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Abstract. We study a class of scheduling problems which combines the
structural aspects associated with task dependencies, with the dynamic
aspects associated with ongoing streams of requests that arrive during ex-
ecution. For this class of problems we develop a scheduling policy which
can guarantee bounded accumulation of backlog for all admissible re-
quest streams. We show, nevertheless, that no such policy can guarantee
bounded latency for all admissible request patterns, unless they admit
some laxity.

1 Introduction

The problem of efficient allocation of reusable resources over time, also known as
scheduling, is a universal problem, appearing almost everywhere, ranging from
the allocation of machines in a factory [22, 6, 19], allocation of processor time slots
in a real-time system [20, 9], allocating communication channels in a network
[16], or allocation of vehicles for transportation tasks [7]. Unfortunately, the
study of scheduling problems is distributed among many academic communities
and application domains, each focusing on certain aspects of the problem.

In the vast scheduling literature, one can, very roughly, identify two generic
types of problems. In the first type, the work to be scheduled admits a struc-
ture which includes precedence constraints between tasks, but the problems are,
more often than not, static: the work to be executed is known in advance and
is typically finite. Examples of this type of problems are the job-shop prob-
lem motivated by manufacturing (linear precedence constraints, heterogeneous
resources) [19, 18] or the task-graph scheduling problem, motivated parallel exe-
cution of programs (partially-ordered tasks, homogeneous resources) [14] (some
recurrent aspects of scheduling are exhibited in program loop parallelization [13]
but the nature of uncertainty there is different and rather limited).

On the other hand, in problems related to real-time systems [10] or in queuing
theory [17], one is concerned with infinite streams of tasks which arrive either
periodically or sporadically (or in a combination of both), satisfying some con-
straints on task arrival patterns. In many of these “dynamical” problems, the
structural dimension of the problem is rather weak, and each request consists of
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a monolithic amount of work. A notable exception is the domain of adversarial
queuing theory [8] where some structure and uncertainty are combined.

In this paper we propose a model which combines the dynamic aspect asso-
ciated with request streams whose exact content is not known in advance, with
the structural aspects expressed by task dependencies. We define a scheduling
problem where the demand for work is expressed as a stream of requests, each
being a structured job taken from a finite set of types, hence such a stream can
be viewed as a timed word over the the alphabet of job types. Each job type
defines a finite partially-ordered set of tasks, each associated with a resource
type and a duration. Such a stream is to be scheduled on an execution platform
consisting of a finite number of resources (machines). A schedule is valid relative
to a request stream if it satisfies both the precedence constraints imposed by
the structure of the jobs and the resource constraints imposed by the number
of resources available in the platform (and, of course, it does not execute jobs
before they are requested).

The quality of a specific schedule is evaluated according to two types of mea-
sures, one associated with the evolution of the backlog over time, that is, the
difference between the amount of work requested and the amount of work sup-
plied, and the latency, the temporal distance between the arrival of a job instance
and the termination of its execution. To model the uncertain external environ-
ment we use the concept of a request generator, a set of request streams satisfying
some inter-arrival timing constraints. Such constraints can be expressed, for ex-
ample, using timed automata [2], real-time logics [3] or timed regular expressions
[4]. We restrict the discussion to admissible request streams that do not demand
more work over time than the platform can offer. A scheduling policy (strat-
egy) should produce a schedule for each admissible request stream, subject to
causality constraints: the decision of the scheduler at a given moment can only
be based on the prefix of the request stream it has seen so far.

After defining all these notions we prove two major fundamental results:

– Positive: we develop a scheduling policy which produces a bounded backlog
schedule for any admissible request stream. Note that due to the precedence
constraints between the tasks in the jobs, request stream admissibility does
not, a priori, guarantee the existence of such a schedule. In fact, we show
that a naive “oldest first” policy can accumulate an unbounded backlog for
certain request streams. Our policy achieves this goal by making decisions
that provide for pipelined execution whenever possible.

– Negative: there are admissible request streams for which no bounded-latency
schedule (and hence no bounded-latency policy) exists.

The rest of the paper is organized as follows: in Sect. 2 we define our schedul-
ing framework, in Sect. 3 we prove a negative result concerning the impossibility
of bounded latency schedules. In Sect. 4 we extend the framework to include
scheduling policies and in Sect. 5 we develop a scheduling strategy that guaran-
tees bounded backlog. We conclude with a discussion of past and future work.



2 The Recurrent Scheduling Problem

2.1 General Definitions

We use timed words and timed languages to specify streams of requests for work.
Intuitively, a timed word such as ũ = 3 · a1 · 2 · a2 · a3 · 6 consists of a passage
of time of duration 3, followed by the event a1, followed by a time duration 2,
followed by the two events a2 and a3 and then a time duration of 6. We present
some basic definitions and notations (see more formal details in [4]).

– A word over an event alphabet Σ is either ε, the empty word, or u · a where
u is a word and a ∈ Σ. An ω-word is an infinite sequence (ai)i∈N ∈ Σω.

– A timed word over Σ is a word over Σ∪R+. The duration of a timed word u,
denoted by |u| is the sum of its elements that are taken from R+, for example
|ũ| = 11. A timed ω-word is an infinite sequence (ai)i∈N ∈ (Σ ∪ R+)ω such
that its duration diverges.

– The concatenation of a word u and a word (or ω-word) v is denoted by u · v.
– A word u is a prefix of v iff there exists w such that v = u · w, which we

denote u v v. We say that u is a proper prefix of v, denoted by u @ v, if
u 6= v.

– A word (or an ω-word) u is a suffix of v iff there exists w such that v = w ·u.

For a timed (ω-)word u over Σ

– By u(a, i) we denote the time of the i-th occurrence of event a ∈ Σ in the
timed word u. Formally u(a, i) = t if u = v · a · w such that |v| = t and v
contains i− 1 occurrences of a. We let u(a, i) = ∞ when a occurs less than
i times in u.

– The timed word u[0,t] is the longest prefix of u with duration t. Formally
u[0,t] = t0 · a0 · t1 · a1 · ... · ti such that

∑
0≤k≤i tk = t and there exists no

discrete event a such that t0 ·a0 · t1 ·a1 · ... · ti ·a is a prefix of w. For example,
ũ[0,4] = 3 · a1 · 1 and ũ[0,5] = 3 · a1 · 2 · a2 · a3 · 0.

Sets of timed (ω-)words over Σ are called timed (ω-)language. We denote the
sets of such languages by T (Σ) and Tω(Σ), respectively.

2.2 Execution Platform, Jobs and Tasks

The execution platform determines our capacity to process work.

Definition 1 (Execution Platform) An execution platform over a finite set
M = {m1, . . . ,mn} of resource (machine) types is a function R : M → N.

Example: {m1 7→ 2,m2 7→ 4,m3 7→ 1} is an execution platform with three
resource types m1,m2,m3 having 2 instances of m1, 4 instances of m2, and 1
instance of m3.1

1 We will use the notation Rm for R(m) and R when we want to treat the whole
platform capacity as vector and make component-wise arithmetical operations. The
same will hold for sets of functions indexed by the elements of M .



The task is the atomic unit of work, specified by the resource type it consumes
and by its duration. The job is a unit of a larger granularity, consisting of tasks
related by precedence constraints. Each job is an instantiation of a job type.

Definition 2 (Job Type) A job type over a set M of resources is a tuple J =
〈T,≺, µ, d〉 such that ≺⊆ T × T and 〈T,≺〉 is a finite directed acyclic graph
whose nodes are labelled by 2 functions: µ : T → M , which associates a task to
the resource type it consumes, and d : T → R+ − {0} specifying task duration.

As an example consider a job type where T = {a1, a2, a3}, ≺ = {(a1 ≺
a3), (a2 ≺ a3)} µ = {a1 7→ m1, a2 7→ m2, a3 7→ m3}, d = {a1 7→ 3, a2 7→
2, a3 7→ 1}〉, where a1 needs resource m1 for 3 time units, a2 uses resource m2 for
2 time units while a3 consumes m3 for 1 time unit. Task a3 cannot start before
both a1 and a2 terminate.

For a set J = {〈T1,≺1, µ1, d1〉, ..., 〈Tn,≺n, µn, dn〉} of job types, we let
TJ ,≺J , µJ and dJ denote, respectively, the (disjoint) union of Ti, ≺i, µi and
di, for i = 1..n. We call elements of TJ task types. When J is clear from the
context we use notations T , ≺, µ and d.

Definition 3 (Initial Tasks, Rank) An initial task a is an element of T such
that there exists no a′ ∈ T with a′ ≺ a. The rank of task a is the number of edges
of the longest path a0 ≺ a1 ≺ . . . ≺ a such that a0 is initial. Initial tasks have
rank 0.

2.3 The Demand

The sequence of jobs and tasks that should be executed on the platform is
determined by a request stream.

Definition 4 (Request Streams and Generators) A request stream over a
set J of job types is a timed ω-word over J . A request generator is a timed
ω-language over J .

Each request stream presents a demand for work over time which should not
exceed the platform capacity, otherwise the latter will be saturated.

Definition 5 (Work Requested by Jobs and Streams) With each re-
source type m we define a function Wm : J → R+ so that Wm(J) indicates the
total amount of work on m demanded by job J , Wm(J) =

∑
{a∈TJ :µ(a)=m} d(a).

We lift this function to request stream prefixes by letting W (ε) = 0,
W (u · t) = W (u) for t ∈ R+ and W (u · J) = W (u) + W (J) for J ∈ J .

We restrict our attention to request streams that do not ask for more work
per time unit than the platform can provide, and, furthermore, do not present
an unbounded number of requests in a bounded time interval.



Definition 6 (Admissible, Critical and Subcritical Request Streams)
A request stream σ is α-lax (α ∈ R+) with respect to an execution platform R if
for every t < t′, W (σ[0,t′])−W (σ[0,t]) ≤ α(t′− t)R+b for some constant b ∈ Rn.
A stream is admissible if it is α-lax for some α ≤ 1, subcritical if it is α-lax for
α < 1 and critical if it is admissible but not subcritical. A request generator G
is α-lax if every σ ∈ G is α-lax.

2.4 Schedules

Definition 7 (Schedule) A schedule is a function s : T × N → R∞
+ (where

R∞
+ = R+ ∪ {∞} with the usual extension of the order and operations).

The intended meaning of s(a, i) = t is that the i-th instance of task a (which is
part of the i-th instance of the job type to which it belongs) starts executing at
time t. If we restrict ourselves to “non-overtaking” schedules2 such that s(a, i) ≤
s(a, i′) whenever i < i′, we can view a schedule as a timed ω-word in Tω(T ).
Likewise we can speak of finite prefixes s[0,t] which are timed words in T (T ).

Since tasks have fixed durations and cannot be preempted, a schedule deter-
mines uniquely which tasks are executed at any point in time and, hence, how
many resources of each type are utilized, a notion formalized below.

Definition 8 (Utilization Function, Work Supplied) The resource utili-
zation function associated with every resource m is Um : Tω(T )×R+ → N defined
as Um(s, t) = |{(a, i) ∈ T×N : µ(a) = m∧s(a, i) ≤ t < s(a, i)+d(a)}|. The work
supplied by a prefix of s is the accumulated utilization: W (s[0,t]) =

∫ t

0
U(s, τ)dτ .

Definition 9 (Valid Schedule) A schedule s is valid for a request stream σ
on an execution platform R if for any task instance (a, i)

– if J is the job type a belongs to, then s(a, i) ≥ σ(J, i) (no proactivity: jobs
are executed after they are requested);

– ∀a′, a′ ≺ a, s(a, i) ≥ s(a′, i) + d(a′) (job precedences are met);
– ∀t ∈ R+, U(s, t) ≤ R (no overload: no more resource instances of a type are

used than their total amount in the execution platform).

The quality of a schedule can be evaluated in two principal and related (but
not equivalent) ways, the first of which does not look at individual job instances
but is based on the amount of work. During every prefix of the schedule there is
a non-negative difference between the amount of work that has been requested
and the amount of work that has been supplied. This difference can be defined in
a “continuous” fashion like ∆σ,s(t) = W (σ[0,t]) −W (s[0,t]). An alternative that
we will use, is based on the concept of residue or backlog, which is simply the
set of requested tasks that have not yet started executing. It is not hard to see
that a bounded residue is equivalent to a bounded difference between requested
and supplied work.
2 Note that non-overtaking applies only to tasks of the same type.



Definition 10 (Residue, Bounded Residue Schedules) The residue asso-
ciated with a request stream σ and a valid schedule s at time t is ρσ,s(t) =
{(a, i) ∈ T × N : σ(a, i) ≤ t < s(a, i)}. A valid schedule s is of bounded residue
if there is a number c such that |ρσ,s(t)| ≤ c for every t.

The second performance measure associated with a schedule is related to la-
tency, the time an individual job has to wait between being requested and the
completion time of its last task.

Definition 11 (Latency) Given a request stream σ and a valid schedule s, the
latency of a job instance (J, i) is LJ,i(σ, s) = maxa∈TJ

{(s(a, i)+d(a))}−σ(J, i).
The latency of s with respect to σ is L(σ, s) = supJ∈J ,i∈N LJ,i(σ, s).

Note that it is possible that every job instance is served in finite time but the
latency of the schedule is, however, infinite, that is, the sequence {LJ,i}i∈N may
diverge. Bounded residue does not imply bounded latency: we can keep one job
waiting forever, while still serving all the others without accumulating backlog.
But the implication holds in the other direction.

Lemma 1 A valid schedule with bounded latency has a bounded residue.

Proof. Let s be a valid schedule with latency λ ∈ R+. Let V (t) be the total
amount of work of the tasks that are in the residue at time t. Since all these
tasks are supposed to be completed by t + λ we have V (t) ≤ λR which implies
a bound on the residue. ut

2.5 The Running Example

We will use the following recurrent scheduling problem to construct the negative
result and to illustrate our scheduling policy. Consider a platform over M =
{m1,m2} with R(m1) = R(m2) = 1. The set of job types is J = {A,B} whose
respective sets of tasks {a1 ≺ a2} and {b1 ≺ b2} have all a unit duration. The
difference between these job types is that A uses m1 before m2 while B uses m2

before m1 (see Fig. 1). As a request generator we consider G = ((A·1)+(B ·1))ω,
that is, every unit of time, an instance of either one of these jobs is requested
(to simplify notations we will use henceforth A and B as a shorthand for A · 1
and B ·1, respectively). Since each job type requires exactly the amount of work
offered by the platform, G is admissible and, in fact, critical. A bounded-residue
schedule for such critical request streams should keep the machines busy all
the time except for some intervals (that we call utilization gaps) whose sum of
durations is bounded.

The reversed order of resource utilization in A and B renders these two job
types incompatible in the sense that it is not easy to “pipeline” them on our
platform. Intuitively at the moment a request stream switches from A to B, we
may have tasks a2 and b1 ready for execution but only one instance of their
common resource m2 is free. Our scheduling policy will, nevertheless, manage
to pipeline them but, as we show in the next section, bounded latency schedules
are impossible.
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Fig. 2. An illustration of the fact that a request segment Aλ ·Bλ implies a utilization
gap in any schedule of latency λ or less. Before t−λ: job type A has been requested for
a long time, so the residue contains only tasks from A. At t−λ: from now on, requests
are of type B. After t− 1: if the latency is λ, there should be no more tasks from A in
the residue. Now between t− λ and t− 1, only suffixes of A and prefixes of B can be
scheduled, and among those, at least one proper suffix.

3 Negative Result

Theorem 1 Some admissible request streams admit no bounded-latency sched-
ule.

We prove the theorem using the following lemma, which shows that for any
latency λ, the occurrence of a certain request pattern implies a unit increase
in the residue and hence infinitely many consecutive repetitions of this pattern
will imply an unbounded residue. The statement of the lemma and its proof are
illustrated in Fig. 2.

Lemma 2 Let σ be a request stream with a prefix of the form σ[0,t] = u ·Aλ ·Bλ

and let s be a valid schedule for σ with latency λ. Then there is a utilization gap
(an idle resource) of duration 1 or more in the interval [t− λ− 1, t].

Proof. Since the latency of s is λ, no task instance of B belongs to the residue
ρσ,s(t−λ− 1), so the only way to avoid a gap at time t−λ− 1 is to schedule an
instance of a1 and an instance of a2. For the same reason, ρσ,s(t − 1) contains
no task instance of A, so that at time t− 1, s schedules b1 and b2. Moreover any
task instance of B in the residue after t−λ−1 is an instance that was requested
since t− λ.

Now what happens in [t − λ, t − 1]? In that interval, the residue has task
instances from requests for A made before t− λ and from requests for B made



since that time. Due to bounded latency all the instances from A are due for
t− 1. We also know that, because a1 ≺ a2, the residue has always more a2 than
a1, and that their amount is the same only when all started job instances of A
are finished, which is not possible at t−1 because an a1 is scheduled for t−λ−1
(and thus task a2 of the same job instance cannot start before t − λ). In that
interval we also schedule task instances from B the earliest of which can have
started execution at t−λ. Thus, since b1 ≺ b2, we cannot schedule more b2 than
b1.

Summing up the quantity of work scheduled by s between t − λ and t, we
find that on m1 we schedule na1 instances of a1 and nb2 instances of b2 and on
m2 we schedule na2 instances of a2 and nb1 instances of b1, satisfying na2 > na1

and nb1 ≥ nb2 . Thus m2 performs at least one unit of work more than m1 in the
same interval, which is only possible if m1 admits a utilization gap of duration
1. ut

Consider now a request stream that has infinitely many occurrences of the
pattern u ·Aλ ·Bλ. A schedule with latency λ for this stream will have infinitely
many gaps, and hence an unbounded residue, a fact which contradicts Lemma 1.
Hence such a stream admits no schedule whose latency is λ or less.

Proof (of Theorem 1). Consider now any request stream σ in the language L∞ =
J ∗ · A · B · B · J ∗ · A · A · A · B · B · B · B · J ∗ · A · A · A · B · B · B · · ·, where
J stands for (A + B). For every λ, σ has infinitely many prefixes of the form
u · Aλ ·Bλ and cannot have a schedule of latency λ. Consequently it admits no
bounded latency schedule. ut

Note that this impossibility result is not related to the dynamic aspect of the
scheduling problem. Even a clairvoyant scheduler who knows the whole request
stream in advance cannot find a bounded latency solution.

Note also that the language L∞ is not pathological. If fact, in any reasonable
way to induce probabilities on (A+B)ω, this language will have probability of 1.
Hence we can say that critical systems having two incompatible jobs will almost
surely admit only unbounded-latency schedules.

4 Scheduling Policies

Now we want to consider the act of scheduling as a dynamic process where a
scheduler has to adapt its decisions to the evolution of the environment, here
the incoming request stream. We want the scheduler to construct a schedule
incrementally as requests arrive. The mathematical object that models the pro-
cedure of mapping request stream prefixes into scheduling decisions is called a
scheduling policy or a strategy.

Formally speaking, a policy can be viewed as a timed transducer, a causal
function p : Tω(J ) → Tω(T ) which produces for each request stream σ a valid
schedule s = p(σ). Causality here means that the value of s[0,t] depends only
on σ[0,t]. We will represent the policy as a procedure p which, at each time
instant t, looks at σ[0,t] and selects a (possibly empty) set of task instances to



be scheduled for execution at time t, that is, s(a, i) = t if (a, i) ∈ p(σ[0,t]). We
will use s[0,t] = p(σ[0,t]) to denote the schedule prefix constructed by successive
applications of p during the interval [0, t]. We assume that each policy is designed
to work with admissible request streams taken from a generator G ⊆ Tω(J ).

Definition 12 (Scheduling policy) A scheduling policy is a function
p : T (J ) → 2T×N such that for every task instance (a, i) and a request stream
prefix σ, (a, i) ∈ p(σ) implies that (a, i) 6∈ p(σ′) for any σ′ @ σ. A scheduling pol-
icy is valid for σ if for every t, the obtained schedule s[0,t] = p(σ[0,t]) satisfies the
conditions of Definition 9, namely, no proactivity and adherence to precedence
and resource constraints.

We evaluate the overall performance of a policy based on the worst schedule it
produces over the streams in the generator. Since we have just shown a negative
result concerning latencies, we focus on the residue.

Definition 13 (Bounded Residue Policies) A scheduling policy has a
bounded residue relative to a generator G if it produces a bounded-residue sched-
ule for every σ ∈ G.

In the following, we use notation ρσ,p instead of ρσ,p(σ) to denote the residue
resulting from the application of a policy p to a request stream (or prefix) σ.

5 Positive Result

In this section we show that any recurrent scheduling problem with an admissible
request generator admits a policy in the sense of Sect. 4 which maintains the
residue bounded. We emphasize again that the policy makes decisions at run
time without knowing future requests.

5.1 Oldest-First Policy Does Not Work

To appreciate the difficulty, let us consider first a naive Oldest-First policy:
whenever the number of tasks that are ready to use a resource is larger than the
number of free instances of the resource, the available instances are granted to
the older tasks among them. We show that this policy fails to guarantee bounded
residues.

Theorem 2 The Oldest-First policy cannot guarantee a bounded residue.

In fact, this policy will lead to an unbounded residue schedule for request
streams in the language L∞ of the previous section as illustrated in Fig. 3 and
proved below. The reason is, again, the incompatibility between the job types,
which leads to infinitely many utilization gaps where a resource is free while
none of the corresponding tasks in the residue is ready to utilize it. The result
is a direct corollary of the following lemma:



Lemma 3 A bounded residue schedule which conforms to the Oldest-First policy
has a bounded latency.

Note that we already proved the converse for arbitrary schedules and policies.

Proof. First we show that any task instance (a, i) that becomes eligible for ex-
ecution at time t, is scheduled for execution within a bounded amount of time
after t. This holds because, following the policy, the only tasks that can be exe-
cuted between t and s(a, i) are those that are already in the (bounded) residue
at time t. Next we show, by induction on the rank of the tasks, that this fact
implies that any task is executed within a bounded amount of time after its
job is issued. This holds trivially for the initial tasks which become eligible for
execution immediately when the job arrives and then holds for tasks of rank
n + 1 by virtue of the bounded latency of tasks of rank n. Thus the latency of a
bounded-residue schedule produced by the Oldest-First has to be bounded. ut

Since we have already shown that request streams in L∞ do not admit
bounded-latency schedules, a bounded residue strategy will lead to a contra-
diction and this proves Theorem 2. Like the case for Theorem 1, under reason-
able probability assignments to jobs, one can show that the Oldest-First policy
will almost surely lead to unbounded-residue schedules when applied to critical
streams of incompatible jobs.

a1
a2 b1

b2
b1

b2 a1 a1
a2

a1
a2 a2 b1

b2
b1

b2
b1

b2
b1

schedule on m
1

schedule on m
2

A B B A A A B B B B A A Arequests

0
1

1
1

2
1

2
1

2
2

2
3

2
3

2
3

3
3

4
3

4
3

4
3

4
3

residue on m
1

residue on m
2

Fig. 3. Schedule generated by the “oldest first” policy on a stream in the language
L∞, described in 3. Here we see that a gap of length 2 is created on one of the resource
types at every change of job type in the request stream, which makes the residue grow
indefinitely.

5.2 A Bounded Residue Policy

Theorem 3 Any admissible generator admits a bounded-residue scheduling pol-
icy.

In order to circumvent the shortcomings of the “Oldest First” policy, we
describe in the sequel a policy that eventually reaches the following situation:
whenever a resource becomes free and the residue contains tasks that need it, at
least one of those tasks will be ready for execution.



The policy is described in detail in Algorithm 1 and its proof is omitted
due to space limitations. We explain the underlying intuition below. The policy
separates the act of choosing which tasks to execute in the future from the act
of actually starting them. The first decision is made upon job arrival while the
second is made whenever a resource is free and a corresponding task has been
selected. To this end we partition the residue into two parts. The first part P (the
“pool”) consists of requested task instances that have not yet been selected for
execution. Among those, only task instances whose ≺-predecessors have already
terminated are eligible for being selected and moved to the other part, which
consists of n FIFO queues {Qm}m∈M , one for each resource type. The passage
between the two is controlled by two types of events:

– Task termination: when a task (a, i) terminates, eligibility status of its suc-
cessors in P is updated;

– Job arrival: when a job instance (J, i) arrives we pick the oldest3 eligible
instance (a, ja) ∈ P (if such exists) for every task type a ∈ TJ such that
µ(a) = m, and move it to Qm. Note that only initial tasks of (J, i) are
eligible for being selected when (J, i) arrives, while for other task types only
earlier instances can be chosen.

Whenever a resource of type m is free and Qm is not empty, the first element is
removed from Qm and starts executing. This is sufficient to ensure a bounded
residue. However, to improve the performance of the algorithm when the streams
are subcritical, we also choose to start the oldest eligible task which requires m
if an instance of m is released when Qm is empty.

The intuition why this policy works is easier to understand when we look
at critical request streams. For such streams, any job type which is requested
often enough will eventually have instances of each of its tasks in Q and hence,
whenever a resource is freed, there will always be some task ready to use it. This
guarantees smooth pipelining and bounded residue for all admissible request
streams. In Fig. 4 we can see how our policy schedules the request stream σ∞ =
A ·B ·B ·A ·A ·A · · ·.

Scheduling policies of the FIFO type have also been studied in the context
of adversarial queuing and it has been shown under various hypothesis [12] that
those were not stable, sometimes even for arbitrarily small loads. What makes
our policy work is the fact that the act of queuing is triggered by a global
event (arrival of a new job request) on which the actual choice of tasks to be
queued depends. So the decision is somehow “conscious” of the global state of
the system, as opposed to what happens in a classical FIFO network.

5.3 Bounded Latency for Subcritical Streams

We just showed that a policy could ensure bounded residues in the case of critical
streams for which one needs full utilization. But criticality is just a limit case
and for that reason it is interesting to know whether such a policy can adapt and
3 Or one of the oldest if there are several of the same age.



Algorithm 1 The Bounded-Residue Policy
declarations

req: jobType inputEvent // events from σ
free: resourceType inputEvent // triggered when a resource is freed
start: taskInstance outputEvent // scheduling decisions
P : taskInstance set // pool, unselected tasks
Q: resourceType → (taskInstance fifo) // queues, selected tasks

procedure init
P = ∅;
for all m ∈ M do Qm = ∅

procedure startWork(m: resourceType)
if Qm is not empty then α = pop(Qm); emit start(α)
else // for bounded latency against subcritical streams

if P has eligible task instances requiring m then
α = the oldest eligible task instance using m in P ;
P = P − {α}; emit start(α)

on free(m) do startWork(m)

on req(J) do
for all a ∈ TJ do

P = P ∪ {newInstance(a)};
if P has eligible task instances of type a then

α = the oldest eligible task instance of a in P ;
P = P − {α}; push(α, Qm) // select for execution

for all m ∈ M do
for all free instances of m do startWork(m)

a1
b1

b2
b1

a1
a2

a1
a2

a1
a2

b2
b1

b2
b1

b2
b1

b2
b1

a1
a2

a1
a2

a1
a2

schedule on m
1

schedule on m
2

A B B A A A B B B B A A Arequests

0
1

1
1

1
1

1
1

residue on m
1

residue on m
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Fig. 4. The schedule generated by the bounded-residue policy for σ∞. We can see that
after the arrival of the second B, every resource is always occupied, and that the residue
does not grow after that.



behave better when the request stream is subcritical. Fortunately the answer is
positive: the previously exhibited policy, by starting tasks which are not queued
when a resource would be otherwise idle, ensures bounded latencies for request
streams that admit some laxity.

Theorem 4 The policy described by Algorithm 1 has a bounded latency when
applied to any α-lax stream with α < 1 .

Lemma 4 There exists a time bound Tα,m such that any interval [t, t + Tα,m]
admits a time instant where Qm is empty, an instance of m is free and no new
request arrives.

Sketch of proof. Consider an interval of the form [t, t + d] in which no machine
of type m is idle. The quantity of work dequeued from Qm is Rmd and, due to
laxity, the amount of work enqueued into Qm is at most (1−α)Rmd. Hence the
total contribution to the amount of work in Qm is (α − 1)Rmd and for some
sufficiently large d it will empty Qm. ut

Proof (of Theorem 4). We know that, when a task in the pool becomes the oldest
task of the residue which is not queued, it becomes eligible in a bounded amount
of time (all its predecessors must be in the queue). Thus we know that at most
Tα,m units of time after that, this task is started (either queued or started to fill
a gap). Since furthermore the residue (and hence the pool) is bounded (Thm. 3),
there is a bound on the time it takes a task to become the oldest in the pool
and hence to be executed. Thus we conclude that the latency of the policy is
bounded. ut

6 Discussion

We have proved some fundamental results on a model that captures, we be-
lieve, many real-world phenomena. Let us mention some related attempts to
treat similar problems. The idea that verification-inspired techniques can be
used to model and then solve scheduling problems that are not easy to express
in traditional real-time scheduling models has been studied within the timed
controller synthesis framework and applied to scheduling problems [23, 21, 5, 1].
What is common to all these approaches (including [15] which analyzes given
policies that admit task preemption) is that the scheduler is computed using a
verification/synthesis algorithm for timed automata, which despite several im-
provements [11] are intrinsically not scalable. The policy presented in this paper
does not suffer from this problem, it only needs the request generator to be
admissible. Explicit synthesis may still be needed in more complex settings.

In the future it would be interesting to investigate various extensions of the
model and variations on the rules of the game, in particular, moving from worst-
case reasoning to average case by using probabilistic request generators and
evaluating policies according to expected backlog or latency. Finally, we intend
to look closer at the question of “pipelinability”, that is, the mutual compatibility



of a set of job types. Results in this direction may lead to new design principles
for request servers.
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