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Abstract. Polygonal hybrid systems (SPDIs) are planar hybrid systerhsse
dynamics are defined in terms of constant differential isiclns, one for each of

a number of polygonal regions partitioning the plane. Traehability problem

for SPDIs is known to be decidable, but depends orgth@nessassumption —
which states that the dynamics do not allow a trajectory th lemter and leave

a region through the same edge. In this paper we extend theatdity result

to generalised SPDIEGSPDI), SPDIs not satisfying the goodness property, and
give an algorithmic solution to decide reachability of sggltems.

1 Introduction

A hybrid system is one in which discrete and continuous bieh@s interact. Some sys-
tems are inherently hybrid — consider a robot, with difféi@requations determining
its speed, together with an embedded computer taking tkésdezisions based on the
continuous input values coming from sensors. In other ¢assgstem consisting only
of continuous behaviour, can Ibgbridised introducing discrete behaviour in order to
facilitate the analysis. For example, exact solutions @difficult to obtain for a non-
linear differential equation, making a qualitative and @p@mative analysis necessary.
An interesting class of hybrid systems for which the readhglguestion is known to
be decidable, is the class of Polygonal Hybrid Systems (SPBla subclass of hybrid
systems on the plane whose dynamics is defined by constdetedifial inclusions
[ASY01,ASYO07]. Informally, an SPDI consists of a partitiofthe plane into polygonal
regions, each of which enforces different dynamics givertmay vectors determining
the possible directions a trajectory might take; a simpl®ISB depicted in Fig. 1-
(a). A constructive proof for deciding reachability on SBBan be found in [ASYO07].
The proof is restricted to SPDIs which have the so-cafjeddnesgproperty — the
dynamics of any region of the SPDI do not allow a trajectoryré&verse any edge of
the polygonal region in opposite directions. An SPDI withthe goodness property is
called aGeneralised SPDIGSPDI).

Fig. 1-(b) shows an example of a good and a ‘bad’ region (Head ‘indicates that the
region does not satisfy the goodness criterion). In the éigur the left we can see a
good region, where the two vectarandb make it impossible for a trajectory to enter
and leave the regioR through the same edge of the polygon delimiting the region. O
the other hand, the figure on the right shows a bad region: Bahde; can be crossed
in both directions by a trajectory entering and leavingas shown in the figure.



€4
€3
€5

€2

1
Good region Bad region

(b)

N ) A \ v 1 \ \ AN \ 4 4 Vs I i
N 2 \ N N t L # 2 2 N\
N A A N N 1
IR N Ne N 1 NN\ 2
NN NN f O A Al
d N [ N ~ N g \vg N/ ~/ ~/
h 7 e 7 - ] ~ ~ ~ N o — e T < ) I X T
| URNIRN AN a N
4 N7 N7 N7 \[4 1 MNLSN] RN b ANT N7 N7 N/ 4 IRV VAL VA 2 VA
d | ) N N N v i A \ \ \ A
4 ‘ / 1 4 ] \ N Ny N 4 4 a 4 A N AN A \ A
d ! \ \ Q § A / 4 \ Y ) Y \

| i / 1 | | \ \ \ \ 1 / / 1 ) A \ \ VA

Fig. 2. Approximating a non-linear differential equation usinffelient partitioning of the plane.

The algorithm presented in [ASYO07] for deciding reach&pitin SPDI depends on pre-
processing of trajectory segments and a qualitative aisalyguarantee that it is possi-
ble to review the behaviour of all the possilsignatures, by looking at only a finite set
of abstract signatures. Informally, this is achieved alo¥ed: (1) Trajectory segments
are simplified — it is sufficient to look at trajectories made af straight segments
across regions, and which do not cross themselves; (2)cloajesegments are ab-
stracted into signatures, based onBoéencae map[HS74], that relatea-dimensional
continuous-time systems wifin—1)-dimensional discrete-time systems; (3) Itis shown
that it is sufficient to look at signatures which consist oofysequences of edges and
simple cycles; (4) Such signatures can be abstractedyipes of sighatures— signa-
tures which do not take into account the number of times eagpls cycle is iterated.

Many of the lemmas for proving that the above guarantee tliteffiess of types of sig-
natures critically depend on the goodness assumptionhvgapagate this dependency
to the constructive proof given for deciding reachabilifys&Dls.

Restricting oneself only to SPDIs satisfying the goodnessiiaption makes it very
difficult to model real-life examples. Unfortunately, emting the SPDI model in most
ways, such as allowing jumps with resets (from one edge tthanoemote one), in-

1 we callsignaturethe sequence of traversed edges by the trajectory. A mameafatefinition
will be given in a later section.



creasing the number of dimensions and allowing non-linggardntial inclusions, have
been shown to make the model undecidable [AS02].

A potentially interesting and useful application of SPdghat of the approximation
and analysis of two-dimensional non-linear differentgpliations. By splitting the plane
into polygons, and by setting the dynamics of each polygdretover-approximations
of the non-linear differential equation in that region, @a@ ask reachability questions
about the equation, and obtain answers accordingly. Whenrapproximating the dy-
namics, a negative reachability answer implies a negatise/ar in the exact equation.
Using more and smaller polygons enables more precise aippatigns.

The problem with using this approach is that for most diffitied equations, using a
fixed partition breaks the goodness assumption, since alimesriably, some edges
of some regions will lie within the differential inclusiorf that region. One solution
would be to try to derive an intelligent partition of the péawhich maintains goodness,
which in some cases may be impossible, or by extending thed &fdlysis algorithms
to relax the goodness assumption, thus enabling the moegellinon-linear differential
equations in a straightforward manner.

As a simple example, consider a pendulum with friction cogffit &k, massM, pen-
dulum lengthR and gravitational constant. If ¢ is the angle subtended with the
vertical, the behaviour of such a pendulum is described bydifferential equation:
MR?0 + kO + MgRsinf = 0. By takingz = 60, andy = 6, we geti = y and
Y= —]ﬁ% — &ém. Using these formulae, we can produce SPDIs expressing thes
constraints, possibly with different plane partitiongy.R2 gives two such partitions for
k=1, R =10, M = 10, andg = —10. Visual inspection of the SPDIs, shows that
various polygons are not good. By presenting an algorithowsgig the decidability of
reachability on GSPDIs, we can automatically analyse systems.

In this paper, we present a constructive decidable algurifitr solving the reacha-
bility problem for GSPDIs. This decidability result coftnites towards narrowing the
undecidability frontier of low dimension hybrid systemsg@2,MPO05], and it allows
GSPDis to be used to approximate planar non-linear diftexleequations.

The paper is organised as follows. In the next section we eldfi@ notation used, and
outline definitions and results about SPDIs. Section 3 iseored with the extension of
these results to enable analysis of GSPDIs, including thisida algorithm for reach-
ability. We conclude in the last section.

2 Polygonal Hybrid Systems (SPDIs)

In this section we recall the main definitions and concepqgsiired in the rest of the
paper, and give an outline of the results for SPDIs, upon lwtiie results presented in
this paper are built. For a more detailed presentation s&& (X]. In what follows, we
will usea = (a1, az) andx = (z1, x2) to represent 2-dimensional vectoss x € R?).
An angle /2 on the plane, defined by two non-zero vectarandb is the set of all
positive linear combinations = o a + 8 b, with o, 5 > 0, anda + 3 > 0. We can
always assume thatis situated in the counter-clockwise direction fram

Definition 1. A polygonal hybrid systen(SPDI) is a pairH = (P, F), whereP is
a finite partition of the plane (with eack € P being a convex polygon), called the



regionsof the SPDI, andF is a function which associates a pair of vectors to each
polygon:F(P) = (ap,bp).

In an SPDI every point on the plane has its dynamics definedrditg to which poly-
gon it belongs to: ifk € P, thenx € Z&~. [

Example 1.Consider the SPDI illustrated in Fig. 1-(a), with eight @R, Ra,..., Rs.
A pair of vectors(a;, b;) is also associated to each regifty: a; = by = (1,5),
as = by = (—1,%), asz = (—1,%—(1)) andb3 = (—1,—%), as = by = (—1,—1),
a5 = by = (O, —1), ag = bg = (1, —1), a; = by = (1,0), ag = bg = (1, 1) |

We defineE(P) to be the set of edges of regidh We say that an edge(e € E(P))

is anentry-onlyof P if for all x € e and for allc € 4};;;, x + ce € P for some

e > 0. We say that is anexit-onlyof P if the same condition holds for some< 0.
Intuitively, an entry-only (exit-only) edge of a regidnallows at least a trajectory iR
starting (terminating) on edge but allows no trajectories i terminating (starting)
on edgee. We write In(P) (In(P) C E(P)) to denote the set of all entry-only edges
of P and Out P)(OutP) C E(P)) to denote the set of exit-only edges Bf From
the definition, it follows immediately that no edge can behbah entry-only and an
exit-only edge of a regiorin(P) N Out P) = §.

Aregion P is said to begood if all the edges of that region are either entry-only or-exit
only: E(P) = In(P) U Out P). An SPDI is said to bgood or satisfy thegoodness
property, if it consists of only good regionsP € P - E(P) = In(P) U Ou( P).

Assumption 1 In the rest of this section, we will consider only good SPDIs.

Example 2.In Fig. 1-(b), the regionP shown on the left is good since all edges are
either entry-only or exit-only. The region depicted on tight shows a region that is
not good, since neither edge nor edges; are inin(P) U Out(P). [ |

We will use the notatiorag to indicate the directed edgesuch that it follows a clock-
wise direction around regioR, and similarlyeg to indicate the directed edgdollow-
ing an anticlockwise direction around regin Given a directed edge its inverse will
be written a2~ !.

Definition 2. The set of directed edges of an SPBWwith partitionP, written E4(H),
is defined to beEy(H) = {ef | P €P, ec In(P)}U{es | P €P, e € OutP)}.
Similarly, we defineln,(P) and Out,;(P) to correspond tén(P) and Out( P) but with
directed edges. ]

Since an edge typically appears in two adjacent regionsliteetion induced in the two
regions may be different. However, it was proved that eddésiware entry-only in one
region, and exit-only in the other result in matching indiid@ectionsie € E4(H) or
e~ ! € E4(H), but not both [ASY01,MP93]. In an SPDI satisfying goodnéiss,only
case where one can have betande~! is whene is an entry-only (or exit-only) edge
in both adjacent regions it belongs to.

A trajectory segmerdf an SPDIH, is a continuous functioé € [0, 7] — R? such that
forall t € [0,7),if £&(t) € P and&(¢) is defined thert(t) € £br. Thesignatureof a



trajectory segmerg, written Sig(), is the ordered sequence of edges traversed by the
trajectory, that isgy, es, . . . e, resulting fromé N E;(H).

One of the most important results presented in [ASYO07] i tha behaviour of any
trajectory is equivalent to the behaviour of some trajgctainich does not cross itself
and follows straight-line segments within regions.

Lemma 1. Given a trajectory segmefite [0, 7] — R?, there exists another trajectory
segment’ € [0, 7'] — R? starting and finishing at the same points@& (0) = ¢'(0)
and &(T) = £(T7)) such that (i)¢’ does not cross itself(is injective); and (ii)¢’
follows straight-line segments inside regions. a

This result shows that to decide reachability, it is suffiti® look at non-self-crossing
trajectories consisting of straight-line segments. Irrést of the discussion, we will re-
strict our use of trajectory to mean ‘a non-self-crossiaggirtory composed of straight-
line segments between edges’. Similarly, the term sigeaiult be used to indicate the
signature of a trajectory with these constraints. Notettatesult is true of any SPDI,
not only ones satisfying the goodness constraint.

Truncated Affine Multi-Valued Functions. An affinefunction f € R — R is such
that f(x) = axz + b. If a > 0 we say thatf is positive affineand ifa < 0 we say thayf

is negative affinpwe call this the parity of the affine function.

An affine multivaluedunction (AMF) I € R — 2%, written F' = (f;, f,.), is defined
by F(z) = (fi(z), fu(x)) where f; and f,, are affine and-,-) denotes an interval.
For notational convenience, we do not make explicit wheititervals are open, closed,
left-open or right-open, unless required for comprehendior an interval = (I, u)
we have that”((l,u)) = (fi(1), fu(w)). An inverted affine multivaluetunction F' €

R — 28 written F' = (f;, f.), is defined byF(z) = (f.(x), fi(z)) wheref; and f,
are both negative affine ar{d -) denotes an interval.

Given an AMFF and two intervalsS C R™ andJ C R™, atruncated affine multival-
uedfunction (TAMF) Fr s ; € R — 2% is defined as followsFr s ;(z) = F(z) N J

if x € S, otherwiseFr s j(x) = (). In what follows we will writeF instead ofF s
whenever no confusion may arise. Moreover, in the rest ofptiqger F will always
denote an AMF andr a TAMF. For convenience we writé'(z) = F({z} nS)N.J
instead ofF (z) = F'(z) N J if x € S. We overload the application of a TAMF on an
intervall: F(I) = F(INS)NJ.We say thatF is normalisedf S = Dom(F) = {z |
F(z)NnJ # 0} andJ = Im(F) = F(S).

As in the case of affine multivalued functions,iaaerted truncated affine multivalued
function (inverted TAMF) is similar to a TAMF, but defined iertms of an inverted
affine multivalued function as opposed to a normal one. Anartgnt result is that
normal TAMFs are closed under composition.

Theorem 1. The functional composition of two normal TAMES, (I) = Fy(INS1)N
J1 and}'g(I) = FQ(Iﬂ SQ) N Js, is the TAMF(.FQ Ofl)(f) = f(.[) = F(Iﬁ S) nJ,
whereF = F, 0 F1,S =51 N Ffl(Jl n 52) andJ = J> N FQ(Jl n SQ) O

The following new corollary extends the above result.



Corollary 1. The composition of two inverted TAMFs gives a normal TAMM-Co
versely, the composition of one normal and one inverted TANIEither order) gives
an inverted TAMF. a

To avoid having to reason about the length of every edge, wmalse every edge
such that its TAMF has the domd|ii 1] (that is, the normalised version @has length
1, with O corresponding to the starting point of the direadde, and 1 to the end point).
Successorssiven an SPDI, we fix a one-dimensional coordinate systermach edge
to represent points lying on edges. For notational conveigwe will use: to denote
both the directed edge and its one-dimensional represemtdtccordingly, we write
x € e andz € e, to mean “pointx lies on edge:” and “coordinatez in the one-
dimensional coordinate systemdfrespectively. The same convention applied to sets
of points ofe represented as intervals (for examples 7 andx € I, wherel C ¢) and
to trajectories (for exampleg“starting atz” or “ ¢ starting atx”).

Consider a polygorP € P, with eg € Ing(P) ande; € Outy(P). ForI C ey,
Succe,e, (I) is defined to be the set of all points lying en reachable from some
point in I by a trajectory segmergt € [0,t] — R? in P (thatis,£(0) € I A&(t) €
e1 A Sig(§) = egper). GivenI = [l,u], Succeye, (1) = F(I N Sepey) N Jeye,» Where
Sege, @NAJe e, areintervalsF([1,u]) = (fi(1), fu(u)) andf; andf,, are positive affine
functions. Successors are thus normal TAMFs.

Qualitative analysis of simple edge-cyclelset o = (e; . .. ex) be a simple edge-cycle
— that is, a signature that can be repeated a number of timdsswech that all edges
are distinct ¢; # e; forall1 < i < j < k). LetSucc,(I) = F(I N S,) N J, with
F = <flv fu>

We assume that neither of the two functiofisf, is the identity function. The fol-
lowing analysis, taken from [ASYO01], allows us to calculétte behaviour of cycles
provided that the path along the cycle has a normal (notiedg&TAMF. Since, in good
SPDIs, the TAMF between a pair of edges is normal, and the ositign of two nor-
mal TAMFs is itself a normal TAMF, this approach is univelgalpplicable as long as
the goodness assumption holds.

Let o be a simple cycle, antt andu* be the fix-pointé of f; and f,,, respectively,
andS, N J, = (L,U). It can be shown that is of one of the following typesSTAY:
The cycle is not abandoned neither by the leftmost nor thamigst trajectory, that
is, L < I* < wu* < U.DIE: The rightmost trajectory exits the cycle through the
left (consequently the leftmost one also exits) or the lefitirajectory exits the cycle
through the right (consequently the rightmost one alssgxitat isu* < LV I* > U.
EXIT-BOTH: The leftmost trajectory exits the cycle through the left #melrightmost
one through the right, that i§} < L A u* > U. EXIT-LEFT: The leftmost trajectory
exits the cycle (through the left) but the rightmost one stiagide, that is[* < L <
u* < U.EXIT-RIGHT: The rightmost trajectory exits the cycle (through the rjdduit
the leftmost one stays inside, thatis< [* < U < u*.

The classification above provides useful information altoeitqualitative behaviour of
trajectories. Any trajectory that enters a cycle of type BiEeventually leave it after a

2 The fix-pointz* is the solution off(z*) = z*, wheref(-) is positive affine. The existence
and computation of such fix-points are detailed in [ASYO07].
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Fig. 3. (a) An SPDI with matching order of edges; (b) a GSPDI showirad the order breaks the
contiguity of the edge directions; (c) a GSPDI with a dugkchinout edge; (d) a path through
the GSPDI using edge; in both directions.

finite number of turns. In the case of a cycle is of type STAMrajectories that happen
to enter it will keep turning inside it forever. In all otheases, some trajectories will turn
for a while and then exit, and others will continue turningeficer. This information is
crucial for solving the reachability problem for SPDIs. Aisote that the above analysis
gives us a non-iterative solution of cycle behaviour for taysles. An important result
to prove the decidability of SPDIs is that any valid sighatean be expressed in a
normal form, consisting of alternating sequential patissimple loops:

Theorem 2. Given an SPDI with the goodness constraint, any edge signatu=
e1...ep canbe written ag 4 = rls]fl coorpstrr, o where foranyl <i<n+1,7;
is a sequence of pairwise different edges and fot atl i < n, s; is a simple cycle (no
edges are repeated withiy). O

This representation of signatures is the base to olygies of signaturewith the fol-
lowing properties:

Lemma 2. Given a good SPDI, let = ¢y ... e, be a feasible signature, then its type,
type(o) = 71,81, .-, T'n, Sn, nt1 Satisfies the following properties: (i) every< i <
Jj <n+1,r; andr; are disjoint; (i) everyl <i < j < n, s; ands; are different. O

The finiteness of the different types of signatures is théshEghe proof of decidabil-
ity of (good) SPDI reachability, and of the termination oétreachability algorithm
(together with acceleration results for simple loops).

Theorem 3. The reachability problem for SPDIs (satisfying goodness)dcidable.

3 Relaxing Goodness: Generalised SPDIs

The original proof of the decidability of the reachabilityestion for SPDIs, depended
on the concept of monotonicity of TAMFs and their compositiBefore starting the
analysis, the algorithm fixed the direction of the edgesisapea regions. An interesting



result guaranteed that the orientation of the edges resuleach polygon split into two
contiguous sequences of paths — one being the input edgestiér being the output
edges. Furthermore, the orientation of an edge in one régigmaranteed to match the
orientation of the same edge in the adjacent regias shown in Fig. 3-(a). When one
moves on to GSPDI#outedges (those that may be traversed in both directions) break
this result, since the direction of an edge when consideseshanput edge clashes with
the direction it is given when used as an output edge in thesagion. The previous
result however, still guaranteed that the entry-only e@dgekthe exit-only edges can be
assigned in one fixed direction (see Fig. 3-(b)).

To solve this problem, we use directed edges, and diffextritietween the edge used as
an input, and when it is used as an output, just as though teey two different edges
in the GSPDI. Fig. 3-(c) shows how an inout edge can be sedvisimtanner. Note that
edgee; is an input edge in regioR;, but an output edge in regiaR., and similarly,
e; ! is an output edge in regioR; and an input edge in regiaR.. In other words, any
path passing through the edge suctras epeies . .. ese; 'ey (see Fig. 3-(d)) can be
analysed as before, and through monotonicity, one can eégtiatSucc, is a positive
TAMF. e, andel‘1 are considered distinct edges, and the above path con@ins.

It can be seen that the standard analysis for SPDIs workdevedlich cases. However,
paths can now ‘bounce’ off an edge. Recall that any pair oésége; is part of a path

if eg is an input edge of a region, arg is an output edge of the same region. One
can calculate the TAMF for such a trajectory. However,! can now be a valid path,
whose behaviour cannot be expressed as a normal TAMF. Téagbthe analysis used
in SPDIs, to accelerate the analysis of loops. The standad &nalysis thus needs to
be extended to handle such ‘bounces’ in paths.

3.1 Preliminary Results

Thegoodnessestriction was originally introduced to simplify treatmef trajectories
and to guarantee that each region can be partitioneckmty-onlyandexit-onlyedges
in an ordered way, a fact used in the proof of decidabilityhefteachability problem. In
this section, we will introduce further background, andviile new results concerning
GSPDls, needed to prove our decidability result.

Definition 3. An edgee € P is aninoutedge ofP if e is neither an entry-only nor an
exit-only edge of°. [ |

An SPDI without the goodness restriction is calle@eneralised SPDI (GSPDIThus,
in GSPDIs there are three kinds of edges: inouts, entry-amdlyexit-only.
Self-crossing of trajectory segments of SPDIs can be eétethwhich allow us to con-
sider only non-crossing trajectory (segments). Lemmad f{ih proof of which can be
found in [ASYO07]) also applies to GSPDIs. Therefore, in widlows, we will con-
sider only trajectory segments without self-crossinggeNioat on GSPDIs, a trajectory
can “intersect” an edge at an infinite number of pointsligingalong it. A trace is thus
no longer a sequence of points, but rather, a sequence ofafge

% There are special cases when an edge is an entry-only taommi an exit-only to an adjacent
region. From the reachability point of view this does notssany problem as these cases can
be identified and treated accordingly.



Definition 4. Thetraceof a trajectory¢ is the sequencerace({) = Ipl; ... I, of the
intersection intervals of with the set of edged; C ¢ N Ey(H). [ ]

Definition 5. An edge signaturéor simply asignaturg of a GSPDI is a sequence of
edges. Theedge signature of a trajectoty Sig(€), is the ordered sequence of tra-
versed edges by the trajectory segment, thaiig£) = epey - . . e,, With trace(§) =
Iply ... 1, andL;geq;. u

Note that, in many cases, the intervals of a trace are in faictg We say that a tra-
jectory with edge signaturgig(¢) = epe; ... e, and tracetrace(§) = Iol; ... I,
interval-crossegdgee; if I, is not a point. Given a trajectory segment, we will distin-
guish betweeproper inoutedges andliding edges.

Definition 6. Let¢ be a trajectory segment from poirg € eg to xy € ey, with edge
signatureSig(§) = ep...e;...en, ande; € E(P) be an edge oP. We say that; is a
sliding edge ofP for ¢ if £ interval-crosseg;, otherwisee is said to be groper inout
edge ofP for &. [ |

We say that a trajectory segmerglidesalong an edge, if e is a sliding edge of for

&, and that is asliding trajectoryif it contains at least one sliding edge.

The signatures that we will be analysing in GSPDIs are simuolanes in SPDIs, except
that they may include inverted edges of the ferande—!. The behaviour between such
edges does not correspond to a normal TAMF, and thus has todbgsad separately.
One interesting property of inout edges is that the dynawificke region they are in
allow us toslidealong the edge to one of the end-points of the edge.

Proposition 1. If e is an inout edge, then any trajectory reaching the edge camaps
slide on the edge (in one or the other direction, or both). O

As for SPDIs, we have the following property ®iicc: for any edge signatures and

o9 and edge:: Succ,,, © Succ,,e = SucCo,eq, -

The following lemma shows that the edge-to-edge succesrotibn is a normal TAMF
whenever the two edges are not the inverse of each othetldidirectly from the
similar result for SPDIs [ASYO07], which makes no assumptiegarding goodness.

Lemma 3. For any two edges, ande;, Succ.,., is always a normal TAMF, whenever
-1
e1 #ey . O

A bounces a part of a trajectory which crosses an edge twice in imatediuccession.
We define bounces formally within a signature as follows:

Definition 7. Given a signaturer = ege; . .. e, a pair of edges;e; ;1 is said to be a
bouncef e;; = e; '. We say that a signatukgye; . . . e,, containsm bounces, if there
are exactlym distinct indices = {iy, iz, ...i,,} suchforevery € I,e; =¢;)';. m

LetFlip[l,u] = [1 — u, 1 — ] be an interval function. The following result establishes
that the successor function for bounces can be defined irsteftheFlip function. The
result follows directly from the definition af!:



Lemma 4. The behaviour of going from an edgeo its inversee™! is equivalent to
Flip. In other words:Succ,.-: = Flip. [ ]

One of the useful properties of SPDIs is that the successatifun of any given signa-
ture is a normal TAMF. For GSPDIs, however, we need to take &atcount bounces,
and hence analyse the composition of normal TAMFs With:

Lemma 5. Composing-lip with an inverted TAMF gives a normal TAMF and an in-
verted TAMF if we compose it with a normal TAMF. ad

The parity of the number of bounces occurring in a given digreeinfluences the form
of the underlying TAMF, as shown in the following result, véieoproof follows imme-
diately by induction on the number of bounces.

Corollary 2. Any signature with an even number of bounces has its beheshawac-
terised by a normal TAMF, while a signature with an odd nuntdfdrounces is charac-
terised by an inverted TAMF. a

Given a simple cycle, let o be the cycle iterated one or more times. Recall that the
analysis of simple cycle behaviour given for SPDIs deperatdg on the assumption
that the TAMF of the cycle body is a normal one. From the presicesult, it thus
follows that whenever the number of bounces is even on a giyelic signature, the
composed TAMF is a normal one, so the loop analysis can beuoted as for SPDIs:

Lemma 6. Given a loopo containing an even number of bounces, its iterated be-
haviouro™ can be calculated as for SPDIs. O

Since we slide along inout edges, and can only bounce oft iadges, we can prove
that loops which include at least one bounce are never STAjFdD

Lemma 7. Loops which include bounces are not STAY loops. O

This leaves only simple cycles with an odd number of bounzégtanalysed. Consid-
ering the case when a bounce appears as the first pair of @eoferloop body, we can
accelerate the analysis by running through the loop onlgohbe proof follows from
the fact that the initial bounce enables a slide, thus atigwis to identify the limits
through only one application of the loop body:

Lemma 8. Given a signaturer = eo(elefleg ...en)Peq (i) with only one loop; (i)
with & > 0; (iii) which has an odd number of bounces; and (iv) startswéatbounce;
the behaviour of signature is equivalent to following thedmnly once as i’ =
eoere] tey ... eqer. In other wordsSucc, = Succ,:. O

Based on the above lemma, we can prove that any loop corgeamirodd number of
bounces can be accelerated. The proof works by unwindingptpebody to push the
first bounce to the beginning, and then applying the preVienrsna:

Lemma 9. Given a loops with an odd number of bounces, we can calculate the limit
of s™ without iterating. O

Therefore, we can now analyse any type of signature in GSB$hg) the results from
lemma 3 (to deal with inout edges), and lemmas 6 and 9 (to déabeunces).

Theorem 4. We can compute the behaviour of a signamr(ejr r23; T O



3.2 Decidability

The following lemma guarantees that it is sufficient to cdasisimple cycles which
occur in atype of signature only under certain patterns. tpg of signature containing
two occurrences of the same simple cycle can be reduced theartgpe of signature
where the simple cycle occurs only once, provided the cycle with the edges in revers
order (denoted rever&g) does not occur between them. The proof is based on the fact
that, assuming the path does not cross itself, between tstarioes of a repeated loop,
one can always find either (i) the reverse of the cycle; oa(@punce. In the latter case,

it can be shown that the bounce can be eliminated to avoidhigale loop.

Lemma 10. Given a GSPDI, and assuming only trajectories without seising, if

there is a type of signature where a simple cycte (e, e1, . . ., e,,) appears twice, i.e.
type(Sig(£)) = o’o”o” with 0" = s¥...s*", then if there is no reverge) between
the two occurrences of thentype(Sig(¢)) = o's*" 0. O

We also prove that a trajectory which takes a loop (any nurobémes), then takes
it again (once again any number of times) but in reverse patet finally takes it a
number of times in the forward direction, can be simulatedgther trajectory which
simply takes the loop a number of times. The proof is basetherfeict that whichever
direction the first edge of the simple cycle under considemadllows sliding in, it is
possible to obtain a type of signature preserving reaciatiithout such a pattern.

Lemma 11. Given a GSPDI, if there is a trajectory segment [0,7] — R2, with
£(0) = x and¢(t) = x’ for somet > 0, such thatoype(Sig(€)) = 7155 rosh2rzshory,
with s, = sfl andss = s1, then it is always possible to find a trajectory segmgnt
[0, 7] — R? such thatt’(0) = x and¢/(t) = x’ for somet > 0, andtype(Sig(¢)) =

k
718, 7). O

Based on the above, we can conclude that for GSPDIs we cagstveansform a type
of signature into one where simple loops are not repeated.

Corollary 3. Given a GSPDI, let be an edge signature, then it can always be written
asoy =718t ... rsknr, 1, where foranyl < i < n+ 1, s; is a simple cycle (i.e.,
without repetition of edges), and for eveln< i < j < n, s; ands; are different. O

The following lemma, ensuring that there are a finite numlbeéymes of signatures in
GSPDils, follows from the previous results and it is the b&mighe termination proof
of the reachability algorithm.

Corollary 4. For a GSPDI there are finitely many different types of signegu O

3.3 Algorithm

Given a type of signature where each edge is traversed in exactly one direction, let
Reach, (xq, xs) be the SPDI reachability algorithm presented in [ASYO07]e Teach-
ability algorithm for a GSPDH, Reach'H, x¢, x ), consists of the following steps: (1)
Generate the finite set of types of signatukes= {oy,...,o,} taking into account



ande~! as different edges, and such that the loop signatures adistitict; (2) Ap-
ply the functionReach,, (xo,xy) for eacho; € X (3) If for at least oner; € X,
Reach,, (xo,xs) = Yes, thenReach(H, x¢, x¢) = Yes, otherwise the answer iso.

In step 2 we applpucc progressively on the abstract signature, using lemmas ®and
to compute the successor of a loop with bounces, anfliithefunction as in the case of
SPDIs for the rest. Based on these results, it is possibledie termination, correctness
and completeness of GSPDI reachability.

Lemma 12. Reaclit,x¢,xy) is a terminating, correct and complete algorithm cal-
culating GSPDI reachability. a

From this, the main theoretical result of our paper follomsriediately:
Theorem 5. The reachability problem for GSPDIs is decidable. O

4 Conclusions

We have proved that the reachability question for GSPDIsidhble. The proof is
constructive, giving an algorithm which extends the onegiin [ASYQ7] for SPDIs.
The key lies in showing that the previous analysis workslinases except when a loop
contains an odd number of bounces. The algorithm is extetodéell with such cases.
The algorithm needs to be extended to deal with inout edgéshvemable sliding, but
the overall effect is to accelerate the analysis of an SHBtesat least one end of the
edge is immediately covered once the edge is reached.

The main contribution of our paper is interesting in a théoa¢ sense since it extends
the class of decidable hybrid systems, narrowing furthegtp between what is known
to be be decidable and what is known to be undecidable [ASBA3Y The result is
also interesting in a practical sense, since it providesoa §oundation to approximate
planar non-linear differential equations. We plan to inmpéat the algorithm, extending
the SPeeDf toolkit [Spe] to treat GSPDIs, and use on case studies withlimear
differential equations.
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A Proofs of Lemmas, Theorems and Propositions

This appendix is for reviewing purposes only. It contains tretailed proofs of the
results which could not be included for space reasons igheaiuded at the end of the
paper. Should the paper be accepted for publication, tha peper merged with the
proofs will be published as a technical report for reference

Section 3

Corollary 1 Composition of two TMAFs gives a TMAF. The composition of tiwn
verted TAMFs gives a normal TAMF. Conversely, the compositbf one normal and
one inverted TAMF (in either order) gives an inverted TAMF.

Proof SketchThe proof follows similarly to Theorem 1, where we note tiat tesulting
affine functions are switched when one of the TAMFs is ingrend the gradient is
the product of the original two gradient values (hence pasivhen both positive or
negative, and negative otherwise). O

Section 4.1

Proposition 1 1If e is an inout edge, then any trajectory reaching the edge eeayal
slide on the edge (in one or the other direction, or both).

Proof. The results follows from the fact that the director vectoeaan be expressed
as the positive linear combination of the two vectors of #gian in consideration. O

Proposition 2. If eg is an inout edge, then for any other edge and intervall, such
thatSucc,, ., (1) is not empty, all such applied successors include the ledtlanclude
the right end of the edge (equal to ong@fx) or {x, 1) for some value of — depend-
ing on one off’s extremities). a

Proof. This is a direct consequence of Proposition 1. a

Lemma 5 Composition of the functioflip with an inverted TAMF results in a normal
TAMF and in an inverted TAMF if we compodéip with a normal TAMF.

Proof. Consider a normal TAMF:



(Flipo f)[,y]
= { by definition of TAMFs}

Flip([aiz’ + by, ary’ + b, ] N J) where[2’, '] = [x,y] N S
= { J = [J;, J.] and by definition of intersectioh

Fliplmax{a;z" + b, J;}, min{a,y" + b, J,. }| where[z’,y'] = [z,y] N S
= { definition ofFlip }

[1 — min{a,y" + by, J;-},1 — max{aa’ + b, J; }] where[2’, y'] = [z,y] N S
= { since— min{z, y} = max{—=z, —y}, similarly formax }

1+ max{—(a,y" + b;),—J-}, 1 + min{— (a2’ + b;), —J;)] where[z’,y/] = [z,y] NS
= { sincea + max{z,y} = max{a + x,a + y}, similarly for min }

[max{1l — (a,y’ +b,),1 — Jp },min{l — (ay2’ + t;),1 — J;}] where[z',y/] = [z,y] NS
= arithmetic}

[max{—a,y" — (1 +0b,),1 — J.},min{—a;2’ + (1 — b;)),1 — J;}] where[z',y'] = [z,y] N S
= { definition of intersectior}

[—a,y — (1 +0b),—ax’ + (1= b)]N[1—J.,1—J]where[z’,y] = [z,y] N S.

Note that the result is also an inverted TAMF. The other tdsllbws identically. O

Corollary 2 Any signature with an even number of bounces has its behaglarac-
terised by a normal TAMF, while a signature with an odd nundddrounces is charac-
terised by an inverted TAMF.

Proof. The proof follows by induction on the number of edges apmegin the signa-
ture.
The base case is when the signature consists of exactly yesddhorter sequences of
edges are not signatures by definition). Let the signature beege;. Now either (i)
e1 = ey ', in which case we have an odd number (exactly one) bounceSamg =
Flip (by definition 7) which is an inverted TAMF (by definition Bfip); or (ii) e; # egl,
in which case we have an odd number of bounces (zeroyaad, is a normal TAMF
by the result in [ASYO07]. In both cases, the result holds.
Now let us assume that the result holds for signatures otthengand we will consider
a signature of length + 1, namely:o = ege; . . . e,. Once again, either,, = ', or
it is not. We will consider the cases separately:

— If e, = e 1, then the signatureye; . ..e,_; contains one bounce less that the

n—11

original signature.

Succepes ...e,
= { property ofSucc }

Succey, 1€y 0 SuCCepe; ..., ;
= { definition of Succ on a bouncég

Flip o SucCeye, ..,
Now, if ege; . . . e, has an even number of bounces:; . . . e,,—1 has an odd num-
ber of bounces (since the last pair were a bounce), and tiyubelinductive hy-
pothesisSucce,e, ..., , iS aninverted TAMF. But by the above equational reason-
ing, and lemma 5, it follows th&ucce,., ..., iS a normal TAMF.
The case whenge; . .. e, has an odd number of bounces follows similarly.



— Onthe other hand, i,, # e 1., thenthe signatur@ye; .. .e,_; contains the same

n—11

number of bounces as the original signature.

Succepes ...e,
= { property ofSucc }

Succey,—1€p 0 SuCCepe..er_;
As before, ifege; . . . e,, contains an even number of bounces, so thds. . . e,,_1
(since the last pair were not a bounce), and thus, by the tivéubypothesis,
SucCeye,..e, , IS @ normal TAMF. But by the above equational reasoning, and
lemma 1, it follows thabucc,,., ..., iS a normal TAMF.
The case whenge; . .. e, has an odd number of bounces follows similarly. O

Lemma 7 Loops which include bounces are not STAY loops.

Proof. The proof follows from Proposition 1, which guarantees thrate we reach the
first inout edge, we can always slide to one end of the edgecédamy loop containing
such edge cannot be a STAY, by definition. O

Lemma 6 The behaviour of any loop containing an even number of bounces can be
calculated as for SPDIs.

Proof. Corollary 2 ensures th&ticc,, is a normal TAMF. Earlier, in Section 2, we have
summarised the analysis from [ASY01] which enables us toutale the behaviour of
a cycle whose TAMF is not inverted, in a non-iterative manki¢g can thus use this
technique to calculate the iterated behavious @f a non-iterative way. a

Lemma 8 Given a signature with one loap = eg(eie] tes ... e,)Per (with k& > 0,
which has an odd number of bounces, and starts with a bouheg)dehaviour of sig-
nature is equivalent to following the loop only once agrin= 606161_162 ...eper. In
other wordsSucc, = Succ,-.

Proof. Sincee; is an inout edge, by proposition 2, we know that we can slid@in
least) one direction. without loss of generality, let'stams that for any, Succ,., (I) =

(0, ). Note that due to the definition of TAMFs,is only dependant on the right bound

of I.

Let ' = Succ. 1., . .- Since this includes an even number of bounces, composed
TAMF (thusF) is a normal (non-inverted) TAMF. Moreover, SinE&I) = Succe,, ¢, (SuccefleQ___en (1)),
thenF'(I) = (0, z) for some value of.. Finally, we note that sincg is a normal TAMF,

x is dependant only on the right bound bfwe can conclude that there existsuch

that for anyz, F'(z,1) = (0, o).

We can now proceed to prove the result by inductiortofrivially, the result holds for

k = 1. Now considefk > 1:



Succeo(el()‘;162.“%)%1 (I)
={k>1}
Succeo(elefl62...e“)(616;162...6“)’*‘*161(
= { by induction}
Succeo(elel_l62...e“)(elel_leg...e“)el (I)
= { by definition ofSucc and F’ }
F oSucce,e, © FSucce,e_, ©Succeye, (1)
= { by definition ofFlip }
F oFlipo F oFlip o Succeye, ()
= { by sliding argument given above
F o Flipo F o Flip(0, z)
= { by definition ofFlip }
FoFlipoF(1—ux,1)
= { by property ofF’ given above}
F o Flip(0, o)
= { by definition ofFlip }
F(1-a,1)
= { by property ofF’ given above}
(0,a)
= { by property ofF’ given above
F(1-42',1)
= { by definition ofFlip }
F o Flip(0,27)
= { by sliding argument given abovje
F o Flip o Succeye, (1)
= { by definition ofFlip }
Fo SUCCelel—l o Succeye, (1)
= { by definition ofSucc and F’ }
Succ

Iy

eo(ere; Tea...en)er (I)

By induction the result thus follows.

Lemma 9 Given a loops with an odd number of bounces, we can calculate the limit of
o1 without iterating.

Proof. Let ¢ = eges ...ee; teit1 ... en, Wheree;e; ! is the first bounce of the se-
guence. Since contains inout edges, it cannot be a STAY loop, and we onlgicien
the case where the loop finally exits. Consider the exitioglo'e’.

The case when is never repeated or repeated only once, can be easily ltanilieen
the number of repetitions is at least twice, we can use thewolg reasoning:



SucC e
= { definition ofo }
SUCC(eiey creessy.en)ie!
0€1...€;€; " €if1...€n
= { definition of path repetition}

Succegel...6,;_1(€i€;16i+1...6n606q...6,;_1)k716i6;1€i+1...e/
= { using Lemma 8

Succegel...e,;_l(eiefle,;+1...eneoeq...e,;_l)eieflei+1...e,,,e/
This reduces the analysis of such loops to a simple path sisalshich we know how
to perform. a

Theorem 4We can (constructively) compute the behaviour of a sigatusf ros3 .. . ..

Proof. We use the standard techniques presented in [ASY07], bufheserems 6 and
9 to analyse loops with bounces. O

Section 4.2

Lemma 10 Given a GSPDI, and assuming only trajectories without seifsing, if
there is a type of signature where a simple cycte (e, 1, . . ., €,,) appears twice, i.e.
type(Sig(€)) = o' with ¢” = s*...s*", then if there is no reverée) between

the two occurrences 6f thentype(Sig(¢)) = o’s* "

Proof SketchThere are two cases:

1. 0" = s*rs*": In this caser must be of the forme;; e, ! ... e; ! withi > 0. We
must have a bouncing af !, then we can slide and we get = s*"'.

2. o = s*ws*": Herew is any finite sequence of alternating ands’s. It can be
shown that either we reduce to the previous case, must contain reverge), or
there must be a self-crossing. a

Lemma 11 Given a GSPDI, if there is a trajectory segmént [0,7] — R2, with
£(0) = x and¢(t) = x’ for somet > 0, such thatype(Sig(€)) = 7155 rosh2rzshory,
with sy = reversés;) andss = s1, then it is always possible to find a trajectory seg-
ment¢’ : [0,7] — R? such that¢’(0) = x and¢’(t) = x’ for somet > 0, and

type(Sig(€)) = 15, 7%

Proof SketchLet s; = (e, e1, ..., e,) be a simple cycle whergis a clockwise spiral
turning inwards. Due to Proposition 1, we have the followiwg cases:

1. eg allows sliding inwards. We can always eliminate the firsti.e.,type(Sig(§)) =
7 sh2r3s83r,. See Fig. 6.
2. eq allows sliding outwards. Two cases:
(a) reversd sy ) loops outwards.In this case we can eliminate since once we
start that loop, we can slide outwards till starts, and we getype(Sig(§)) =
158 sy, which istype(Sig(€)) = r1s¥ 4. See Fig. 4-(a).
(b) reversgsq) loops inwards. Two cases:



€ €1
[ €

L y

v,
€9 €3 €o / €3
s @ (b)

Fig. 4. Proof of Lemma 11 - Case sliding outwards: (a) case reygydeoping outwards; (b)
case revergg) looping inwards and exiting.
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Fig. 5. Proof of Lemma 11 - Case sliding outwards: (a) case bounawgiids; (b) case bouncing
outwards.

i. r contains only edges irs; and s,. This implies bouncing. Two cases.

A. Bouncing inwards. Implies sliding inwards, which contradicts the as-
sumption. See Fig. 5-(a).

B. Bouncing outwards.Implies reversgs; ) must loop outwards, contra-
dicts the assumption that revefsg) loops inwards. See Fig. 5-(b).

ii. ro contains edges not ins; and s,. This means that the trajectory exit
through the right’. Let us assume the last visited poingins x € e,
and thatx’ € e such that(t) = x and(t') = x’ with Sig(&[t..t']) = ene,
wheree € first(r2). Then the segment of linex’ partition the regior?
into two subregions?; and R». Clearly the only way to have,ss with
so going inwards is from a trajectory segment from regidnto Ry by
crossingxx’, which breaks the assumption of non-crossing trajectories
Thus the pattermsrsss is not possible in this case. See Fig. 4-(b). O

Corollary 3 Given a GSPDI, let = ¢; ... e, be an edge signature, then it can always
be written asr 4 = rls’fl .. .rnsf;zrn“, where foranyl <i < n+41, s; is a simple
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Fig. 6. Proof of Lemma 11 —Case sliding inwards.

cycle (i.e., without repetition of edges), and for evérx i # j < n, s; ands; are
different.

Proof. If there arei # j such thats; = s;, the only possibility is to satisfy or the
assumptions of Lemma 10 or Lemma 11. In both cases we cansbidigin a signature
without repeating;. O

Corollary 4 The number of different types of abstract signatures of ag@SPDI is
finite.

Proof. Based on Lemma 3, it suffices to analyse signatures of thedarm 7157 ... 7,577,411
such that provided that# j, s; # s; and with eachr;, containing no repeated edges.
Hence, since the number of edges is finite, the number ofpesslues each;, can

take is finite. Similarly, the number of distinct simple l@ojs finite. Therefore, the
number of abstract signatures to analyse is finite. O

Section 4.3

Lemma 12 ReacliH, x¢,xy) is a terminating, correct and complete algorithm calcu-
lating GSPDI reachability.

Proof. Termination of step 1 follows from the fact that GSPDIs hawédi partitions.
Step 2 terminates by corollary 4. Using Theorems 9 and 6 walsancompute steps 3
and 4, hence guaranteeing termination of the algorithm.

Correctness of the algorithm follows from Theorems 9 andr6 docelerating loops
with bounces) and the results in [Sch02,ASY07] on the cémexs of SPDI reachability
checking.

Finally, completeness is guaranteed by Theorem 4.

ThereforeReach'H;, x¢, xs) (for all H; € Hyea, 1 < i < n), is a terminating com-
plete and sound algorithm for deciding GSPDI reachability. ad
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