
HAL Id: hal-04000448
https://hal.science/hal-04000448

Submitted on 22 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A logical approach to dynamic role-based access control
in a distributed environment

Philippe Balbiani, Yannick Chevalier, Marwa El Houri

To cite this version:
Philippe Balbiani, Yannick Chevalier, Marwa El Houri. A logical approach to dynamic role-based
access control in a distributed environment. 13th International Conference on Artificial Intelli-
gence: Methodology, Systems, Applications (AIMSA 2008), Jan 2008, Varna, Bulgaria. pp.194–208,
�10.1007/978-3-540-85776-1_17�. �hal-04000448�

https://hal.science/hal-04000448
https://hal.archives-ouvertes.fr

A Logical Approach to
Dynamic Role-Based Access Control

Philippe Balbiani, Yannick Chevalier, and Marwa El Houri

Institut de recherche en informatique de Toulouse, Toulouse University, France

Abstract. Since its formalization RBAC has become the yardstick for
the evaluation of access control formalisms. In order to meet organiza-
tional needs, it has been extended along several directions: delegation,
separation of duty, history-based access control, etc. We propose in this
paper an access control language in which RBAC and all the above-
listed extensions can be encoded. In contrast with Cassandra, we have
not promoted role management mechanism to first-class citizenship, and
have based our model on the assumption that access control systems
could be separated into a dynamic part that evolves according to actions
performed by users and a static part. We solve in this paper decision
problems related to access control for policies expressed in this language.

Keywords: Access control language, RBAC, privacy policy.

1 Introduction

The academic foundations of the access control problems have been formalized
in [4,8], where an information system is defined by a set of objects, a set of subjects
performing operations on objects, and a finite number of relations called rights
between subjects and objects. This system has later been refined with Role-
based access control (RBAC) [6], where subjects are organized in groups called
roles, and these groups are hierarchically structured. This structure permits
one to define an inheritance of rights from one role to another, and thus to
express complex policies in a less error-prone way. Several extensions of this
“core RBAC” policy expression language have been developed over the years to
address needs arising from real-case problems such as role hierarchy, separation
of duty and delegation.

RBAC, along with several of its extensions, was a core component in many
highly expressive policy languages. The notion of delegation was explored in
the works of [1,11], in which delegation was seen as a subject who grants some
access control rights to another one. In [9] one distinguished between delegation
from a role to another and delegation from a subject active in a role to another
subject active in another role to avoid potential inconsistencies. Actually, a study
on a large information system [3] aiming at implementing a security policy in
Cassandra [2] has shown that different flavors of delegation had to be employed
in different parts of the system. Role hierarchy and separation of duty in its static

and dynamic aspects were also subject of study, wether explicitly as extensions
of the RT language [9] or within the Cassandra policy specification.

However we believe that such policy languages although highly expressive in
terms of access control management, lack a dynamic aspect. In fact in Cassandra
one can see a dynamic aspect in terms of activation and deactivation of a role
as a mean to step in and out of a role and thus acquire the adequate rights,
but the effect of performing an action other that activating a role cannot be
specified within the policy language. We propose in this paper a language that
takes into account RBAC extensions but also introduces a dynamic aspect to
the expression of access control rules.

The concept underlying this language is that an access control system is char-
acterised by decision contexts and an invariant datalog program. A decision con-
text is defined by a set of permissions. Within each decision context, an access
control decision is based on the computation of whether the requested permission
is obtainable using the datalog program from the set of permissions defining the
current decision context. The access control system evolves from one decision
context to another according to actions performed by a user. A drawback of this
simplicity is the declaration of every action that can alter the decision context,
including e.g. the action stating that a client is active in a given role.

In spite of its simplicity, this model permits us to express seamlessly core
RBAC policies as well as their different extensions presented above. It is similar
in spirit to Cassandra, though we have not built-in role management: being active
in a role is an action similar to the invocation of a service. Finally, in contrast
with Transaction Logic [5] the side effects are not attached to a rule but to an
effective action of the client. The consequence of this choice is the determinism
of the system w.r.t. client’s actions (instead of client’s choice of rules to apply).

In Sect. 2 we present a novel language for expressing access control policies.
Then, in Sect. 3 we present how RBAC can be encoded into this language.
Section 4 is devoted to the definition and complexity analysis of decision prob-
lems related to access control in our language.

2 Access Control Policies

In this section, we present our framework for expressing role-based access control
policies and their extensions.

2.1 Domains

Active processes acting on behalf of users are referred to as subjects whereas
passive resources accessible on a computer system are referred to as objects. A
key feature of our access control policies is that all actions are done through roles,
i.e. subjects receive permissions to execute actions on objects only through the
roles to which they are assigned. In our policies, following the notions considered
in RBAC, subjects are organized in groups called roles, and these groups are
hierarchically structured. In our setting, a domain is a tuple

D = 〈S, A, O, R〉

such that S is a set of subjects, A is a set of actions, O is a set of objects and R
is a set of roles. We will assume that:

– S ⊆ O with S and R pairwise disjoint,
– A and O are pairwise disjoint.

2.2 Security States

Consider a domain D = 〈S, A, O, R〉. A security state based on D is a subset Π
of S × A × O × R. For all s in S, for all a in A, for all o in O and for all r in
R, we will write Π(s, a, o, r) instead of (s, a, o, r) ∈ Π . Π(s, a, o, r) means that
“subject s has in Π the permission to execute action a on object o through role
r”. A primary relation of interest between security states is that of set inclusion,
under which the set of security states based on D forms a complete lattice.

2.3 Atomic Formulae and Conditions

Consider a domain D = 〈S, A, O, R〉 and a security state Π based on D. We
assume an alphabet of variable symbols: X , Y , etc, possibly with subscripts. A
term based on D is either an element of S ∪ A ∪ O ∪ R or a variable symbol.
An interpretation function for D is a function I mapping the variable symbols
to elements of S ∪ A ∪ O ∪ R. The value Ĩ(t) of a term t is defined as follows:

– if t is an element of S ∪ A ∪ O ∪ R then Ĩ(t) = t,
– if t is a variable symbol then Ĩ(t) = I(t).

A 4-tuple (t1, t2, t3, t4) of terms based on D is said to be correct iff the following
conditions are satisfied:

– t1 is either a variable symbol or an element of S,
– t2 is either a variable symbol or an element of A,
– t3 is either a variable symbol or an element of O,
– t4 is either a variable symbol or an element of R.

An atomic formula based on D is an expression of the form P (t1, t2, t3, t4) were
(t1, t2, t3, t4) is a correct 4-tuple of terms based on D. We define the well-formed
conditions (φ, ψ, etc, possibly with subscripts) based on D by the rule

φ ::= P (t1, t2, t3, t4) | ⊥ | � | (φ1 ∨ φ2) | (φ1 ∧ φ2).

The satisfiability relation Π, I |= φ between a security state Π , an interpretation
function I and a condition φ is defined as follows:

– Π, I |= P (t1, t2, t3, t4) iff Π(Ĩ(t1), Ĩ(t2), Ĩ(t3), Ĩ(t4)),
– Π, I �|= ⊥,
– Π, I |= �,
– Π, I |= φ1 ∨ φ2 iff Π, I |= φ1 or Π, I |= φ2,
– Π, I |= φ1 ∧ φ2 iff Π, I |= φ1 and Π, I |= φ2.

2.4 Static Clauses and Static Policies

Security states are dynamic in nature, i.e. they are likely to change over time in
reflection of ever evolving environmental conditions. This observation leads us to
the central concept of the paper: rule-based access control policies. Rule-based
access control policies will be built up using static clauses and dynamic clauses.
We define in this section the concept of static clauses whereas we define in the
next section the concept of dynamic clauses. Consider a domain D = 〈S, A, O, R〉
and a security state Π based on D. A static clause based on D is an expression
of the form

P (t1, t2, t3, t4) ← φ.

For example, the expression P (X, a, Y, r) ← P (X, a, o, r) is a static clause. It
says that “if X has the permission to execute a on o through r then X has the
permission to execute a on Y through r”. A static policy based on D is a finite
set SP of static clauses based on D. We shall say that Π is a model of SP , in
symbols Π |= SP , iff

– for all interpretation functions I for D and for all static clauses P (t1, t2, t3, t4)
← φ in SP , if Π, I |= φ then Π, I |= P (t1, t2, t3, t4).

The reader may easily verify that the set {Π : Π |= SP} has a least element
under set inclusion. Let l(SP) be this least element.

2.5 Dynamic Clauses and Dynamic Policies

So far, there is nothing really new. But a simple idea is going to ensure that
security states change over time: dynamic policies. If an action is permitted, it is
not necessarily executed. As such the dynamic policy manages the consequence
of executing (or not) a permitted action.

Consider a domain D = 〈S, A, O, R〉 and security states Π , Π ′ based on D.
A dynamic clause based on D is an expression of the form

φ → (ψ1, ψ2)

where neither ψ1 nor ψ2 contain occurrences of the Boolean connective ∨. The
dynamic clause φ → (ψ1, ψ2) is said to be consistent iff neither ψ1 nor ψ2 con-
tain occurrences of the Boolean connective ⊥. For example, the dynamic clause
P (X, a, Y, r) → (P (X, a, o, r), �) is consistent. It says that “if X has the per-
mission to execute a on Y through r then either X executes a on Y through r
and X next obtain the permission to execute a on o through r or X does not
execute a on Y through r”. Informally, each dynamic clause φ → (ψ1, ψ2) defines
a transition relation from a security state Π to a security state Π ′ as follows:

- If φ is satisfied in Π then
- if every action in φ is executed then ψ1 will be true in the next state Π ′

- if some action in φ is not executed then ψ2 will be true in Π ′

- else the rule is not applied.

As such, let A ⊆ Π denote the set of the permitted actions that are actu-
ally executed. A (consistent) dynamic policy based on D is a finite set DP of
(consistent) dynamic clauses based on D. We shall say that the pair (Π, Π ′) is
a transition of DP through A, in symbols Π =⇒A

DP Π ′, iff

– for all interpretation functions I for D and for all dynamic clauses φ →
(ψ1, ψ2) in DP , if Π, I |= φ then either A, I |= φ and Π ′, I |= ψ1 or A, I �|= φ
and Π ′, I |= ψ2.

The reader may easily verify that if the set {Π ′ : Π =⇒A
DP Π ′} is not empty,

then it has a least element under set inclusion. Let L(Π, DP, A) be this least
element.

2.6 Rule-Based Policies

Consider a domain D = 〈S, A, O, R〉 and security states Π , Π ′ based on D. A
(consistent) rule-based access control policy based on D is a tuple

P = 〈SP, DP 〉

whose first component is a static policy based on D and second component is
a (consistent) dynamic policy based on D. For all subsets A of Π , we shall say
that the pair (Π, Π ′) is a transition of P through A, in symbols Π =⇒A

P Π ′, iff

– for all interpretation functions I for D and for all dynamic clauses φ →
(ψ1, ψ2) in DP , if Π, I |= φ then either A, I |= φ and Π ′, I |= ψ1 or A, I �|= φ
and Π ′, I |= ψ2,

– Π ′ |= SP .

The reader may easily verify that the if the set {Π ′ : Π =⇒A
P Π ′} is not empty,

then it has a least element under set inclusion. Let L(Π, P , A) be this least
element.

3 RBAC Features

In this section, we present an encoding of RBAC and some of its extensions into
our access control language.

3.1 Terminology

In the rest of this section, for the purpose of characterizing RBAC features,
we consider special actions. Namely, the special actions can-play and is-active
express role membership and role activation respectively. The special action
Acquire denotes the acquiring of permissions relative to a role. The special ac-
tions delegate and d-play express delegation of a role and playing the role by
delegation respectively.

3.2 Role Activation

The essential notion in RBAC is that permissions are associated with roles and
users are assigned to appropriate roles. To this end we define role membership by
the predicate P (X, can-play, X, r) saying that subject X has the permission to
play role r. On the other hand P (X, is-active, X, r) expresses that X is currently
active in role r. The assignment of permissions to roles is expressed with the
special action Acquire in the body of rules as follows:

P (X, a, o, r) ← P (X, Acquire, X, r)

That is, if user X has acquired the permissions associated with role r then X
will have the permission to do action a on the object o. There is one rule for
each triple (a, o, r) in the permission-role assignment relation.

One way for user X to acquire the permissions associated with role r is to
activate the role r. This is done by executing the action can-play, and induces
the addition of P (X, is-active, X, r) at the next state. This is expressed by the
two rules: {

P (X, can-play, X, r) → (P (X, is-active, X, r), �)
P (X, Acquire, X, r) ← P (X, is-active, X, r)

The user X can step out of a role r by simply choosing not to activate
P (X, can-play, X, r). In this case she automatically looses all privileges asso-
ciated with role r in the next state.

Finally we impose that when user X becomes active in the role r, she must
acquire the associated permissions, and this acquisition is modeled by explicit
actions. This is guaranteed by the following two dynamic rules:{

P (X, is-active, X, r) → (�, ⊥)
P (X, Acquire, X, r) → (�, ⊥)

If the actions is-active and Acquire are not executed the system enters in an
inconsistent state. We note that in a real system, these mandatory actions can
be performed on a server as a consequence of the explicit actions of a client.

3.3 Role Hierarchy

Role hierarchy is very useful in structuring roles within a certain organization.
As such role, r1 will be junior to role r2 if the permissions associated with r1 are
inherited by members of r2. We express this by the rule

P (X, Acquire, X, r1) ← P (X, Acquire, X, r2)

For example, a cardiologist can inherit the permissions associated with role
intern. This can be expressed by

P (X, Acquire, X, intern) ← P (X, Acquire, X, cardiologist)

If P (Mary, can-play, Mary, cardiologist) is true in SP and if Mary activates the
role cardiologist, then P (Mary, Acquire, Mary, cardiologist) will be true in the
next state Π ′. In this case P (Mary, AcquireMary, intern) will also be true in Π ′.
That is Mary automatically acquires the permissions for role intern.

3.4 Role Delegation

Delegation is the act of authorizing or requesting someone to act on one’s behalf.
In order to be able to delegate a role r, an entity should be active in some role
r1 or allowed to the set of permissions associated with that role:

P (X, delegate, Y, r) ← P (X, Acquire, X, r1) ∧ P (Y, can-play, Y, r2)

The dynamic rules{
P (X, delegate, Y, r) → (P (Y, d-play, Y, r), �)
P (X, d-play, X, r) → (P (X, Acquire, X, r), �)

grant the permission for Y to play the role by delegation. If Y chooses to activate
this delegation, Y will be active in the role r at the next state. Note that if X
chooses not to activate the action delegate, Y looses his privileges at the next state.

3.5 Separation of Duties

The separation of duty principle can be seen in both its static and dynamic as-
pects. In the dynamic separation of duty, a subject may have the permission to
play two mutually exclusive roles, but can become active in only one of them. For
example, a subject X can be both a doctor and a patient at a hospital, however
X will not have the right to activate the role doctor if X is currently playing the
role patient in the same hospital. We express this constraint as follows:

P (X, Acquire, X, doctor) ∧ P (X, Acquire, X, patient) → (⊥, �)

Note that P (X, Acquire, X, r) is true only if a role r is activated, inherited or
delegated, that is if X is active in the role. In that case no matter what X does,
the system enters into an inconsistent state.

In the static separation of duty, a subject having the right to play the role
teller in a bank for example will not be allowed to be a member of the role
auditor of the same bank. A subject is considered as member of a role if she
has the permission to play the role, was delegated the role or inherited the
permissions associated with the role. Taking that into consideration, we define
a special action p̂lay such that

P (X, p̂lay, X, r) ← P (X, a, X, r) for a ∈ {play, d-play, Acquire}
Then the static separation of duty can be expressed by the rule:

P (X, p̂lay, X, teller) ∧ P (X, p̂lay, X, auditor) → (⊥, ⊥)

If the subject X acquires both permissions at the same state of the dynamic
model, then the system will enter into an inconsistent state, no matter what X
decides to do.

3.6 Synchronization of Actions

By synchronization, we mean the necessity to execute two actions at the same
time. For example, to open the safe in a bank both an agent and a manager
should enter a password otherwise the system would block:

P (X, enter, pswrd, agent) ∧ P (Y, enter, pswrd, manager) → (�, ⊥)

In this case we do not take into consideration the difference between not execut-
ing any action or executing only one action. However, in real life, executing only
one may be considered as an intrusion in the system and should not be accepted.
To express this case, the above rule must be replaced by the following set of rules:

P (X, enter, pswrd, agent) ∧ P (Y, enter, pswrd, manager) → (�, p),
P (X, enter, pswrd, agent) → (pagent, �),
P (Y, enter, pswrd, manager) → (pmanager, �),
p ∧ (pagent ∨ pmanager) → (⊥, ⊥).

where p, pagent and pmanager are ground predicates that will only be used in the
last rule above. This will guarantee that if the agent or the manager execute the
action alone, then the system will enter into an inconsistent state.

4 Assigning Permissions

This section is an encounter with the computational complexity of assigning
permissions. The proofs of our results are given in the appendix. See [10] for
details concerning computational complexity.

4.1 Static Assignments

The STATIC(∃) problem is the following decision problem:

– STATIC(∃): given a domain D, a static policy SP based on D and a condi-
tion φ based on D, determine whether there exists an interpretation function
I for D such that l(SP), I |= φ.

Proposition 1. STATIC(∃) is NP -complete.

4.2 Dynamic Assignments

The DY NAMIC(∃, ∃) problem and the DY NAMICcon(∃, ∃) problem are the
following decision problems:

– DY NAMIC(∃, ∃) (DY NAMICcon(∃, ∃)): given a domain D, a security
state Π based on D, a (consistent) dynamic policy DP based on D and
a condition φ based on D, determine whether there exists a subset A of Π ,
there exists an interpretation function I for D such that L(Π, DP, A), I |= φ.

Proposition 2. DY NAMICcon(∃, ∃) is NP -complete.

Proposition 3. DY NAMIC(∃, ∃) is in Σ2P .

The DY NAMICpath(∃, ∃) problem and the DY NAMICpath
con (∃, ∃) problem are

the following decision problems:

– DY NAMICpath(∃, ∃) (DY NAMICpath
con (∃, ∃)): given a domain D, a security

state Π based on D, a (consistent) dynamic policy DP based on D and a
condition φ based on D, determine whether there exists an integer n ≥ 0
and there exists security states Π0, . . ., Πn based on D such that

• Π0 = Π ,
• for all integers i ≥ 0, if 1 ≤ i ≤ n then there exists a subset A of Πi−1

such that Πi = L(Πi−1, DP, A),
• there exists an interpretation function I for D such that Πn, I |= φ.

Proposition 4. DY NAMICpath
con (∃, ∃) is PSPACE-complete.

Proposition 5. DY NAMICpath(∃, ∃) is PSPACE-complete.

4.3 Rule-Based Assignments

The RULEBASED(∃, ∃) problem and the RULEBASEDcon(∃, ∃) problem are
the following decision problems:

– RULEBASED(∃, ∃) (RULEBASEDcon(∃, ∃)): given a domain D, a secu-
rity state Π based on D, a (consistent) rule-based policy P based on D and
a condition φ based on D, determine whether there exists a subset A of Π ,
there exists an interpretation function I for D such that L(Π, P , A), I |= φ.

Proposition 6. RULEBASEDcon(∃, ∃) is NP -complete.

Proposition 7. RULEBASED(∃, ∃) is in Σ2P .

The RULEBASEDpath(∃, ∃) problem and the RULEBASEDpath
con (∃, ∃) prob-

lem are the following decision problems:

– RULEBASEDpath(∃, ∃) (RULEBASEDpath
con (∃, ∃)): given a domain D, a

security state Π based on D, a (consistent) rule-based policy P based on
D and a condition φ based on D, determine whether there exists an integer
n ≥ 0 and there exists security states Π0, . . ., Πn based on D such that

• Π0 = Π ,
• for all integers i ≥ 0, if 1 ≤ i ≤ n then there exists a subset A of Πi−1

such that Πi = L(Πi−1, P , A),
• there exists an interpretation function I for D such that Πn, I |= φ.

Proposition 8. RULEBASEDpath
con (∃, ∃) is PSPACE-complete.

Proposition 9. RULEBASEDpath(∃, ∃) is PSPACE-complete.

5 Conclusion

In our framework, a role-based access control policy consists in a set of sta-
tic clauses and a set of dynamic clauses defined in terms of permissions. Static
clauses characterize what remains true during the life of a system whereas dy-
namic clauses characterize the different ways according to which the system can
change. We have provided examples on how to express RBAC features using
static clauses and dynamic clauses and we have addressed the complexity issue
of some decision problems related to the assignment of permissions with respect
to such-or-such policy.

In other respect, we have seen how the Boolean connective ⊥ in the right-hand
side of well-formed conditions can be used in order to express RBAC features
such as separation of duties and synchronisation of actions. Seeing that it is
essential for the system to never enter into an inconsistent state, we plan to
study the computational complexity of the decision problem consisting, given a
domain D, a security state Π based on D and a rule-based policy P based on D,
to determine whether there exists an infinite sequence of transitions of P begin-
ning with Π . Finally, permissions are often associated to temporal constraints:
permissions are given for such-or-such periods of time. Extending our current
language with such temporal constraints would permit the expression of more
useful policies.

Acknowledgements

The work presented in this paper was partially supported by the FP7-ICT-2007-1
Project no. 216471, ”AVANTSSAR: Automated Validation of Trust and Security
of Service-oriented Architectures” (www.avantssar.eu). We are also grateful for
the support of the project ANR-05-SSIA-0007-01 Cops financed by the ”Agence
nationale de la recherche” (www.irit.fr/COPS/Accueil.htm).

References

1. Abadi, M.: Logic in access control. In: 18th IEEE Symposium on logic in Computer
Science (LICS 2003), pp. 228–233. IEEE Computer Society, Los Alamitos (2003)

2. Becker, M., Sewell, P.: Cassandra: distributed access control policies with tunable
expressiveness. In: 5th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2004), pp. 159–168. IEEE Computer Society, Los
Alamitos (2004)

3. Becker, M., Sewell, P.: Cassandra: flexible trust management, applied to electronic
health records. In: Proceedings of the 17th IEEE Computer Science Foundations
Workshop (CSFW 2004), pp. 139–154. IEEE Computer Society Press, Los Alamitos
(2004)

4. Bell, D., LaPadula, L.: Secure Computer Systems: Mathematical Foundations.
MITRE Corporation (1973)

5. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoretical Computer
Science 133(2), 205–265 (1994)

6. Ferraiolo, D., Kuhn, D.: Role-based access controls. In: 15th NIST-NCSC National
Computer Security Conference, pp. 554–563 (1992)

7. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of
NP -Completeness. W.H. Freeman, New York (1979)

8. Harrison, M., Ruzzo, W., Ullman, J.: On protection in operating systems. Com-
munications of the ACM 19, 461–471 (1976)

9. Li, N., Mitchell, J., Winsborough, W.: Design of a role-based trust-management
framework. In: Symposium on Security and Privacy, pp. 114–130. IEEE Computer
Society Press, Los Alamitos (2002)

10. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
11. Zhang, X., Oh, S., Sandhu, R.: PDBM: A flexible delegation model in RBAC. In:

Proceedings of the 8th ACM Symposium on Access Control Models and Technolo-
gies (SACMAT 2003), pp. 149–157. ACM, New York (2003)

Appendix

In this appendix, we provide the proofs of propositions 1 to 9.

Proof of proposition 1. STATIC(∃) is in NP . It suffices to prove the existence
of an algorithm in NP that solves STATIC(∃). Let us consider the following
algorithm:

1. First, choose an enumeration A1, . . ., An of some subset of the set of all
ground atomic formulas based on D.

2. Second, choose a ground instance φ′ of φ based on D.
3. Third, for all integers i ≥ 0, if 1 ≤ i ≤ n then check whether Ai can be

inferred in one step from A1, . . ., Ai−1 and some static clause in SP .
4. Fourth, check whether {A1, . . . , An} |= φ′.

The reader may easily verify that this algorithm can be executed in nondeter-
ministic polynomial time.

STATIC(∃) is NP -hard. It suffices to prove the existence of a reduction
from an NP -hard problem to STATIC(∃). We shall say that a connected graph
G = (V, E) is 3-colorable iff there exists a function f in {0, 1, 2}V such that for
all u, v in V , if (u, v) is in E then f(u) �= f(v). Let us consider the following
decision problem:

– 3-COLORABILITY : given a connected graph G, determine whether G is
3-colorable.

It is well-known that 3-COLORABILITY is NP -hard [7]. Given a connected
graph G = (V, E), the instance ρ(G) of the STATIC(∃) problem that we con-
struct is given by the domain DG, the static policy SPG based on DG and the
condition φG based on DG defined by

– DG = 〈{0, 1, 2}, {a}, {0, 1, 2, }, {r}〉,
– SPG = {P (i, a, j, r) : 0 ≤ i, j ≤ 2 and i �= j},
– φG =

∧{P (Xu, a, Xv, r) : (u, v) is in E}.

This completes the construction. Obviously, ρ can be computed in logarithmic
space. Moreover, the reader may easily verify that G is 3-colorable iff there ex-
ists an interpretation function I for DG such that l(SPG), I |= φG. Hence, ρ is a
reduction from 3-COLORABILITY to STATIC(∃).

Proof of proposition 2. DY NAMICcon(∃, ∃) is in NP . It suffices to prove the ex-
istence of an algorithm in NP that solves DY NAMICcon(∃, ∃). Let us consider
the following algorithm:

1. First, choose a subset A of Π .
2. Second, choose an enumeration A1, . . ., An of some subset of the set of all

ground atomic formulas based on D.
3. Third, choose a ground instance φ′ of φ based on D.
4. Fourth, for all integers i ≥ 0, if 1 ≤ i ≤ n then check whether Ai can be

inferred in one step from Π , A and some dynamic clause in DP .
5. Fifth, check whether {A1, . . . , An} |= φ′.

The reader may easily verify that this algorithm can be executed in nondeter-
ministic polynomial time.

DY NAMICcon(∃, ∃) is NP -hard. It suffices to prove the existence of a re-
duction from an NP -hard problem to DY NAMICcon(∃, ∃). Let us consider the
3-COLORABILITY problem. Given a connected graph G = (V, E), the in-
stance ρ(G) of the DY NAMICcon(∃, ∃) problem that we construct is given by
the domain DG, the security state ΠG based on DG, the consistent dynamic
policy DPG based on DG and the condition φG based on DG defined by

– DG = 〈{0, 1, 2}, {a}, {0, 1, 2, r}, {r}〉,
– ΠG = ∅,
– DPG = {� → (

∧{P (i, a, j, r) : 0 ≤ i, j ≤ 2 and i �= j}, �)},
– φG =

∧{P (Xu, a, Xv, r) : (u, v) is in E}.

This completes the construction. Obviously, ρ can be computed in logarithmic
space. Moreover, the reader may easily verify that G is 3-colorable iff there ex-
ists a subset A of ΠG, there exists an interpretation function I for DG such that
L(ΠG, DPG, A), I |= φG. Hence, ρ is a reduction from 3-COLORABILITY to
DY NAMICcon(∃, ∃).

The INCONSISTENT problem is the following decision problem:

– INCONSISTENT : given a domain D, a security state Π based on D, a
subset A of Π and a dynamic policy DP based on D, determine whether
there exists a dynamic clause φ → (ψ1, ψ2) in DP and there exists an in-
terpretation function I for D such that Π, I |= φ and either A, I |= φ and
ψ1 = ⊥ or A, I �|= φ and ψ2 = ⊥.

We will use the following result in the proof of proposition 3.

Proposition 10. INCONSISTENT is NP -complete.

Proof of proposition 10. INCONSISTENT is in NP . It suffices to prove the
existence of an algorithm in NP that solves INCONSISTENT . Let us consider
the following algorithm:

1. First, choose a dynamic clause φ → (ψ1, ψ2) in DP .
2. Second, choose an interpretation function I for D.
3. Third, check whether Π, I |= φ and either A, I |= φ and ψ1 = ⊥ or A, I �|= φ

and ψ2 = ⊥.

The reader may easily verify that this algorithm can be executed in nondeter-
ministic polynomial time.

INCONSISTENT is NP -hard. It suffices to prove the existence of a re-
duction from an NP -hard problem to INCONSISTENT . Let us consider the
3-COLORABILITY problem. Given a connected graph G = (V, E), the in-
stance ρ(G) of the INCONSISTENT problem that we construct is given by
the domain DG, the security state ΠG based on DG, the subset AG of ΠG and
the dynamic policy DPG based on DG defined by

– DG = 〈{0, 1, 2}, {a}, {0, 1, 2}, {r}〉,
– ΠG = {(i, a, j, r) : 0 ≤ i, j ≤ 2 and i �= j},
– AG = {0, 1, 2} × {a} × {0, 1, 2} × {r},
– DPG = {∧{P (Xu, a, Xv, r) : (u, v) is in E} → (⊥, �)}.

This completes the construction. Obviously, ρ can be computed in logarithmic
space. Moreover, the reader may easily verify that G is 3-colorable iff there ex-
ists a dynamic clause φ → (ψ1, ψ2) in DPG and there exists an interpretation
function I for DG such that ΠG, I |= φ and either A, I |= φ and ψ1 = ⊥ or
A, I �|= φ and ψ2 = ⊥. Hence, ρ is a reduction from 3-COLORABILITY to
INCONSISTENT .

Proof of proposition 3. It suffices to prove the existence of an algorithm in NP NP

that solves DY NAMIC(∃, ∃). Let us consider the following algorithm:

1. First, choose a subset A of Π .
2. Second, choose an enumeration A1, . . ., An of some subset of the set of all

ground atomic formulas based on D.
3. Third, choose a ground instance φ′ of φ based on D.
4. Fourth, check whether INCONSISTENT (Π, A, DP) returns “no”.
5. Fifth, for all integers i ≥ 0, if 1 ≤ i ≤ n then check whether Ai can be

inferred in one step from Π , A and some dynamic clause in DP .
6. Sixth, check whether {A1, . . . , An} |= φ′.

The reader may easily verify that this algorithm with oracle INCONSISTENT
in NP can be executed in nondeterministic polynomial time. In contrast to the
aforementioned decision problems, we still do not know if DY NAMIC(∃, ∃) is
complete with respect to the class Σ2P .

Proof of proposition 4. DY NAMICpath
con (∃, ∃) is in PSPACE. It suffices to prove

the existence of an algorithm in NPSPACE that solves DY NAMICpath
con (∃, ∃).

Let us informally describe such an algorithm. First, choose an interpretation
function I for D. Second, check whether Π, I |= φ. Third, if a negative answer
is returned then we choose a subset A of Π , we let Π := L(Π, DP, A) and we
move to the first step. The reader may easily verify that this algorithm can be
executed in nondeterministic polynomial space.

DY NAMICpath
con (∃, ∃) is PSPACE-hard. It suffices to prove that any lan-

guage in PSPACE can be reduced to DY NAMICpath
con (∃, ∃). Let L ⊆ {0, 1}�

be a language in PSPACE. Hence, there is a polynomial-space-bounded Turing
machine M such that for all x in {0, 1}�, x is in L iff M accepts x. The machine
M has three components (Q, Σ, δ) where Q is the set of states of M , Σ is the set
of symbols of M , and δ is the transition function of M . We assume that there
is q0 in Q, the start state of M , and there is q1 in Q, the final state of M , such
that q0 �= q1. We suppose that 0 is in Σ and 1 is in Σ. We also assume that there
is B in Σ, the blank symbol of M , such that 0 �= B and 1 �= B. The transition
function δ assigns δ(q, A) in Q × Σ × {L, R} to each q in Q and each A in Σ. If
δ(q, A) = (q′, A′, L) or δ(q, A) = (q′, A′, R) then it means that whenever the ma-
chine is in state q and scans an A on its tape, it changes its state to q′, replaces
the A by a A′ and moves its tape head leftward or rightward. We suppose that
q0 is not in the range of δ and q1 is not in the domain of δ. We also assume that
M never falls off the left end of its input string x ∈ {0, 1}�. The machine accepts
x in {0, 1}� iff starting in state q0 and scanning the left end of x on its tape,
preceded and followed by an infinity of blanks, M finally enters in state q1. The
machine M is allowed to use an amount of space that is polynomial in the size of
its input, no matter how much time it uses. Consequently, there is a polynomial
p(n) such that when given input x in {0, 1}� of length n, M never visits more
than p(n) cells of its tape. Hence, there is a positive integer k such that for all
x in {0, 1}�, M uses at most 2Nk

positions on its tape when given input x in
{0, 1}� of length N . We are now ready to reduce the following decision problem
to DY NAMICpath

con (∃, ∃):

– P (L): given x in {0, 1}�, determine whether M accept x.

Given x in {0, 1}�, it is convenient to write x = x1 . . . xN where N is the length of
x. For all q in Q and for all A in Σ, if δ(q, A) = (q′, A′, L) then for all A′′ in Σ and
for all i in {1, . . . , Nk}, we let dcL(q, A, A′′, i) be the following dynamic clause:

φL(q, A, A′′, i) → (ψL(q, A, A′′, i), ψL(q, A, A′′, i))

where

φL(q, A, A′′, i) = P (X1, 1, X1, r) ∧ . . . ∧ P (Xi−2, i − 2, Xi−2, r)
∧P (A′′, i − 1, A′′, r) ∧ P ((q, A), i, (q, A), r)
∧P (Xi+1, i + 1, Xi+1, r) ∧ . . . ∧ P (XNk , Nk, XNk , r)

and

ψL(q, A, A′′, i) = P (X1, 1, X1, r) ∧ . . . ∧ P (Xi−2, i − 2, Xi−2, r)
∧P ((q′, A′′), i − 1, (q′, A′′), r) ∧ P (A′, i, A′, r)
∧P (Xi+1, i + 1, Xi+1, r) ∧ . . . ∧ P (XNk , Nk, XNk , r).

For all q in Q and for all A in Σ, if δ(q, A) = (q′, A′, R) then for all A′′ in Σ and
for all i in {1, . . . , Nk}, we let dcR(q, A, A′′, i) be the following dynamic clause:

φR(q, A, A′′, i) → (ψR(q, A, A′′, i), ψR(q, A, A′′, i))

where

φR(q, A, A′′, i) = P (X1, 1, X1, r) ∧ . . . ∧ P (Xi−1, i − 1, Xi−1, r)
∧P ((q, A), i, (q, A), r) ∧ P (A′′, i + 1, A′′, r)
∧P (Xi+2, i + 2, Xi+2, r) ∧ . . . ∧ P (XNk , Nk, XNk , r)

and

ψR(q, A, A′′, i) = P (X1, 1, X1, r) ∧ . . . ∧ P (Xi−1, i − 1, Xi−1, r)
∧P (A′, i, A′, r) ∧ P ((q′, A′′), i + 1, (q′, A′′), r)
∧P (Xi+2, i + 2, Xi+2, r) ∧ . . . ∧ P (XNk , Nk, XNk , r).

The instance ρ(x) of the DY NAMICpath
con (∃, ∃) problem that we construct is

given by the domain Dx, the security state Πx based on Dx, the consistent
dynamic policy DPx based on Dx and the condition φx based on Dx defined by

– Dx = 〈(Q × Σ) ∪ Σ, {1, . . . , Nk}, (Q × Σ) ∪ Σ, {r}〉,
– Πx = {((q0, x1), 1, (q0, x1), r), (x2, 2, x2, r), . . . , (xNk , Nk, xNk , r)},
– DPx = {dcL(q, A, A′′, i) : q is in Q, A is in Σ, δ(q, A) = (q′, A′, L), A′′

is in Σ and i in {1, . . . , Nk}} ∪ {dcR(q, A, A′′, i) : q is in Q, A is in Σ,
δ(q, A) = (q′, A′, R), A′′ is in Σ and i in {1, . . . , Nk}},

– φx =
∨{P ((q1, A), i, (q1, A), r) : A is in Σ and i is in {1, . . . , Nk}}.

This completes the construction. Obviously, ρ can be computed in logarithmic
space. Moreover, the reader may easily verify that M accepts x iff there exists an
integer n ≥ 0 and there exists security states Π0, . . ., Πn based on Dx such that

– Π0 = Πx,
– for all integers i ≥ 0, if 1 ≤ i ≤ n then there exists a subset A of Πi−1 such

that Πi = L(Πi−1, DPx, A),
– there exists an interpretation function I for Dx such that Πn, I |= φx.

Hence, ρ is a reduction from P (L) to DY NAMICpath
con (∃, ∃).

Proof of proposition 5. Similar to the proof of proposition 4.

Proof of proposition 6. Similar to the proof of proposition 2.

Proof of proposition 7. Similar to the proof of proposition 3.

Proof of proposition 8. Similar to the proof of proposition 4.

Proof of proposition 9. Similar to the proof of proposition 5.

