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Abstract. Relational instance-based learning (RIBL) algorithms offer
high prediction capabilities. However, they do not scale up well, specially
in domains where there is a time bound for classification. Nearest proto-
type approaches can alleviate this problem, by summarizing the data set
in a reduced set of prototypes. In this paper we present an algorithm to
build Relational Nearest Prototype Classifiers (rnpc). When compared
with RIBL approaches, the algorithm is able to dramatically reduce
the number of instances by selecting the most relevant prototypes,
maintaining similar accuracy. The number of prototypes is obtained
automatically by the algorithm, although it can be also bounded
by the user. Empirical results on benchmark data sets demonstrate
the utility of this approach compared to other instance based approaches.

Keywords: Inductive Logic Programming, Instance Based learning,
Nearest Prototype.

1 Introduction

The main activity in relational data mining consists on finding patterns in data,
described by multiple relations. This difference on the representation of data
with respect to the propositional case increases the complexity of finding these
patterns. The different relational techniques generate models using diverse rep-
resentation schemes, such as equations, classification/regression trees/rules, as-
sociation rules, or instance-based. In the last type of representation, we need to
define a relational distance between two data entries (similarity measure). Usu-
ally, this distance measure in the relational case must be adapted and extended
from the ones used for propositional learning. This technique to learn patterns
is also named Instance-Based Learning (IBL).

IBL methods rank among the best options for classification tasks when deal-
ing both with propositional and relational representations. Relational Instance-
Based Learning (RIBL) [1] techniques have been able to obtain good classifiers
in challenging domains, such as those composed of biological data.

The accuracy of IBL methods is comparable (sometimes even better than)
to other relational techniques like inductive classification logic (ICL), logical
decision trees (TILDE), relational regression trees (S-CART), relational rules
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induction (CPROGOL4.4) or relational association rules (WARMR) [2]. How-
ever, IBL have problems scaling up when the training set grows.

In most domains in the machine learning literature, there is no restriction on
the time to perform classification. Furthermore, given that for IBL techniques
classification time is usually proportional to the size of the classifier, the number
of instances in the learned “model” does not represent a hard constrain. But,
there are application domains where classification time is an important constrain,
as it the case of applying relational learning to AI planning tasks. For instance,
if we want to learn a model that would predict the heuristic value of every node
of a search process, it should return a prediction (heuristic value) quite fast, so
that the use of the learned heuristic outperforms using other heuristics, or even
performing an extended blind search.

In this paper we introduce the first implementation of a Relational Nearest
Prototype Classifier (rnpc). The goal is to obtain a reduced set of prototypes
that generalizes the data set such that it can predict the class of a new instance
faster than using RIBL and with an equivalent accuracy. Specifically, this solu-
tion is based on an existing nearest protoype algorithm for propositional data, the
Evolutionary Nearest Prototype Classifier (enpc) [3]. There are two main differ-
ences with that work: rnpc uses a relational representation; and the prototypes
are extracted by selection as in [4]. The algorithm is based on an evolutionary
process, where different operators eliminate or select new protoypes from the
original data set. rnpc has three main properties: (i) an accuracy performance
similar to other IBL approaches; (ii) the automated selection of the number of
prototypes, that can be bounded by the user, and (iii) a reduction in time and
memory in future classifications required in some domains.

In the next section we explain the rnpc algorithm. The third section shows
the experiments performed over four different data sets, and comparative results
with IBL methods and other classical relational algorithms. Finally, we draw
some conclusions and suggest future work.

2 The rnpc Technique

As the rest of RIBL techniques, the rnpc algorithm uses a relational represen-
tation of the data (we use the MTARFF format [5]) and a relational distance
measure to compute the similarity between instances. The rnpc algorithm is
independent of the distance measure, and we have experimented with different
relational distances. We provide first a set of definitions, and later describe the
algorithm.

2.1 Definitions

A classifier, C, is composed of a set of N relational prototypes C = {p1, . . . , pN}.
Each prototype pi is a selected instance of the training set and represents a region
of the full data set. One instance Ij belongs to a specific region, or to a prototype
pi, when pi is the closest prototype to Ij .
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Table 1. rnpc Algorithm

Input: TrainingSet, X; MaxNumberIterations, it
Initialize C0 =choose-randomly(X), i = −1

REPEAT
i = i + 1
Ci+1 = mutation(X, Ci)
Ci+1 = reproduction(X, Ci+1)
Ci+1 = move(X, Ci+1)
Ci+1 = fight(X, Ci+1)
Ci+1 = die(X, Ci+1)

UNTIL(Ci = Ci+1) OR (i = it)

return Ci+1

Each prototype, pi, is characterized by its quality, quality(pi), which is com-
puted by equation 1.

quality(pi) = min(1, accuracy(pi) × coverage(pi)) (1)

The quality of a prototype is high if it classifies correctly, accuracy, and if it
represents a sufficient number of instances, coverage. The value of the quality is
limited to the range [0, 1].

2.2 The Algorithm

The rnpc algorithm is summarized in Algorithm 1. It receives as input a classifier
of only one prototype randomly chosen from the set of instances. It also receives
the maximum number of iterations, it, and, optionally (in case the user supplies
this value), a bound on the number of prototypes, MaxPrototypes. It returns the
last classifier (set of prototypes) obtained by iteratively applying some genetic-
based operators described next. The loop stops when the maximum number of
iterations has been completed.

Table 2. Algorithm of the Mutation operator

Mutation

Region 1 Region 1

Prototype of class 1

Prototype of class 2 Instance of class 2

Instance of class 1

Function mutation:
for each pj ∈ Ci

class(pj) = mode(pj , instances(pj ))
return Ci
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Table 3. Algorithm of the Reproduction operator

Reproduction

Region 1

Region 1

Region 2

Prototype of class 1

Prototype of class 2 Instance of class 2

Instance of class 1

Function reproduction
for each pj ∈ Ci

k = random(0, 1)
if (k < PRepr(pj)) then

class = roulette(instances(pj ))
if (class <> class(pj)) then

pj′ = select(instances(pj ), class)
Ci = {pj′} ∪ Ci

return Ci

where pj is randomly selected from the new region

The mutation operator (Table 2) labels each prototype in the current classi-
fier Ci with the most popular class in each region. Following the nearest neigh-
bour rule, each prototype knows the number of instances of each class located
in its region. Then, the prototype class becomes the same class as the most
abundant class of instances in its region (the mode).

The reproduction operator (Table 3) introduces new prototypes into the
current classifier Ci. The insertion of new prototypes is a decision that is taken
by each prototype in order to increase its own quality. Thus, regions with in-
stances belonging to different classes can create new regions of different classes.
Equation 2 defines the probability of reproduction of a propotype, where pj is a
prototype, N is the current number of prototypes. In case the user supplies it,
MaxPrototypes is the maximum number of prototypes. So, the probability is
inversely proportional to the accuracy (first factor): if the classification success
of the prototype is high there is no need to reproduce. Also, when the current
number of prototypes tends to MaxPrototypes, the probability tends to zero
(second factor). By default MaxPrototypes is the number of training instances.

PRepr(pj) = (1 − accuracy(pj)) × (1 − N

MaxPrototypes
) (2)

A roulette method decides the class of the new prototype. The roulette contains
a slide per class with size proportional to the number of instances of each class
in the region. If the selected class, j, is different from class(pi), the new region
will have all instances belonging to class j and the new prototype will be chosen
randomly among the instances of that class.

The fight operator (Table 4) allows the prototypes to capture instances from
other regions. Each prototype chooses one rival prototype among its neighbours,
adjacent regions, by a roulette mechanism. The probability of choosing one rival



134 R. Garćıa-Durán, F. Fernández, and D. Borrajo

Table 4. Algorithm of the Fight operator

Fight (Competitive)

Region 2
Region 1

Region 1

Region 2

Fight (Cooperative)

Region 1

Region 2
Region 2

Region 1

Prototype of class 1

Prototype of class 2 Instance of class 2

Instance of class 1

Function fight
for each pj ∈ Ci

pr = roulette(neighbors(Ci, pj))
k = random(0, 1)
if (k < PF ight(pj , pr)) then

if (class(pj) = class(pr) then
pw , pl = roulette({pj , pr})
stealGauss(pw , instances(pl), class(pw))

else
stealClass(pj , instances(pr), class(pj))

return Ci

where pw and pl are the winner and loser prototypes

is proportional to the difference among the qualities of both prototypes. In a
second step, the prototype decides whether to fight or not. This probability is
also proportional to the difference of qualities between both rivals.

Finally, if they fight and both have the same class, the winner will be selected
with a roulette mechanism using the quality measure. The winner prototype
steals as many instances of its class as a Gaussian function dictates. However, if
both rivals belong to different classes, they cooperate and the rival gives to the
initial prototype all its instances belonging to the initial prototype class.

The move operator (Table 5) relocates the prototypes. It finds the medoid of
a region (the relational instance with less distance to the rest) as was successfully
applied in FORC [6]. This is the main difference with respect to enpc, where
the centroid (a new propositional instance placed in the middle of the region)
was computed.

Finally, the Die operator (Table 6) eliminates weak prototypes. The prob-
ability of dying is proportional to the quality of the prototype and inversely
proportional to the difference between the number of current prototypes and
MaxPrototypes. Then, a prototype have more probability of dying if its quality
is close to 0, and also if the current number of prototypes of the classifier
is close to or greater than the expected one. The instances of a dead prototype are
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Table 5. Algorithm of the Move operator

Region 2

Region 1

Move

Region 2

Region 1

Prototype of class 1

Prototype of class 2 Instance of class 2

Instance of class 1

Function move
for each pj ∈ Ci

pj = medoid(instances(pj))
return Ci

Table 6. Algorithm of the Die operator

Function die
for each pj ∈ Ci

k = random(0, 1)
if (k < PDie(pj)) thenCi = Ci − {pj}

return Ci

moved to the nearest prototype. The resulting probability is given by equation 3,
with the same notation as in equation 2.

PDie(pj) = 1 − min(1,
MaxPrototypes

N
× quality(pj)) (3)

The prototypes change in each iteration, so a different classifier is generated at
the end of each iteration. The algorithm collects only the next classifier with
best training accuracy. If the training accuracy is similar, it selects the one with
less number of prototypes.

3 Experiments

In this section we study the RNPC algorithm for three data sets:1

1. Protein Fingerprints: A protein fingerprint consists of a list of motifs
where one motif is a set of sequences of amino-acids [7]. The total number
of instances is 1842 and there are three possible diagnostics [8].

2. Diterpenes: Diterpenes are organic compounds of low molecular weight
that are based on a skeleton of 20 carbon atoms. The goal is to identify
the type of diterpenoid compound skeletons given their 13C-NMR spectra.
There are 1503 instances and 23 different classes [9].

1 A description of the data sets can be found in:
http : //cui.unige.ch/ ∼ woznica/rel weka/
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3. Mutagenesis: The goal is to predict mutagenicity of a set of 188 aromatic
and hetero-aromatic nitro-compounds. It has been described in two ways: in
the first one, Mutagenesis1, the compounds are composed of atoms, which
constitute bonds. In this case, the median of the number of atoms for each
compound is 26 and the recursion is four. In the second one, Mutagenesis2,
the compounds are composed of bonds, which consist of atoms. Now, the
median of the number of bonds is 28 and the recursion level is limited to
three.

3.1 Training in rnpc

First, we sample how rnpc behaves in training, showing the results of two ex-
ecutions with the Protein Fingerprints data set (Figure 1). They correspond to
MaxPrototypes = #TrainingInstances and MaxPrototypes = 92 (5% of the
training set) respectively. We refer as the reduction factor the percentage of re-
duction in the number of instances between the original data set and the one
that rnpc returns. In both figures we can observe the accuracy over the training
set (left Y axis) and the number of prototypes of the classifiers in each iteration
(right Y axis).

In Figure 1(a) training accuracy rises to 100% in iteration 356, what means
that there is overfitting in training. The algorithm selects the classifier with
best training accuracy and, between these, the one with a lower number of
prototypes: classifier resulting in iteration 356 with 617 prototypes. Then, the
selected classifier is tested with the last fold of instances and its test accuracy
decrease to 72.04%. However, in Figure 1 (b) where MaxPrototypes = 92, the
best classifier is selected in iteration 372 with a training accuracy of 85.87% and
72 prototypes. This classifier is tested with the last fold of instances and obtains
84.41% test accuracy. We can see in this case how using a higher reduction in
the number of prototypes, the test accuracy increases. Although we will show in
the next section that this issue depends on the data set.
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Fig. 1. Training accuracy and number of prototypes in Fingerprints
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3.2 Results in Biological Data Sets

The following experiment used the four data sets and the results are summarized
from Table 7 to 10 respectively. The average number of prototypes are shown in
Tables (a) and the accuracy results in Tables (b). We executed a 10-fold cross
validation in each domain. For each fold, the experiments have been repeated 10
times for rnpc, since it is stochastic. In all cases, the algorithm was executed for
a maximum of 400 iterations (it = 400). In all domains, the algorithm has been
executed with different distance measures: the RIBL [6], AL (Average Linkage),
CL (Maximum), Hausdorff (metric), SL (Minimum), SoMDM (Average sum of
minimal), SoMDMNorm (Normalized SoMDM), and SymmetricDiff (Symmetric
Difference) or Tanimoto (metric) distances [10,11,12].

In all cases we have run the rnpc algorithm with no reduction and with a 95%
reduction (rnpc95%). To compare the generalization capability of the algorithm,
we have also implemented the relational version of the IBL (RIBL) algorithm that
processes instances incrementally [13]. It takes instance by instance selecting them
as prototypes only if no prototype before covers it. The number of final prototypes
tends to be similar to the number of prototypes in the rnpc algorithm. The RIBL

Table 7. Results in the Fingerprints data set, 1842 instances, 3 classes

(a) Average number of prototypes.

rnpc rnpc95% RIBL
RIBL 620.38 69.09 507.1
AL 580.90 70.75 522.8
CL 412.98 64.35 581.7
Hausdorff 603.78 78.9 491.8
SL 649.45 76.37 514.9
SoMDM 642.64 76.94 513.6
SoMDMNo 2.85 2.97 955.4
SymDiff 705.97 71.62 556.2
Tanimoto 691.74 73.28 538.6

(b) Accuracy results.

rnpc rnpc95% RIBL IBk1 IBk3 IBk8
RIBL 73.87 ± 3 82.79 ± 2.1 69.71 ± 2.3 78.99 ± 3.7 83.66 ± 4 84.31 ± 3.4
AL 73.38 ± 9.4 78.70 ± 10.1 68.22 ± 10.5 79.04 ± 2.7 75.62 ± 3.3 85.02 ± 2.6
CL 73.59 ± 9.2 77.77 ± 10.1 65.12 ± 8.6 75.62 ± 3.3 81.11 ± 2.2 83.17 ± 2.4
Hausdorff 74.21 ± 2.8 82.07 ± 2.9 70.03 ± 2.4 79.48 ± 2.4 82.63 ± 2.5 84.04 ± 2.1
SL 71.66 ± 10.2 80.00 ± 10.2 67.94 ± 8.1 80.29 ± 2 84.09 ± 2.2 86.00 ± 2.5
SoMDM 72.55 ± 9.2 79.90 ± 10.6 67.62 ± 9.3 80.18 ± 2.4 83.82 ± 3.2 85.83 ± 2.4
SoMDMNo 54.17 ± 4.1 54.22 ± 4.1 43.49 ± 6.4 45.34 ± 6.5 43.87 ± 5.7 43.92 ± 5.9
SymDiff 70.97 ± 10.9 76.27 ± 9.5 68.49 ± 9.9 76.11 ± 1.8 76.87 ± 2.3 79.26 ± 1.6
Tanimoto 72.36 ± 9.4 77.32 ± 10.2 70.92 ± 7.6 78.61 ± 1.6 79.97 ± 2 82.30 ± 2.8
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algorithm has two disadvantages: the resulting classifier depends on the order of
the data; and it is not possible to reduce the number of final prototypes without
deleting instances of the initial data set. For the rnpc and IBL algorithms we also
show the average number of prototypes of the final classifiers.

Finally we compare against Relational IBk where k is 1, 3 and 8. This algo-
rithm predicts the class of a new example, by selecting the majority class of the
k nearest neighbours. The disadvantages in this algorithm are two: the need of
trying with different values of k; and the test time cannot be reduced, because
it must compute the distance with the complete data set.

Comparing distance metrics. First, we observe that not all distances are
good for all the data sets. One example is the SoMDMNorm distance; its accu-
racies with all techniques is bad in the Fingerprints data set, while it behaves
relatively well in the rest of data sets. In fact, it is the best in Diterpenes. How-
ever, the three algorithms behave similarly with the same distance.

Comparing each data set. Analyzing the results in the Fingerprints data
set in Table 7 (b), we conclude that applying a reduction of 95% improves the

Table 8. Results of test accuracy in the Diterpenes data set, 1503 instances, 23 classes

(a) Average number of prototypes.

rnpc rnpc95% RIBL
RIBL 311.52 64.77 327.5
AL 7.94 8.35 859.7
CL 9.38 11.02 1086.8
Hausdorff 478.28 54.18 442.9
SL 16.13 17.76 1012.7
SoMDM 238.81 67.27 256.8
SoMDMNo 213.41 69.17 227.9
SymDiff 3.75 4.17 996.8
Tanimoto 454.18 51.65 459.7

(b) Accuracy results.

rnpc rnpc95% RIBL IBk1 IBk3 IBk8
RIBL 86.03 ± 2.7 70.77 ± 4.2 87.87 ± 2.2 95.14 ± 2.9 92.68 ± 2 88.82 ± 2.5
AL 50.03 ± 11.5 49.47 ± 12 40.13 ± 6.9 39.39 ± 7.7 25.35 ± 3.7 26.01 ± 2.1
CL 30.45 ± 3.9 30.51 ± 4.2 19.87 ± 4.4 19.89 ± 4 19.23 ± 3.8 21.63 ± 4
Hausdorff 82.24 ± 3.1 61.38 ± 4.8 79.87 ± 3.2 84.90 ± 2.4 76.78 ± 2.3 68.12 ± 2.8
SL 36.48 ± 3.6 36.33 ± 3.6 24.53 ± 3.4 51.77 ± 2.9 51.70 ± 2.7 51.57 ± 2.8
SoMDM 91.32 ± 1.7 80.91 ± 2.8 91.2 ± 2.1 95.14 ± 1.5 92.22 ± 1.5 87.36 ± 2
SoMDMNo 92.93 ± 1.8 83.75 ± 3.8 91.73 ± 2.3 96.67 ± 1.1 94.15 ± 1.2 90.29 ± 1.8
SymDiff 35.21 ± 2.6 35.04 ± 2.4 26.4 ± 6.3 33.60 ± 2.2 33.60 ± 2.2 33.60 ± 2.2
Tanimoto 77.24 ± 4.3 57.02 ± 4.6 77.8 ± 2.3 88.02 ± 2.4 79.97 ± 2 80.11 ± 2.4
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test accuracy in all cases with respect to not applying the reduction. These
results are also better than the ones obtained in the relational IBL algorithm
for all distances. However, the best classifier with respect to accuracy with all
distances is IBk (k =8). The smallest difference between the test accuracies of
the best two results for both algorithms is 1.5 points for the RIBL distance. The
biggest difference is 6.5 points with the AL distance.

In the Diterpenes data set (Table 8), using the rnpc algorithm without re-
duction is better in most cases than with reduction (between 10 and 20 points).
The explanation could be the high number of different classes in this data set
(23). For the best distance, SoMDMNorm, it looks easier to predict instances
of 23 different classes with 213 prototypes than with 69. The 95% reduction is
too high for this domain. In fact, with a 90% reduction over the total set (or
88.9% over the training set) and with the best distance, we obtain a 87.58% in
test accuracy. Globally, the IBk algorithm (k =1) is the best one, although its
results are close to rnpc and relational IBL.

In both versions of Mutagenesis (Tables 9 and 10), the total number of in-
stances is 188, which explains the high standard deviations. The best results in
Mutagenesis1 are shared by rnpc algorithm in both versions and the IBk1. In

Table 9. Results of test accuracy in the Mutagenesis1 data set, 188 instances, 2 classes

(a) Average number of prototypes.

rnpc rnpc95% RIBL
RIBL 70.41 7.39 57.9
AL 5.18 3.96 67.5
CL 8.77 5.07 67.3
Hausdorff 62.73 8.99 55.1
SL 25.92 8.51 65.4
SoMDM 50.32 9.4 43.5
SoMDMNo 47.71 9.61 46.9
SymDiff 4.58 3.18 66.2
Tanimoto 56.04 9.87 54.5

(b) Accuracy results.

rnpc rnpc95% RIBL IBk1 IBk3 IBk8
RIBL 73.16 ± 7.4 75.73 ± 8.4 65.82 ± 12.2 72.31 ± 9.4 67.95 ± 11.6 71.23 ± 7.3
AL 64.60 ± 9.4 67.21 ± 8.5 64.95 ± 9.7 55.29 ± 12.7 49.62 ± 14.5 68.10 ± 9.9
CL 63.31 ± 10.3 65.26 ± 10.6 63.31 ± 11.1 49.62 ± 14.5 65.41 ± 9.2 66.52 ± 6.4
Hausdorff 79.31 ± 11.5 70.67 ± 12.4 70.4 ± 14.1 76.52 ± 12 72.31 ± 11.6 76.61 ± 8.2
SL 75.30 ± 7.1 77.63 ± 7.6 60.62 ± 9 74.47 ± 9.2 76.08 ± 8.7 76.08 ± 8.3
SoMDM 81.76 ± 9.7 78.00 ± 10.5 80.93 ± 10.8 83.45 ± 9.4 78.22 ± 11.1 76.67 ± 9.9
SoMDMNo 83.85 ± 8.5 72.26 ± 10.5 81.33 ± 10.4 85.00 ± 9.8 82.40 ± 11.1 79.74 ± 9.4
SymDiff 64.93 ± 12.1 63.99 ± 11.2 62.26 ± 8.2 75.06 ± 9.9 75.06 ± 9.9 70.76 ± 7.1
Tanimoto 80.16 ± 7.3 71.89 ± 10.6 77.18 ± 8.5 78.25 ± 8.8 77.60 ± 9.9 69.15 ± 6.9
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Table 10. Results of test accuracy in the Mutagenesis2 data set, 188 instances, 2
classes

(a) Average number of prototypes.

rnpc rnpc95% RIBL
RIBL 53.99 8.24 75.5
AL 4.23 3.54 69.3
CL 3.93 3.48 72.5
Hausdorff 67.03 9.28 60.3
SL 25.44 9.03 65
SoMDM 44.75 9.61 47.6
SoMDMNo 25.13 5.94 42.9
SymDiff 3.36 2.56 63.1
Tanimoto 51.31 9.8 48.4

(b) Accuracy results.

rnpc rnpc95% RIBL IBk1 IBk3 IBk8
RIBL 76.21 ± 9.3 72.53 ± 10.3 59.91 ± 12.6 75.41 ± 11.1 67.98 ± 8.7 72.22 ± 10
AL 65.82 ± 12.5 66.13 ± 11.7 60.22 ± 11.9 55.29 ± 12.1 40.44 ± 10.2 74.39 ± 6.4
CL 57.29 ± 17.6 58.87 ± 16.3 50.87 ± 15.3 40.44 ± 10.2 62.81 ± 6.3 54.88 ± 15.5
Hausdorff 75.51 ± 11.6 63.06 ± 13.8 71.98 ± 12.2 76.55 ± 9.5 71.26 ± 11.8 66.02 ± 10.4
SL 77.16 ± 8.6 76.67 ± 8.6 57.59 ± 17.1 75.03 ± 9.6 76.08 ± 8.7 76.08 ± 9.3
SoMDM 85.03 ± 7.1 77.27 ± 8.7 78.76 ± 6.9 84.01 ± 8.8 78.27 ± 11.4 69.65 ± 8.5
SoMDMNo 71.75 ± 22.8 63.98 ± 21.6 81.46 ± 8.9 87.72 ± 8.7 81.84 ± 11.3 80.85 ± 11.2
SymDiff 66.54 ± 11 66.43 ± 11.3 60.09 ± 11.4 73.42 ± 10.7 73.42 ± 10.4 69.65 ± 8.5
Tanimoto 79.28 ± 7.8 76.46 ± 10.5 75.6 ± 6.4 82.46 ± 8.3 80.29 ± 9.4 73.45 ± 6.4

Mutagenesis2 all results are better using no reduction. Globally both algorithms,
rnpc and IBk, obtain the best results.

In general terms, as almost always happens, the best algorithm depends on
the data set. In the Fingerprints and Diterpenes data sets the IBk algorithm
works better with k =8 and k =1. In Mutagenesis1 the best results are given by
rnpc and in Mutagenesis2 the best results are good for both algortihms. RIBL
is not so good as the others.

If we analyze the best results in the rnpc and IBk algorithms independently
of the used distance and we compute the statistic significance tests, we can say
that in Fingerprints and Diterpenes data sets, the differences are statistically
significant with α =0.05. That is, IBk algorithm is the best one in Fingerprints
and Diterpenes data sets. For both versions of Mutagenesis, it does not exist
significant difference between both algorithms.

Comparing number of prototypes. In this subsection we study the
reduction in the number of prototypes generated by rnpc and relational IBL
with respect to the size of the training set. In general, and for all distances with
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Table 11. Test accuracy results in Fingerprints data set using 10-fold cross validation

Algorithm Test accuracy (%)
SVM-RBF algorithm 85.92
IBk 8 + RIBL distance 81.69
IBk 1 + RIBL distance 75.21
rnpc + RIBL distance 71.5 ± 1.41

Table 12. Test accuracy results in Mutagenesis1 data set using 10-fold cross validation

Algorithm Test ac.(%)
CLAUDIEN [2] 90
rnpc + SoMDMNorm 82.1
ICL [2] 80.9
PROGOL [14] 79
TILDE [15] 75
MRDTL [16] 67
FOIL [15] 61

the best results, the number of protoypes is similar for the rnpc and IBL al-
gorithms. However, observing the number of prototypes and the corresponding
test accuracy, these two values are not directly proportional. This is the case
of the Fingerprints domain (Table 7) where the test accuracy is better for all
distances in the execution of rnpc95%, but the number of prototypes is much
smaller than the resulting from the standard rnpc and the RIBL algorithms.
That is, we can obtain better accuracy with a lower number of prototypes.

Comparing with other methods. In addition, we compared: i) the obtained
results by rnpc; with ii) the ones reported in [7] using IBk (k =1 and k =8)
and RIBL distance; and iii) the best result in [8] using the SVM-RBF algo-
rithm. All these results refer only to the Fingerprints data set, where the in-
stances belonging to the training and test sets of the 10-fold cross validation
are the first 1487 instances used in the experiments explained before, and the
final test was performed with the last 355 instances. The results are shown in
Figure 11, where the test result of rnpc is 3.71 points worse than the results
of IBk for k =1, 10.19 points worse than the IBk algorithm for k =8 with the
RIBL distance, and 14.42 points worse than the SVM-RBF algorithm. The re-
sults of rnpc and IBk follow the same behavior as in Table 7 (b) for the RIBL
distance.

More experiments with the Mutagenesis1 data set and other algorithms can
be seen in Figure 12. We can see how rnpc with the SoMDMNorm distance
(the best one selected in Table 9 (b)) improves the results of ICL, PROGOL,
TILDE, MRDTL and FOIL. However, it does not improve CLAUDIEN.
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4 Conclusions and Future Work

In this paper, we have presented rnpc as a first approach for nearest prototype
classification of relational data. It is an efficient distance-based method that
can use any relational distance, reducing dramatically the size of the database
to compare new instances with. Furthermore, the number of prototypes can be
either automatically generated by the algorithm, or bounded by the user. The
reduction in the size of the data set permits to classify new instances faster than
with the original data set.

rnpc obtains a kind of generalization of the training instances by generating
prototypes. The algorithm has, as a secondary effect, the automatic clustering
of the set of training instances such that the instances belonging to the same
cluster (or prototype) are similar to each other. Thus, we can use the final
prototypes as a generalized description of the clusters. This opens the possibility
of human understanding of the resulting classifier and of using those reduced sets
of prototypes.

We would like to extend this work in three ways. First, to decide the best
distance metric for each domain automatically. Second, to improve the distance
metrics used by rnpc, introducing feature selection or weighting methods fol-
lowing previous attribute-value approaches. Third, to extend the application to
learning in planning, where the learning protoypes can be seen as policies to
guide the search of a solution. This learning can substitute the planner or even
it can be combinated with the base planner to act as a heuristic.
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