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Abstract. A pair of ‘trust maps’ give a fine-grained view of an agent’s accu-
mulated, time-discounted belief that the enactment of commitments by another
agent will be in-line with what was promised, and that the observed agent will act
in a way that respects the confidentiality of previously passed information. The
structure of these maps is defined in terms of a categorisation of utterances and
the ontology. Various summary measures are then applied to these maps to give a
succinct view of trust.

1 Introduction

The intuition here is that trust between two trading partners is derived by observing two
types of behaviour. First, an agent exhibits trustworthy behaviour through the enact-
ment of his commitments being in-line with what was promised, and second, it exhibits
trustworthy behaviour by respecting the confidentiality of information passed ‘in confi-
dence’. Our agent observes both of these types of behaviour in another agent and repre-
sents each of them on a map. The structure of these two maps is defined in terms of both
the type of behaviour observed and the ontology. The first ‘map’ of trust represents our
agent’s accumulated, time-discounted belief that the enactment of commitments will be
in-line with what was promised. The second map represents our agent’s accumulated,
time-discounted belief that the observed agent will act in a way that fails to respect the
confidentiality of previously passed information.

The only action that a software agent can perform is to send an utterance to an-
other agent. So trust, and any other high-level description of behaviour, must be derived
by observing this act of message passing. We use the term private information to re-
fer to anything that one agent knows that is not known to the other. The intention of
transmitting any utterance should be to convey some private information to the receiver
— otherwise the communication is worthless. In this sense, trust is built through ex-
changing, and subsequently validating, private information [1]. Trust is seen in a broad
sense as a measure of the strength of the relationship between two agents, where the
relationship is the history of the utterances exchanged. To achieve this we categorise
utterances as having a particular type and by reference to the ontology — this provides
the structure for our map.

The literature on trust is enormous. The seminal paper [2] describe two approaches
to trust: first, as a belief that another agent will do what it says it will, or will reciprocate
for common good, and second, as constraints on the behaviour of agents to conform to
trustworthy behaviour. The map described here is concerned with the first approach



where trust is something that is learned and evolves, although this does not mean that
we view the second as less important [3]. The map also includes reputation [4] that feeds
into trust. [5] presents a comprehensive categorisation of trust research: policy-based,
reputation-based, general and trust in information resources — for our trust maps, the
estimating the integrity of information sources is fundamental. [6] presents an interest-
ing taxonomy of trust models in terms of nine types of trust model. The scope described
there fits well within the map described here with the possible exception of identity trust
and security trust. [7] describes a powerful model that integrates interaction an role-
based trust with witness and certified reputation that also relate closely to our model.

A key aspect of the behaviour of trading partners is the way in which they enact
their commitments. The enactment of a contract is uncertain to some extent, and trust,
precisely, is a measure of how uncertain the enactment of a contract is. Trust is therefore
a measure of expected deviations of behaviour along a dimension determined by the
type of the contract. A unified model of trust, reliability and reputation is described
for a breed of agents that are grounded on information-based concepts [8]. This is in
contrast with previous work that has focused on the similarity of offers [9, 10], game
theory [11], or first-order logic [12].

We assume that a multiagent system {co, By, ...,B,,&,01,...,6,}, contains an agent
o that interacts with negotiating agents, B;, information providing agents, 6;, and an
institutional agent, &, that represents the institution where we assume the interactions
happen [3]. Institutions provide a normative context that simplifies interaction. We un-
derstand agents as being built on top of two basic functionalities. First, a proactive
machinery, that transforms needs into goals and these into plans composed of actions.
Second, a reactive machinery, that uses the received messages to obtain a new world
model by updating the probability distributions in it.

2 Ontology

In order to define a language to structure agent dialogues we need an ontology that
includes a (minimum) repertoire of elements: a set of concepts (e.g. quantity, quality,
material) organised in a is-a hierarchy (e.g. platypus is a mammal, Australian-dollar is a
currency), and a set of relations over these concepts (e.g. price(beer,AUD)).> We model
ontologies following an algebraic approach as:

An ontology is a tuple O = (C,R, <,c) where:

1. C is afinite set of concept symbols (including basic data types);

2. R is a finite set of relation symbols;

3. <isareflexive, transitive and anti-symmetric relation on C (a partial order)
4. 6: R — C* is the function assigning to each relation symbol its arity

where < is the traditional is-a hierarchy. To simplify computations in the computing of
probability distributions we assume that there is a number of disjoint is-a trees covering
different ontological spaces (e.g. a tree for types of fabric, a tree for shapes of clothing,

3 Usually, a set of axioms defined over the concepts and relations is also required. We will omit
this here.



and so on). R contains relations between the concepts in the hierarchy, this is needed to
define ‘objects’ (e.g. deals) that are defined as a tuple of issues.

The semantic distance between concepts within an ontology depends on how far
away they are in the structure defined by the < relation. Semantic distance plays a
fundamental role in strategies for information-based agency. How signed contracts,
Commit(-), about objects in a particular semantic region, and their execution, Done(-),
affect our decision making process about signing future contracts in nearby semantic
regions is crucial to modelling the common sense that human beings apply in manag-
ing trading relationships. A measure [13] bases the semantic similarity between two
concepts on the path length induced by < (more distance in the < graph means less
semantic similarity), and the depth of the subsumer concept (common ancestor) in the
shortest path between the two concepts (the deeper in the hierarchy, the closer the mean-
ing of the concepts). Semantic similarity is then defined as:
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where [ is the length (i.e. number of hops) of the shortest path between the concepts
c and ¢/, h is the depth of the deepest concept subsuming both concepts, and ¥; and
K, are parameters scaling the contributions of the shortest path length and the depth

respectively.

3 Doing the ‘right thing’

We now describe our first ‘map’ of the trust that represents our agent’s accumulated,
time-discounted belief that the enactment of commitments by another agent will be
in-line with what was promised. This description is fairly convoluted. This sense of
trust is built by continually observing the discrepancies, if any, between promise and
enactment. So we describe:

1. How an utterance is represented in, and so changes, the world model.

2. How to estimate the ‘reliability’ of an utterance — this is required for the previous
step.

3. How to measure the agent’s accumulated evidence.

4. How to represent the measures of evidence on the map.

3.1 Updating the world model

o’s world model consists of probability distributions that represent its uncertainty in the
world’s state. o is interested in the degree to which an utterance accurately describes
what will subsequently be observed. All observations about the world are received as
utterances from an all-truthful institution agent . For example, if f communicates the
goal “I am hungry” and the subsequent negotiation terminates with p purchasing a
book from o (by & advising o that a certain amount of money has been credited to o’s
account) then o may conclude that the goal that B chose to satisfy was something other
than hunger. So, a’s world model contains probability distributions that represent its
uncertain expectations of what will be observed on the basis of utterances received.



We represent the relationship between utterance, @, and subsequent observation, ¢/,
in the world model M by P'(¢'|@) € M’, where ¢’ and @ may be expressed in terms
of ontological categories in the interest of computational feasibility. For example, if ¢
is “I will deliver a bucket of fish to you tomorrow” then the distribution P(¢'|¢) need
not be over all possible things that B might do, but could be over ontological categories
that summarise [3’s possible actions.

In the absence of in-coming utterances, the conditional probabilities, P (¢’|@), tend
to ignorance as represented by a decay limit distribution D(¢'|@). o may have back-
ground knowledge concerning D(@'|@) as t — oo, otherwise o may assume that it has
maximum entropy whilst being consistent with the data. In general, given a distribution,
P'(X;), and a decay limit distribution D(X;), P'(X;) decays by:

P (X)) = Ti(D(X:), P! (X)) (1)

where T is the decay function for the X; satisfying the property that lim, .., P'(X;) =
D(X;). For example, I'; could be linear: P'*!(X;) = (1 —g;) x D(X;) +&; x P'(X;), where
€; < 1 is the decay rate for the i’th distribution. Either the decay function or the decay
limit distribution could also be a function of time: I'; and I’ (X;).

If o receives an utterance, u, from B then: if o did not know u already and had
some way of accommodating u then we would expect the integrity of M" to increase.
Suppose that o receives a message u from agent [ at time . Suppose that this message
states that something is so with probability z, and suppose that o attaches an epistemic
belief R’ (al,B,u) to u — this probability reflects a’s level of personal caution — a
method for estimating R’ (o, B, 1) is given in Section 3.2. Each of o’s active plans, s,
contains constructors for a set of distributions in the world model {X;} € M’ together
with associated update functions, Ji(-), such that JXi (p) is a set of linear constraints
on the posterior distribution for X;. These update functions are the link between the
communication language and the internal representation. Denote the prior distribution
P'(X;) by p, and let P () be the distribution with minimum relative entropy” with respect

to p: p(,) = argmin, Y. ; r;log ;—; that satisfies the constraints Ji (u). Then let g, be the
distribution:
q(u) :Rt((xaﬁnu) Xp(er(lth(OgB,,u)) xXp 2)

and to prevent uncertain observations from weakening the estimate let:

q if g, is more interesting than p

]P;t (Xi(,u)) — { (m) (u) ) (3)
p otherwise

4 Given a probability distribution g, the minimum relative entropy distribution p = (p1y---,p1)
subject to a set of J linear constraints ¢ = {g;(p) =a;-p—c; =0},j=1,...,J (that must
include the constraint }; p;i — 1 =0) is: p = argmin, }_ ; r;jlog ;—’ This may be calculated by in-

J
troducing Lagrange multipliers A: L(p,A) =¥ ; p,log % +A-g. Minimising L, {gTL/ =gi(p)=

0},j=1,...,J is the set of given constraints g, and a solution to a—l‘ =0,i=1,...,Ileads even-
Ipi

tually to p. Entropy-based inference is a form of Bayesian inference that is convenient when

the data is sparse [14] and encapsulates common-sense reasoning [15].



A general measure of whether g, is more interesting than p is: K(q(, [|D(X;)) >
K(p|D(X;)), where K(x[ly) = ¥ x; ln% is the Kullback-Leibler distance between two
probability distributions x and y.

Finally merging Eqn. 3 and Eqn. 1 we obtain the method for updating a distribution
X; on receipt of a message u:

P (X:) = Ti(D(X), P (X)) 4)

This procedure deals with integrity decay, and with two probabilities: first, the proba-
bility z in the percept u, and second the belief R’ (o, B, 1) that o attached to u.

The interaction between agents o and  will involve § making contractual commit-
ments and (perhaps implicitly) committing to the truth of information exchanged. No
matter what these commitments are, o will be interested in any variation between [3’s
commitment, ¢, and what is actually observed (as advised by the institution agent &),
as the enactment, ¢/. We denote the relationship between commitment and enactment,
P (Observe(¢’)|Commit(p)) simply as P! (¢’ |@) € M".

In the absence of in-coming messages the conditional probabilities, P* (¢'|@), should
tend to ignorance as represented by the decay limit distribution and Eqn. 1. We now
show how Eqn. 4 may be used to revise P’ (¢|@) as observations are made. Let the set of
possible enactments be ® = {@;, s, ..., ¢, } with prior distribution p = P'(¢'|@). Sup-
pose that message u is received, we estimate the posterior p(,) = (p(u)i)i; =P’ ¢'|g).

First, if 4= (@, @) is observed then o may use this observation to estimate p g, x as
some value d attime 7+ 1. We estimate the distribution p ) by applying the principle of
minimum relative entropy as in Eqn. 4 with prior p, and the posterior p(q,) = (P(¢;);) =1
satisfying the single constraint: J('19)(¢) = {Por =4}

Second, we consider the effect that the enactment ¢’ of another commitment ¢, also
by agent B, has on p = P'(¢'|@). Given the observation u = (¢’,¢), define the vector ¢
as a linear function of semantic distance by:

ti =P(@ilo) + (1— [ 3(¢,9) — 8(9i, ) ) - 8(¢',0)

fori=1,...,m.1 is not a probability distribution. The multiplying factor 8(¢’, ) limits
the variation of probability to those formulae whose ontological context is not too far
away from the observation. The posterior p(y ) is defined to be the normalisation of 7.

3.2 Estimating Reliability

R’ (o, B,u) is an epistemic probability that takes account of a’s personal caution. An
empirical estimate of R(a,,u) may be obtained by measuring the ‘difference’ be-
tween commitment and enactment. Suppose that u is received from agent P at time u
and is verified by & as ¢/ at some later time 7. Denote the prior P“(X;) by p. Let P
be the posterior minimum relative entropy distribution subject to the constraints J (u),
and let p,) be that distribution subject to JY (¢). We now estimate what R” (o, 3, u)
should have been in the light of knowing now, at time ¢, that u should have been ¢/.
The idea of Eqn. 2, is that R’ (o, B, ) should be such that, on average across M,
q(u) Will predict p(,sy — no matter whether or not ¢ was used to update the distribution



for X;, as determined by the condition in Eqn. 3 at time u. The observed belief in u and
distribution X;, Rl (o, B, 1) |« on the basis of the verification of u with 4/, is the value
of k that minimises the Kullback-Leibler distance:

Ry, (0, B, p) 1 = argminK (k- pgy + (1=k) - p || p))
The predicted information in the enactment of u with respect to X; is:
I, (0, B, ) = H' (X;) —H' (X)) ®)

that is the reduction in uncertainty in X; where H(-) is Shannon entropy. Eqn. 5 takes
account of the value of R (a, B, u).

If X(u) is the set of distributions that u affects, then the observed belief in B’s
promises on the basis of the verification of u with ¢/ is:

(0Bl = s L (o Bl ©)

If X(u) are independent the predicted information in p is:

(o, Bou) = ), T (o, B,u) 7

Xi€X(u)

Suppose o sends message u to 3 where u is o’s private information, then assuming that
[’s reasoning apparatus mirrors a’s, o can estimate I' (B, o, ). For each formula ¢ at
time ¢ when u has been verified with i/, the observed belief that o has for agent B’s
promise @ is:

R (0, B, ) = (1—x) x R (o, B, @) + % x R’ (o1, B, 1) |t/ x 8(, 1)

where 8 measures the semantic distance between two sections of the ontology as in-
troduced in Section 2, and 7 is the learning rate. Over time, o notes the context of the
various u received from 3, and over the various combinations of utterance category, and
position in the ontology, and aggregates the belief estimates accordingly. For example:
“I believe John when he promises to deliver good cheese, but not when he is discussing
the identity of his wine suppliers.”

3.3 Measuring accumulated evidence

o’s world model, M?, is a set of probability distributions. If at time ¢, ot receives an utter-
ance u that may alter this world model (as described in Section 3.1) then the (Shannon)
information in u with respect to the distributions in M" is: I(u) = H(M") — H(M'+).
Let A C M" be o’s model of agent B. If B sends the utterance u to o then the infor-
mation about B within u is: F(A") — H(A’*!). We note that by defining information
in terms of the change in uncertainty in M’ our measure is based on the way in which
that update is performed that includes an estimate of the ‘novelty’ or ‘interestingness’
of utterances in Eqn 3.



3.4 Building the map

We give structure to the measurement of accumulated evidence using an illocution-
ary framework to categorise utterances, and an ontology. The illocutionary framework
will depend on the nature of the interactions between the agents. The LOGIC frame-
work for argumentative negotiation [16] is based on five categories: Legitimacy of the
arguments, Options i.e. deals that are acceptable, Goals i.e. motivation for the negotia-
tion, Independence i.e: outside options, and Commitments that the agent has including
its assets. The LOGIC framework contains two models: first a’s model of ’s private
information, and second, o’s model of the private information that B has about o. Gen-
erally we assume that o has an illocutionary framework ¥ and a categorising function
v:U — P(F) where U is the set of utterances. The power set, P(F), is required as
some utterances belong to multiple categories. For example, in the LOGIC framework
the utterance “I will not pay more for apples than the price that John charges” is cate-
gorised as both Option and Independence.

In [16] two central concepts are used to describe relationships and dialogues be-
tween a pair of agents. These are intimacy — degree of closeness, and balance —
degree of fairness. Both of these concepts are summary measures of relationships and
dialogues, and are expressed in the LOGIC framework as 5 x 2 matrices. A different
and more general approach is now described. The intimacy of o’s relationship with f3;,
I!, measures the amount that o knows about f3;’s private information and is represented
as real numeric values over G = ¥ x O. Suppose o receives utterance u from f3; and that
category f € v(u). For any concept ¢ € O, define A(u,c) = max.¢, 6(c’,c). Denote the
value of 1! in position (f,c) by Il?(fm then: If(f,c) =px Iz{(}}c) +(1—=p) xI(u) x A(u,c)
for any ¢, where p is the discount rate. The balance of o’s relationship with B;, B., is
the element by element numeric difference of /! and o’s estimate of 3;’s intimacy on o.

4 Not doing the ‘wrong thing’

We now describe our second ‘map’ of the trust that represents our agent’s accumulated,
time-discounted belief that the observed agent will act in a way that fails to respect the
confidentiality of previously passed information. Having built much of the machinery
above, the description of the second map is simpler than the first.

[16] advocates the controlled revelation of information as a way of managing the
intensity of relationships. Information that becomes public knowledge is worthless, and
so respect of confidentiality is significant to maintaining the value of revealed private
information. We have not yet described how to measure the extent to which one agent
respects the confidentiality of another agent’s information — that is, the strength of
belief that another agent will respect the confidentially of my information: both by not
passing it on, and by not using it so as to disadvantage me.

Consider the motivating example, o sells a case of apples to B at cost, and asks P to
treat the deal in confidence. Moments later another agent 3’ asks o to quote on a case
of apples — o might then reasonably increase his belief in the proposition that 3 had
spoken to . Suppose further that o quotes [ a fair market price for the apples and
that B’ rejects the offer — o may decide to further increase this belief. Moments later 3



offers to purchase another case of apples for the same cost. o0 may then believe that B
may have struck a deal with B’ over the possibility of a cheap case of apples.

This aspect of trust is the mirror image of trust that is built by an agent “doing the
right thing” — here we measure the extent to which an agent does not do the wrong
thing. As human experience shows, validating respect for confidentiality is a tricky
business. In a sense this is the ‘dark side’ of trust. One proactive ploy is to start a false
rumour and to observe how it spreads. The following reactive approach builds on the
apples example above.

An agent will know when it passes confidential information to another, and it is rea-
sonable to assume that the significance of the act of passing it on decreases in time. In
this simple model we do not attempt to value the information passed as in Section 3.3.
We simply note the amount of confidential information passed and observe any indica-
tions of a breach of confidence.

If o sends utterance u to B “in confidence”, then u is categorised as f as described
in Section 3.4. C! measures the amount of confidential information that o passes to
Bi in a similar way to the intimacy measure I/ described in Section 3.4: C =px

Cf( ! .0) + (1 —=p) x A(u,c), for any ¢ Where p is the discount rate; if no 1nf0rmat10n is

passed at time ¢ then: C" i(f.c) = P X C ) C! represents the time-discounted amount of
confidential information passed in the various categories.

o constructs a companion framework to C;, L! is as estimate of the amount of in-
formation leaked by B; represented in G. Having confided u in B;, o designs update
functions JL for the L as described in Section 3.1. In the absence of evidence im-
ported by the JZ functions, each value in L! decays by: L =& x L ) where & is

in [0, 1] and probably close to 1. The J% functions scan every observable utterance, i/,
from each agent p’ for evidence of leaking the information u, JZ(u') = P(B’ knows u |
u' is observed). As previously: L’ =Ex L’ 1 +(1=&) x JE(u') x A(u,c) for any
c.

This simple model estimates C; the amount of confidential information passed, and
L! the amount of presumed leaked, confidential information represented over G. The
‘magic’ is in the specification of the J- functions. A more exotic model would estimate
“who trusts who more than who with what information” — this is what we have else-
where referred to as a trust network [17]. The feasibility of modelling a trust network
depends substantially on how much detail each agent can observe in the interactions
between other agents.

S Summary Measures

[17] describes measures of: frust (in the execution of contracts), honour (validity of ar-
gumentation), and reliability (of information). The execution of contracts, soundness of
argumentation and correctness of information are all represented as conditional proba-
bilities P(¢'|@) where ¢ is an expectation of what may occur, and @’ is the subsequent
observation of what does occur.

These summary measures are all abstracted using the ontology; for example, “What
is my trust of John for the supply of red wine?”. These measures are also used to sum-



marise the information in some of the categories in the illocutionary framework. For
example, if these measures are used to summarise estimates ' (¢'|@) where @ is a deep
motivation of ’s (i.e. a Goal), or a summary of ’s financial situation (i.e. a Commit-
ment) then this contributes to a sense of trust at a deep social level.

The measures here generalise what are commonly called trust, reliability and rep-

utation measures into a single computational framework. It they are applied to the ex-
ecution of contracts they become trust measures, to the validation of information they
become reliability measures, and to socially transmitted overall behaviour they become
reputation measures.
Ideal enactments. Consider a distribution of enactments that represent a’s “ideal” in
the sense that it is the best that o could reasonably expect to happen. This distribution
will be a function of a’s context with  denoted by e, and is P} (¢'|¢,e). Here we use
relative entropy to measure the difference between this ideal distribution, P} (¢’|@,e),
and the distribution of expected enactments, P’ (¢'|@). That is:

Py (9], e)

8
B (¢/[) ®

M((X,B,(P) =1 _Z]Pg((p/kpae) 10g
(p/

where the “1” is an arbitrarily chosen constant being the maximum value that this mea-
sure may have.

Preferred enactments. Here we measure the extent to which the enactment ¢/ is prefer-
able to the commitment ¢. Given a predicate Prefer(cy, ¢, e) meaning that o prefers ¢
to ¢, in environment e. An evaluation of P’ (Prefer(cy, ¢z, ¢)) may be defined using 8(-)
and the evaluation function w(-) — but we do not detail it here. Then if ¢ < o:

M(o.,B,9) = Y P (Prefer(¢’,9,0))P' (¢ | @)
(P/

Certainty in enactment. Here we measure the consistency in expected acceptable en-
actment of commitments, or “the lack of expected uncertainty in those possible enact-
ments that are better than the commitment as specified”. If ¢ < o let: &, (9,0,k) =
{¢' | P! (Prefer(¢’,9,0)) > k} for some constant K, and:

1
M(oB@) =142} PL(¢o)logP (¢']e)
(p’6q>+ ((P,O,K)
where P’ (¢'|@) is the normalisation of P'(¢'|¢) for ¢/ € @, (¢,0,%),

B = 1 if ‘¢)+(¢303K)‘ =1
| log|®, (¢,0,%)| otherwise

6 Conclusion

Trust is evaluated by applying summary measures to a rich model of interaction that
is encapsulated in two maps. The first map gives a fine-grained view of an agent’s
accumulated, time-discounted belief that the enactment of commitments by another



agent will be in-line with what was promised. The second map contains estimates of
the accumulated, time-discounted belief that the observed agent will act in a way that
fails to respect the confidentiality of previously passed information. The structure of
these maps is defined in terms of a categorisation of utterances and the ontology. Three
summary measures are described that may be used to give a succinct view of trust.
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