
A Model for Trust Metrics Analysis?

Isaac Agudo and Carmen Fernandez-Gago and Javier Lopez

Department of Computer Science, University of Malaga, 29071, Málaga, Spain
{isaac,mcgago,jlm}@lcc.uma.es

Abstract. Trust is an important factor in any kind of network essential, for ex-
ample, in the decision-making process. As important as the definition of trust is
the way to compute it. In this paper we propose a model for defining trust based
on graph theory and show examples of some simple operators and functions that
will allow us to compute trust.

1 Introduction

In the recent years trust has become an important factor to be considered in any kind of
social or computer network. The concept of trust in Computer Science derives from the
concept on sociological or psychological environments. Trust becomes essential when
an entity needs to establish how much trust to place on another of the entities in the
system.

The definition of trust is not unique. It may vary depending on the context and the
purpose where it is going to be used. For the approach adopted in this paper we will
define trust as the level of confidence that an entity participating in a network system
places on another entity of the same system for performing a given task. We mean
by a task any action that an agent or entity in the system is entitled or in charged of
performing.

Trust management systems have been introduced in order to create a coherent frame-
work to deal with trust. The first attempts for developing trust management systems
were PolicyMaker [5], KeyNote [4] or REFEREE [7]. Since the importance of building
trust models has become vital for the development of some nowadays computer systems
the way this trust is derived, i.e., the metrics, becomes also crucial. Metrics become very
important for the deployment of these trust management systems as the way of quanti-
fying trust. The simplest way to define a trust metric is by using a discrete model where
an entity can be either ‘trusted’ or ‘not trusted’. This can also be expressed by using
numerical values such as 1 for trusted and 0 for not trusted. The range of discrete cate-
gories of trust can be extended with ‘medium trust’, ‘very little trust’ or ‘a lot of trust’,
for example. More complex metrics use integer or real numbers, logical formulae like
BAN logic [6] or vector like approaches [9]. In the early nineties the first proposals for
trust metrics were developed in order to support Public Key Infrastructure (for instance
[13]). In the recent years the development of new networks or systems such as P2P or

? This work has been partially funded by the European Commission through the research project
SPIKE (FP7-ICT-2007-1-217098), and the Spanish Ministry of Science and Education through
the research project ARES (CONSOLIDER CSD2007-00004).

Ad-Hoc networks, or ubiquitous or mobile computing has led to the imminent growth
of the development of trust management systems and consequently metrics for them.
Most of the used metrics are based in probabilistic or statistics models (see [10] for
a survey on this). Also due to the growth of online communities the use of different
metrics has become an issue (see for example the reputation scores that eBay uses [1]).
Flow models such as Advogato’s reputation system [12] or Appleseed [16, 17] use trust
transitiveness. In these type of systems the reputation of a participant increases as a
function of incoming flow and decreases as a function of ongoing flow.

There are many different trust models in the literature. The model we present in this
paper is a graph-based model that allows us to represent trust paths as matrices. Our
intention is to characterize trust metrics that are more suitable to be used in any given
case, depending on the nature of the system, its properties, etc. As a novelty we propose
the definition of a trust function that allows us to do this. A classification of trust metrics
has been done in [17] but more oriented to the semantic web environment.

The paper is organized as follows. In Section 2 we outline how trust can be modelled
as a graph and give some definitions. These definitions will be meaningful for Section
3 where we introduce our trust evaluation. Those definitions are going to be used for
the instantiations of different operators in Section 4. Section 5 concludes the paper and
outlines the future work.

2 A Graph based Model of Trust

Trust in a virtual community can be modelled using a graph where the vertices are iden-
tified with the entities of the community and the edges correspond to trust relationships
between entities. As we mentioned before, trust can be defined as the level of confi-
dence that an entity s places on another entity t for performing a given task in a proper
and honest way. The confidence level may vary depending on the task. Assuming that
the level of confidence is a real number and that for each task there is only one trust
value associated in our reasoning system, the trust graph is a weighted digraph.

Let us consider different tasks in our system. The trust graph will be a labelled multi
digraph, i.e. there can be more than one edge from one particular vertex to another,
where the label of each edge is compounded of a task identifier and the confidence level
associated to it. That graph can also be modelled using a labelled digraph in which
the labels consist of a sequence of labels of the previous type, each one corresponding
to one edge of the multigraph. In this scenario we can distinguish two cases: (1) The
simplest case where only one task is considered and (2) the average case where more
than one task is considered.

The average case is quite easy to manage. For a fixed task identifier, we obtain
a simple trust graph that can be inspected using techniques for the simplest case. The
problem arises when there are dependencies among tasks. This could imply that implicit
trust relationships can be found in the graph. An implicit trust relationship is derived
from another one by applying some task dependency. For example, we can consider
two dependent tasks, “Reading a file” and “Overwriting a file”. Obviously they are trust
dependant tasks, as trusting someone to overwrite some file should imply trusting him
for reading that file too.

Those implicit trust relations depend on the kind of trust dependability that we allow
in our system. The dependability rules have to be taken into account when reducing the
trust graph for a given task. The dependency among tasks that we use in this paper is
inspired in the definitions of the syntax of the RT framework, a family of Role-based
Trust management languages for representing policies and credentials in distributed
authorization [14]. In this work the authors define four different types of relationships
among roles. If the relationships in the model are simple, these relationships can be
modelled by using a partial order. This is the case for our purpose in this paper, a model
of tasks, which are quite an objective concept. Next we will give some definitions.

Definition 1 (Trust Domain). A trust domain is a partially ordered set (T D,<,0)
where every finite subset of T D has a minimal element in the subset and 0 represents
the minimal element of T D.

Each entity in the system makes trust statements about the rest of the entities, regarding
the task considered for each case. Those trust statements are defined as follows,

Definition 2 (Trust Statement). A trust statement is an element (Trustor,Trustee,Task,
Value) in E ×E ×T ×T D where, E is the set of all entities in the system; T is a par-
tially ordered set representing the possible tasks, where the order established on tasks
is �; and T D is a Trust Domain.

Let G ⊂ E ×E ×T ×T D be a set of trust statements, and let x0 be a fixed task in T ,
then Gx0 is defined as the set of trust statements of G such that the corresponding task
is placed in an upper position in the task hierarchy, i.e.,

Gx0 = {(s, t,x0,v) ∈ E×E×T ×T D such that there exists x ∈ T such that (s, t,x,v)
∈ G and x0 � x}

Let now s0 and t0 be two fixed entities, then we can filter G in order to obtain a new
set, Gs0,t0 , as the trust statements of G such that they are part of a path from s0 to t0.
We can combine the two filtering methods together to obtain a new set, Gs0,t0

x0 = Gs0,t0 ∩
Gx0 . We will see what these two sets are useful for in Section 3.

3 Trust Evaluations

If we want to establish trust between two entities in a system this trust should be mea-
sured somehow. A simple way to measure trust could be established by using a binary
discrete model where the trust values are set as a lot of trust, for a very trusted entity, or
very little trust if the trust placed in the entity measured is very low. More complicated
systems could use integer numbers (Advogato’s trust metric or FreeHaven [2]) or real
numbers ([3, 15]).

A trust evaluation or trust metric is a function such that given a trust graph, G, and
two entities s and t, called the source and the target of trust respectively (trustor and
trustee are alternative names for those entities) returns the level of trust or confidence
that s places on t.

As the same entities can be trusted in different ways depending on the task to per-
form, this function also takes into account as a parameter the task we are referring to,
in case there is more than one.

3.1 Trust Functions

Definition 3 (Trust Evaluation). A trust evaluation for a trust graph G is a function
FG : E×E×T −→ T D, where E, T and T D are the sets mentioned in Definition 2.

We say that a trust evaluation is local if for any tuple (s, t,x) ∈ E×E×T , FG(s, t,x) =
FGs,t

x
(s, t,x), i.e., only those trust statements in Gs,t

x are relevant for the evaluation.
In this work we focus on local trust evaluations, in particular on those trust evalua-

tions that can be decomposed in two elemental functions: the Sequential Trust Function
and the Parallel Trust Function. By decomposed functions we mean that the trust eval-
uation is computed by applying the Parallel Trust function to the results of applying the
Sequential Trust Function over all the paths connecting two given entities.

Definition 4 (Sequential Trust Function). A sequential trust function is a function,

f :
⋃

∞
n=2

n︷ ︸︸ ︷
T D×·· ·×T D −→ T D, that calculates the trust level associated to a path or

chain of trust statements, such that f (v1, . . . ,vn) = 0 if, and only if, vi = 0 for any i ∈
{1, . . . ,n}, where vi ∈ T D and T D is a trust domain.

Each path of trust statements in G is represented as the chain, t1
v1−→ t2

v2−→ ·· · vn−1−→
tn

vn−→ xn+1, where ti are entities in E and vi are respectively the trust values associated
to each statement.

The sequential trust function, f , may verify some of the following properties:

– Monotony (Parallel Monotony): f (v1, . . . ,vn) ≤ f (v′1, . . . ,v
′
n) if vi ≤ v′i for all i ∈

{1, . . . ,n}.
– Minimality: f (v1, . . . ,vn)≤ min(v1, . . . ,vn)
– Sequential monotony: f (v1, . . . ,vn−1,vn)≤ f (v1, . . . ,vn−1)
– Preference Preserving: f (v1, . . . ,vi, . . . ,v j, . . . ,vn) < f (v1, . . . ,v j, . . . ,vi, . . . ,vn) if

vi < v j.
– Recursion: f (v1, . . . ,vn) = f (f (v1, . . . ,vn−1),vn)

When defining a recursive sequential function we have to take into account that it
is enough to define it over pairs of elements in T D, since by applying the recursion
property we could obtain the value of the function for any tuple.

We call generator sequential function or sequential operator to the function f re-
stricted over the domain T D×T D. We represent it by �. Thus,

Definition 5 (Sequential Operator). A Sequential Operator or Generator Sequential
Function is defined as a function � : T D×T D −→ T D such that a�b = 0 if and only
if a = 0 or b = 0. �(a,b) or a� b are used indistinctively for representing the same,
whatever is more convenient.

Given a recursive sequential function, f , the associated sequential operator � f , can be
defined as a�b = f (a,b). Viceversa, given a sequential operator, the recursive inference
sequential function can be defined as f�(z1, . . . ,zn−1,zn) = f�(z1, . . . ,zn−1)� zn.

Note that a recursive sequential function verifies the reference preserving property
only if the associated sequential operator, � f , is not commutative.

Moreover, if a� b ≤ min(a,b), for any a and b, we could conclude that f verifies
the minimality property.

Definition 6 (Parallel Trust Function). A parallel trust function is used to calculate
the trust level associated to a set of paths or chains of trust statements. It is defined as,

g :
⋃

∞
n=2

n︷ ︸︸ ︷
T D×·· ·×T D−→ T D, where T D is a trust domain and

1. g(z1, . . . ,zi−1,zi,zi+1, . . . ,zn) = g(z1, . . . ,zi−1,zi+1, . . . ,zn) if zi = 0
2. g(z) = z

g may verify the following desirable properties:

– Idempotency, g(z,z, . . . ,z) = z.
– Monotony, g(z1,z2, . . . ,zn)≤ g(z′1,z

′
2, . . . ,z

′
n) If zi ≤ z′i for alli ∈ N.

– Associativity, g(g(z1,z2),z3) = g(z1,z2,z3) = g(z1,g(z2,z3)).

The generator parallel function, or the parallel operator, ⊕ for the function g, is
defined analogously as the operator �.

Definition 7 (Parallel Operator). A Parallel Operator or Generator Parallel Function
is defined as a function, ⊕ : T D×T D−→ T D, such that a⊕0 = 0⊕a = a

We say that the two operators ⊕ and � are distributive if (a⊕ b)� c = (a� c)⊕
(b� c).

In the case where there are no cycles in the trust graph, the set of paths connecting
two any given entities is finite. Then, given a sequential operator � and a commutative
parallel operator ⊕, i.e. a⊕b = b⊕a, the associated trust evaluation, F̂G, is defined as
follows,

Definition 8. Let Ss,t
x be the set of all paths of trust statements for task x starting in s and

ending in t. For each path p ∈ Ss,t
x represented as s

v1−→ ·· · vn−→ t let zp be v1�·· ·� vn,
then F̂G(s, t,x) is defined as

⊕
p∈Ss,t

x
zp.

Given a fixed sequential operator, for any parallel operator that verifies idempo-
tency and monotony properties then, z∗ = minp∈Ss,t

x
zp ≤

⊕
p∈Ss,t

x
zp ≤ maxp∈Ss,t

x
zp = z∗.

Therefore, the maximum and minimum possible trust values associated to a path from

s to t are the upper and lower bounds for the trust evaluation F̂G.
Fortunately, we do not need to compute the trust values of each path in order to

compute those bounds, i.e. z∗ and z∗ . In this case we can use an algorithm, adapted
from the Dijkstra algorithm [8], to find for example, the maximum trust path from a
fixed entity s to any other entity on the system. The minimum trust path can be computed
in an analogous way.

This is a particular case of a trust evaluation where we use the maximum function as
a parallel function. Unfortunately we can not generalize this kind of algorithms for other
combinations of parallel and sequential functions as it heavily relies on the properties
of the max and min functions.

3.2 Performing Trust Computations using Matrices

Let us first assume the case where there are no cycles in the trust graph. We could model
the trust network as a matrix, A where each element ai j represents the trust level that
node i places on node j. If we replace the scalar addition and multiplication in matrices
by the operators ⊕ and � respectively, then by iterating powers of the trust network we
can compute the node to node trust values of the network. Thus, the trust evaluation
could be defined through � and ⊕ applying the generalized matrix product algorithm.

It is then defined as A⊗B =
n⊕

k=1

(aik�bk j).

The generalized product is associative from the left hand side, i.e., A⊗B⊗C =

(A⊗B)⊗C. Therefore, we can define the generalized power of A as A(n) =
n⊗

k=1

A.

Last, we can define the operator ⊕ over matrices as A⊕B = (ai j ⊕bi j), which can
be used as the summation of matrices. Then, given a matrix A of order n, the matrix Â

can be defined as Â =
n⊕

k=1

A(n).

These definitions become more relevant when the aforementioned functions are dis-
tributive and associative in the case of the parallel function, and recursive in the case
of the sequential function. However, they are still valid if these properties do not hold,
although they may not be that meaningful.

Next, we will show that under the conditions mentioned above, the element (i,k)
in the matrix Â is the value of the trust evaluation of all the trust paths from i to j. In
particular, the first row in this matrix will give us the distribution of trust in the system.

First, we will show that the kth generalized power of the trust matrix A, A(k) con-
tains the trust through paths of length k. We will prove this by induction where the base
case holds by the definition of matrix A.

We assume that for k ∈ N (i, j) in A(k), a(k)
i j , represents the value of the trust evalu-

ation of all the trust paths of length k. We will then show that this is also the case for
length k +1.

Let Ci j = {c1
i j, . . . ,c

mi j
i j } be the set of all the paths of trust values from all the paths

of length k from i to j. Then since A(k+1) = A(k)⊗A, each element of the matrix can
be obtained by using the function g as ak+1

i j =
⊕n

l=1(a
(k)
il �al j) = g(c1

i1�a1 j, . . . ,c
mi1
i1 �

a1 j, . . . ,c1
in�an j, . . . ,c

min
in �an j).

Let now c ≡ i
z1−→ c1

z2−→ ·· ·cn
zk−→ l

zk+1−→ j be a k + 1 length path from i to j.
This path can also be expressed as the path c′ of length k from i to l linked with the
path from l to j, (l, j). Therefore, since the sequential function is recursive, any path of
length k+1 from i to j can be obtained adding a link to any path of length k. Thus, ak+1

i j
represents the value of the trust evaluation of all the paths of length k +1 from i to j.
The number of elemental operations (sequential and parallel operations) for computing
Â is

n(n3−2n2−n+2)
12

(1)

The important issue is that the order of operations is O(n4).

3.3 The Problem with Cycles

If there are cycles in the trust graph the previous definitions and algorithm are not valid,
therefore we need and extra algorithm to compute the trust values for this case. In fact,
the new algorithm we are going to introduce is only needed when we are computing the
trust value of a node involved in a cycle.

The key aspect of this new algorithm is to remove redundant graphs from the trust
graph in such a way that the set of paths connecting two given entities remains finite.

Let i and j be two nodes in the system and m a natural number, then we can define
the set Sm

i j as the subset of the permutation group Sn containing all the cycles, σ , of
length m+1 such that σm(i) = j.

The cardinality of the set Sm
i j is | Sm

i j |=
(n−2)!

(n−m−1)! . Thus, the number of elements is of

the order O(nm−1).
The intuition behind the new algorithm is the same as for the previous one except

by the fact that we only modify the way we compute the elements of the matrices A(m).
In the case of nodes which are not involved in any cycle the two algorithms provide the
same result.

For the new algorithm a(1)
i j = ai j and a(m)

i j := ∑σ∈Sm
i j

ai,σ(i)�·· ·�aσm−1(i) j.

The number of parallel operations performed by this algorithm is (n2) (n−2)!
(n−m−1)! . This

number is of the order of O(nm+1). As the length of the trust path is m, each of the
components in the previous operations need m− 1 sequential operations therefore the
total number of sequential operations is of the order of O((m−1)nm+1). Thus, adding
up these two number of operations, we can conclude that the total number of operations
is O(mnm+1) only for the matrix A(m). Therefore, if we compute all the trust paths for
all m ∈ N the amount of operations will grow enormously. If we compare this number
with the number of operations in Equation 1 we can conclude that this latter number is
much bigger for any m > 3.

As we can see by observing the number of operations for both algorithms, they
are higher for the new algorithm, therefore it will be convenient to avoid cycles, if
possible. We might need to apply some techniques for this, for example, we can include
a timestamp in each trust statement and remove the problematic edges depending on
when they were created.

4 Examples of the Model

The properties of the system are going to be derived from the properties of the operators
� and ⊕. Depending on these properties we could classify or outline the systems.

As we will only consider recursive functions we will deal directly with operators
instead of functions. For simplicity and for showing the model purposes, we will con-
sider the initial trust domain to be the interval [0,1], where 0 stands for null trust and 1
for full trust. However, other more complex, non-scalar domains can be used.

We only consider two possibilities for the sequential operator: Product and Min-
imum; and for the parallel operators Maximum, Minimum and Mean. Regarding the
sequential operators, their definitions are straightforward. Both of them trivially verify

monotony, minimality and sequential monotony properties. The product also verifies
what we could call “Strict Sequential Monotony”. This means that v1�v2 < 1 if v2 < 1.
The preference preserving property does not hold for any of them.

Note that in order to be able to perform the computation of trust in a distributed
manner we need the operators to be distributive. Then the problem of defining a parallel
operator become harder as we have to make them compatible with the definition of the
sequential operators.

4.1 Completing the Model Instances

In this section we will concentrate on parallel operators.

Maximum and Minimum The Maximum and Minimum are two examples of parallel
operators which verify the associativity property as well as idempotency and monotony
properties. The Minimum operator however does not verify the definition of parallel
operator strictly as the minimum of any set containing 0 will be 0. This problem can
be solved by erasing the 0s of such a sets before applying the function. The resulting
operator with this new domain is called ⊕min∗ .

v1⊕min∗ v2 :=


min{v1,v2} if v1 6= 0 and v2 6= 0
v1 if v2 = 0
v2 if v1 = 0

Both operators, ⊕min∗ and ⊕max verify the distributivity property with respect to the
sequential operator minimum, i.e.,

1. (v1⊕max v2)�min λ = (v1�min λ)⊕max (v2�min λ)
2. (v1⊕min∗ v2)�min λ = (v1�min λ)⊕min∗ (v2�min λ)

and distributivity with respect to the sequential operator product, i.e.,

1. (v1⊕max v2)�· λ = (v1�· λ)⊕max (v2�· λ)
2. (v2⊕min∗ v2)�· λ = (v1�· λ)⊕min∗ (v2�· λ)

As we mentioned in Section 3.1 the maximum and minimum functions are the upper
and lower bounds of any parallel function that verifies the idempotency and monotony
properties. The difference between the highest trust and the lowest trust will be the
range of the variation of trust for any other election of the parallel operator. This range
of values will give us an average of the deviation of trust.

Mean The mean verifies idempotency and monotony properties but, however, does not
verify the associativity property. We could solve this problem by using a different trust
domain T := [0,1]×N and defining the operator as follows,

⊕Mean∗ : ([0,1]×N)× ([0,1]×N) −→ ([0,1]×N)

((v1,n),(v2,m)) 7−→


(

v1 ·n+ v2 ·m
n+m

,n+m
)

if v1 6= 0 and v2 6= 0

(v1,n) if v2 = 0
(v2,m) if v1 = 0

where ‘·’ is the usual product in R.
With this definition the operator is associative and still verifies idempotency and

monotony properties. The distributivity property only holds for the sequential operator
product defined in the trust domain [0,1]×N as (v1,nv1)� (v2,nv2) = (v1 ·v2,nv1 ·nv2).

The generalized product of matrices can be applied to the combination (�,⊕Mean∗).
This will allow us to calculate the mean of the trust values of any entity by using the
matrix Â in the domain [0,1]×N. Note that the first component of a trust value in this
domain represents the actual trust level, whereas the second one represents the number
of paths considered for this computation.

4.2 Summary of the Examples

We have proposed the following combination of operators of our model based on the
operators defined along the paper.

1. (Min,Min∗). In this case the minimum is the sequential function, Min, and the
minimum of the non-null elements, Min∗, is the parallel function.

2. (Min,Max). The function minimum is the sequential function and the maximum,
Max is the parallel function.

3. (Product,Min∗). The function product is the sequential function and Min∗ is the
parallel function.

4. (Product,Max). The function product is the sequential function and Max is the
parallel function.

5. (Product,Mean∗). The product is the sequential function and the mean of the non-
null elements is the parallel function. The trust domain in this case is not the interval
[0,1] as in the other cases but [0,1]×N.

5 Conclusions and Future Work

We have introduced a general model of trust that splits the process of computing trust in
two sub-processes. In order to do this we have introduced the sequential and the parallel
operators, which will be the parameters used in our model, together with a trust domain
that can be any set used for defining trust values. Depending on those parameters, the
trust values computed by the model will vary.

We assume that trust between entities is directional and can be partial. By partial
we mean that it can be related to some specific task but not all of them, i.e. one can
trust someone else to perform a certain task in an honest manner but not for the other
tasks. Those tasks can be related, therefore it could be useful to order or classify them
in a hierarchical diagram, in a way that trusting some entity for a certain task will imply
trusting this entity for all the tasks that are lower in the hierarchy. How to order tasks
is out of the scope of this paper although we consider it is an important aspect of the
model that remains for future work.

We have defined the model by using a labelled trust graph where the label is of the
form (t,x0), where t is the value of trust and x0 is a task. When performing trust evalu-
ations, we set a fixed task in order to be able to remove this parameter from the labels.

The resulting weighted graph is then processed by using the sequential and parallel op-
erators. We have also presented some sample uses of our model with simple operators
and a simple trust domain (the interval [0,1]) to show that the model is useful when
defining new trust evaluations.

In the future we intend to investigate the possibility of using different trust domains
other than [0,1]. We are particularly interested in investigating the trust domain that the
Subjective Logic by Jøsang uses [9]. Analysis of a trust network using subjective logic
have been already carried out [11]. Our intention is to analyze the operators defined
for it them according to the properties that we have defined and therefore, how our
model could be suitable for them. We also intend to define new operators and study the
properties that they may verify.

References
1. http://www.ebay.com.
2. http://www.freehaven.net/.
3. http://www.openprivacy.org/.
4. M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote: Trust Management for Public-Key

Infrastructures (position paper). Lecture Notes in Computer Science, 1550:59–63, 1999.
5. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In IEEE Sympo-

sium on Security and Privacy, 1996.
6. M. Burrows, M. Abadi, and R. M. Needham. A Logic of Authentication. ACM Trans.

Comput. Syst., 8(1):18–36, 1990.
7. Y.H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. REFEREE: Trust

Management for Web Applications. Computer Networks and ISDN Systems, 29:953–964,
1997.

8. E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

9. A. Jøsang and R. Ismail. The Beta Reputation System. In 15th Bled Electronic Commerce
Conference e-Reality: Constructing the e-Economy, Bled, Slovenia, June 2002.

10. A. Jøsang, R. Ismail, and C. Boyd. A Survey of Trust and Reputation Systems for Online
Service Provision. Decision Support Systems, 43:618–644, 2007.

11. Audun Jøsang, Ross Hayward, and Simon Pope. Trust network analysis with subjective
logic. In ACSC ’06: Proceedings of the 29th Australasian Computer Science Conference,
pages 85–94, Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

12. R. Leiven. Attack Resistant Trust Metrics. PhD thesis, University of California at Berkeley,
2003.

13. R. Leiven and A. Aiken. Attack-Resistant Trust Metrics for Public Key Certification. In
Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, USA, January 1998.

14. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust
management framework. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 114–130. IEEE Computer Society Press, May 2002.

15. S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Department of Com-
puter Science and Mathematics, University of Stirling, 1994.

16. C. N. Ziegler and G. Lausen. Spreading Activation Models for Trust Propagation. In IEEE
International Conference on e-Technology, e-Commerce, and e-Service (EEE’04), Taipei,
March 2004.

17. C.-N. Ziegler and G. Lausen. Propagation Models for Trust and Distrust in Social Networks.
Information Systems Frontiers, 7(4-5):337–358, December 2005.

