and follows the trace-tagged
traceability meta-model from [7]. The LABAS meta-model and profile for SAL are
based on a proposal for the UML Profile and Meta-model for Services (UPMS) pro-
vided by the OMG.

Patterns are implemented and organised in pattern catalogues. Each pattern contains
information organised in a pattern template, which includes sections such as intent,
motivation, participants, consequences, associated quality attributes, among others.
Usually, pattern templates involves textual descriptions [8]. We add the models rep-
resenting the patterns into the pattern templates. The models representing the patterns
use elements from the LABAS profile. This approach allows the interchange of the pat-
tern catalogue and its elements, encouraging in this manner, the using of patterns as
tool-supported modelling constructs.

Note that the implementation of the pattern-based techniques -described in the next
section- will be part of a plug-in for a standard UML modelling tool. The plug-in is
complemented with the LABAS profile, compliant with the LABAS meta-model.

3 Pattern-Based Techniques to SOA Design

The pattern-based techniques in LABAS provide support to business analysts and soft-
ware architects to incrementally design service architectures. The main activities sup-
ported by pattern-based techniques are depicted in Fig.1-right side, and encompass:

– Business model augmentation involves the addition of business patterns into the
business model. Recommendation of the using of patterns, pattern instantiation and
patterns combination are techniques supporting this activity.



44 V. Gacitua-Decar and C. Pahl

– Business and technical service identification involves the analysis of business mod-
els and their relations with the supporting software applications to define the ser-
vices of the architecture solution. Patterns identification and patterns matching are
two techniques aiding this activity.

– Business model to service architecture transformation incrementally generates the
service architecture solution. This activity is supported by pattern-based transfor-
mation templates.

– Service architecture augmentation incorporates SOA patterns to provide solutions
to technical issues such as communication between services, security, services dis-
tribution, among others. This activity is analogous to business model augmentation.

3.1 Business Model and Architecture Augmentation

Patterns represent experience-based solutions that can be applied to improve the qual-
ity of designs. The LABAS framework provides a repository of patterns in the form of
pattern catalogues and the techniques that allows their use. This section describes the
techniques allowing the use of patterns to augment business models and architectures.

Pattern recommendation. Less experienced designers might not be aware that a pat-
tern might be applied to improve the quality of their designs. The utilisation of patterns
into designs requires the recognition of the associated design problem. Tool support for
pattern recommendation requires to increase the degree of automation for the pattern-
problem identification2. If the pattern problem is expressed in terms of elements and
relations of the design model, then a design problem could be systematically searched,
and once located, it can be suggested to the designer to allow the subsequent instanti-
ation of the associated pattern-solution. The modelling of the pattern problem is a key
issue for this task [9].

In LABAS, business models, architectures and patterns are represented as graphs
to support the business model and architecture augmentation activity. From a struc-
tural point of view, the identification of the pattern-problem is supported by identify-
ing the structural features that individually characterise each pattern-problem model.
These structural features are represented as subgraphs of the graph representing the
pattern-problem model. The systematic searching of the structural features is supported
by graph matching techniques.

Pattern comparison. A design problem could have more than one pattern solution
associated. In this case, two or more patterns require comparison. Comparison is sup-
ported in LABAS with information about quality attributes associated to patterns. This
information is encapsulated in the pattern consequences section of the pattern template.

Pattern modification. The documentation of a pattern-solution provides a generic so-
lution. In order to instantiate a pattern in a specific model, the generic pattern-solution
might require modifications to become suitable for the specific model. The preserva-
tion of the pattern properties requires that only allowed modifications can be done. The

2 Note that a pattern description in a pattern template includes a generic problem-solution pair
and its variations.



Service Architecture Design for E-Businesses 45

allowed modifications are implemented in a set of techniques that can be applied to
modify patterns. For instance, a basic technique to modify the mediator pattern [8] in-
volves the increasing or decreasing of colleague elements. After modification of the
pattern, validation techniques are applied.

Pattern instantiation. Pattern instantiation involves the creation of elements and rela-
tions from the pattern model into a design model, and/or the merging of pattern elements
with design model elements. In LABAS, patterns can be instantiated to augment models
at BML and SAL layers.

In order to increase the degree of automation, once selected a pattern, its instan-
tiation can be carried out through the implementation of a graph transformation rule
p : L −→ R [10], where L corresponds to the graph that represents the pattern-problem,
and R corresponds to the graph that represents the pattern-solution. The transformation
rule p allows the transformation from a graph that represents the model or architecture
with a design problem, into a graph that represents the model or architecture with the
instantiated pattern-solution.

Pattern combination. Architecture designs and business models can contain more than
one pattern instance. Patterns can be combined to provide a design solution with a
larger scope. Let us say that PATi and PATj are two patterns in a pattern catalogue, and
Gi = (Vi,Ei), G j = (Vj,E j) are graphs3 representing those patterns. Different types of
pattern combinations might occur, depending on if Vi ∩Vj = /0, where /0 is an empty set;
or if Vi ∩Vj �= /0. If the latter case occur and PATi ⊂ PATj, then PATi is embedded within
PATj. In other cases the union of patterns is utilised. Union and embedding are to basic
operations for pattern combination [11].

Requirements to combine patterns could exceed the capabilities of basic techniques.
Only as an illustration, we use an analogy with relational algebra. Basic operations as
projection (π) and selection (σ) in relational algebra are not enough in some practical
uses for data base queries. Composition of operators is a solution to the restrictions of
the basic operations, e.g. πA(σP(r)) 4 allows the projection on a selected set of tuplas
of a relation r. Analogously, the combination of pattern techniques provides a medium
to satisfy more complex requirements.

Combination of patterns could interfere with the expected contributions that each
pattern provides separately. An important issue in pattern combination is to verify that
individual pattern consequences are preserved. This is difficult to ensure before imple-
mentation. However, at design-time, it is possible to analyse the potential interferences
between associated quality attributes of each pattern.

3.2 Pattern-Based Service Identification and Incorporation

The explanation of this section uses an example extracted from a case study in [4]. The
case study involves a billing and payment process, representing a typical process where
customers and businesses interact. The example is focused on a payment transaction

3 Vi and Vj are the set of graph vertices. Ei and E j are the set of graph edges in Gi and G j .
4 A: attributes where the relation r is projected. P: logic predicate satisfied by tuplas in r.



46 V. Gacitua-Decar and C. Pahl

Fig. 2. Bank’s transfer process modelled with the BPMN notation - right side. Business process
reference model and patterns - left side.

- bank’s transfer. Customers can send a bank’s transfer order to pay their bills. After-
wards, the bank verifies the funds in the payer’s account and executes the transaction.
After the transaction is completed, the bank sends the settlement information to the
payer. The customer in turn sends the settlement information to the biller. Fig.2-bottom
shows the high level business process. A simplified reference model and two simplified
examples of business process patterns (P1 and P2) are shown at the top of the figure.

Business Service Identification. The identification of business patterns facilitates the
identification of reusable business services. Business patterns are reusable sections of
business models, and they are a common denominator among different organisations
and within the same organisation that is changing over time. Changeability is related
to the ease of an architecture to change, but also with the ability of the architecture to
remain invariant after a change agent acts [12]. The definition of business services in
LABAS takes into account the latter characteristic.

In order to foment the automation of business pattern identification, pattern matching
techniques are utilised. From a structural point of view, the pattern matching technique
is based on the matching of a graph (GPAT ) representing the pattern over a graph GBM

representing the business model. The granularity of the pattern is such that GPAT ⊆
GBM. To identify a business pattern, and consequently a business service, an algorithm
searches for the sub-graph GPAT within the graph GBM. Fig.2 shows a simplified schema
of a reference process model, patterns and a business model containing those patterns.



Service Architecture Design for E-Businesses 47

Fig. 3. Business and technical services identified in a enhanced business process model - left side.
The related service architecture - right side.

Technical Service Identification. The identification of common flow structures in
process models from BAIL is the basis for the identification of technical services. In
order to identify common flow structures the process models from BAIL are decom-
posed until the activities with a one to one relation with applications components from
AAL are reached. The flow structures have explicit traces with application components
from AAL. The traces represent invocations to functionality of applications from AAL
or responses from applications to fulfill information requirements of steps in the process
flow. The identification of technical services across process models pursues the funda-
mental concept of reuse in SOA. The identification of common control flow structures
is supported in LABAS by graph partitioning techniques. Graph representing enhanced
process models have information about the types of their elements, therefore control
flow structures involving certain types of elements can be further categorised as differ-
ent technical services types, for instance: data aggregation, calculations, among others.

The Fig.3 sketches a simplified decomposition of the process model of the Fig.2.
Note that the proper modelling notation of LABAS is not used because of space con-
straints. S1 to S6 represent the identified business services. S1 and S5 were defined
through business pattern matching. St1 to St4 are the defined technical services through
the identification of common flow structures in BAIL. Technical services can be reused
by business services. Note that in order to simplify the illustration of technical services,
only simple flow structures were depicted in the Fig.3. More complex structures involv-
ing other control flow structures, for instance decisions, joins, among others, can also
be considered.

3.3 Business Model to Service Architecture Transformation

The transformation from business models into service architectures involves the tranfor-
mation of identified software services in BAIL to service elements in SAL. The trans-
formation uses a pattern-based transformation template that maps, at meta-modelling



48 V. Gacitua-Decar and C. Pahl

level, architectural abstractions from BAIL into SAL. The relations among BAIL ele-
ments are preserved after the transformation. These relations provide information about
the flow dependencies between business services. Fig.3-right side shows the software
architecture model generated from the BAIL model depicted in the left side.

Note that several model driven development approaches have followed a strategy of
direct translation from business modelling constructs to software constructs, e.g. direct
transformation from BPMN-to-BPEL constructs. However, business models could con-
tain sections that cause deadlocks and other problems for the process execution [13].
As mentioned previously, in LABAS, the transformation from business models to ser-
vice architectures is based on pattern-based transformation templates. An advantage of
using transformation templates is that they can be designed to provide only error-free
transformations. Nevertheless, this require a previous step to refine the business process
model to match with the business model section of the transformation template. In [14],
a control-flow pattern approach for BPMN-to-BPEL translation is presented. The trans-
formation templates in LABAS follows a similar approach, but beyond control-flow
structures.

4 Related Work and Discussion

Different pattern-based techniques have been proposed for analysis, design and evo-
lution of architectures. In [15], a systematic method to select patterns using language
grammars and design space analysis is introduced. In a similar approach, a method
to design solutions for transactional workflows for SOA is presented [16]. The design
method models alternative solutions to recurrent architectural decisions, as patterns and
primitives. These architecture abstractions are, in turn, mapped to technology-based
solutions. Both approaches follow a manual-based approach for pattern selection and
instantiation. In our case, the aim is provide support for (semi-)automation.

Sets of patterns are normally part of organised collections named pattern languages.
Pattern languages allow regulated combinations that extends the reach of individual
patterns [17]. In [18] a pattern language for process-oriented integration of software
services is presented. We focus not only on patterns at software level, but also at busi-
ness level and we investigate the relation of patterns at those two levels.

After software implementation, changes on it might interfere with the previously
applied design patterns. In [19] a graph-transformation approach to pattern level de-
sign validation and evolution is presented. Only structural aspects are reviewed. In [20],
current limitations of patterns on evaluating their impact on quality attributes is pre-
sented, however the interaction of the pattern’s consequences have not been discussed.
In [21], an ontological-based approach for modelling architecture styles is presented.
Style modifications and combinations among them are introduced. Relations between
quality requirements and modelling of styles are investigated. We are currently extend-
ing the ideas in [21].

A key step in the SOA development processes is to define what are the involved
software services [1]. We presented an approach to service identification based on busi-
ness models and related reference models. Development and maintenance of business
and software architecture models, together with associated reference architectures and



Service Architecture Design for E-Businesses 49

reference models, have been encouraged with the increasing use of enterprise architec-
ture frameworks, such as for example the Zachman framework [22].

In this paper we have neglected process simulation and semantic considerations for
pattern matching and pattern identification techniques. However, the integration of be-
havioral aspects and semantic aspects will be investigated. The integration of structural,
behavioral and semantic aspects could consider the directions followed in [23] and [24].
To evaluate the architecture solutions created with LABAS we have considered the use
of the Architecture-Level Modifiability Analysis (ALMA) method [25]. In [4] we have
demonstrated the use the proposed layered architecture and discussed the use of ALMA
for a modifiability analysis.

5 Conclusion

Traditionally, the creation of architectures have only focused on structural descriptions.
Instead, we focus on processes and constrained architectural descriptions. The contin-
ual rise of abstraction in software engineering approaches was a central driver, placing
the notion of patterns at business domain level and focusing on its subsequent transfor-
mation to a service architecture.

In this paper we have presented the notational elements and pattern-based techniques
used in our methodological framework (LABAS) to design service architectures for
EAI. The presented pattern-based techniques are utilised for software service identifi-
cation, for business model to service architecture transformations and for architecture
modifications. The LABAS approach has as one of its ultimate goals, the creation of
service architecture solutions with improved changeability characteristics, while main-
taining coherence between the business model and the software architecture. The ex-
plicit traceability between elements of the different layers of LABAS contributes to the
coherence between the business level and the software level. Changeability character-
istics of the architecture solutions are improved by using patterns and the pattern-based
techniques described in this paper.

From the point of view of designing architectures, the integration of business aspects
and software aspects required to implement E-businesses involves three main dimen-
sions: structure, behaviour and semantic. The consideration of these three dimensions
in a single framework to design architectures is challenging since these three dimen-
sions have been mostly investigated separately and with different formalisms. We aim
to integrate these dimensions to provide an integral support to the designers interested
in the developing of service architectures.

References

1. Erl, T.: Service-oriented architecture: Concepts, Technology, and Design. Prentice Hall, En-
glewood Cliffs (2004)

2. Papazoglou, M.P., van den Heuvel, W.J.: Service-oriented design and development method-
ology. Int. J. of Web Engineering and Technology (IJWET) 2, 412–442 (2006)

3. Arsanjani, A.: Service-oriented modeling and architecture (2004)
4. Gacitua-Decar, V., Pahl, C.: Business model driven service architecture design for enterprise

application integration. In: ICBIIT 2008 (2008)



50 V. Gacitua-Decar and C. Pahl

5. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley Professional, Reading (2004)

6. Fettke, P., Loos, P.: Reference Modeling for Business Systems Analysis. IGI (2006)
7. Baelen, V.v., Berbers, J.: Traceability as input for model transformations. In: ECMDA Trace-

ability Workshop (ECMDA-TW), Haifa, Israel (2007)
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional Computing Series (1995)
9. Kim, D.K., Khawand, C.E.: An approach to precisely specifying the problem domain of

design patterns. J. of Visual Languages and Computing 18(6), 560–591 (2007)
10. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Lowe, M.: Algebraic ap-

proaches to graph transformation. Handbook of Graph Grammars and Computing by Graph
Transformation 1, 163–245 (1997)

11. Gomes, M.C., Rana, O.F., Cunha, J.C.: Pattern operators for grid environments. Sci. Pro-
gram. 11(3), 237–261 (2003)

12. Ross, A., Rhodes, D., Hastings, D.: Defining changeability: Reconciling flexibility, adapt-
ability, scalability, modifiability, and robustness for maintaining system lifecycle value. Jour-
nal of Systems Engineering (accepted, 2008)

13. Koehler, J., Gschwind, T., Kuster, J., Pautasso, C., Ryndina, K., Vanhatalo, J., Volzer, H.:
Combining quality assurance and model transformations in business-driven development.
In: AGTIVE 2007. LNCS. Springer, Heidelberg (2008)

14. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Pattern-based trans-
lation of bpmn process models to bpel web services. International Journal of Web Services
Research (2007)

15. Zdun, U.: Systematic pattern selection using pattern language grammars and design space
analysis. Software Practice and Experience 37(9), 983–1016 (2007)

16. Zimmermann, O., Grundler, J., Tai, S., Leymann, F.: Architectural decisions and patterns for
transactional workflows in soa. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 81–93. Springer, Heidelberg (2007)

17. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture: On Pat-
terns and Pattern Languages. Wiley and Sons, Chichester (2007)

18. Hentrich, C., Zdun, U.: Patterns for process-oriented integration in service-oriented architec-
tures. In: EuroPLoP 2006, Irsee, Germany, pp. 1–45 (2006)

19. Zhao, C., Kong, J., Dong, J., Zhang, K.: Pattern-based design evolution using graph transfor-
mation. J. of Visual Languages and Computing 18(4), 378–398 (2007)

20. Harrison, N., Avgeriou, P.: Leveraging architecture patterns to satisfy quality attributes. In:
Software Architecture. LNCS, pp. 263–270. Springer, Heidelberg (2007)

21. Pahl, C., Giesecke, S., Hasselbring, W.: An ontology-based approach for modelling archi-
tectural styles. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 60–75. Springer,
Heidelberg (2007)

22. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for information sys-
tems architecture. IBM Syst. J. 31(3), 590–616 (1992)

23. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business
process models. In: APCCM 2007, Australia, vol. 67, pp. 71–80 (2007)

24. Martens, A.: Simulation and equivalence between bpel process models. In: Proc. of the De-
sign, Analysis, and Simulation of Distributed Systems Symposium (DASD 2005) (2005)

25. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability analysis
(alma). Journal of Systems and Software 69(1-2), 129–147 (2004)


