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Abstract. We present a model checking procedure for the CSL until op-
erator on the CTMCs that underly Jackson queueing networks. The key
issue lies in the fact that the underlying CTMC is infinite in as many
dimensions as there are queues in the JQN. We need to compute the
transient state probabilities for all goal states and for all possible start-
ing states. However, for these transient probabilities no computational
procedures are readily available. The contribution of this paper is the
proposal of a new uniformization-based approach to compute the tran-
sient state probabilities. Furthermore, we show how the highly structured
state space of JQNs allows us to compute the possible infinite satisfac-
tion set for until formulas. A case study on an e-business site shows the
feasibility of our approach.

1 Introduction

Jackson queueing networks (JQNs) [9] are widely used to model and analyze
the performance of computer and communication systems. Recently, we have
presented detailed CSL model checking algorithms for QBDs [13] and in [12] (at
Formats 2007) we presented a general approach to model check JQNs against
continuous-stochastic logic (CSL)[1], [2]; note, however, that [12] only presented
the principles of such an approach. This paper proposes an efficient iterative
algorithm for the computation of the transient probabilities for any possible
initial state on JQNs, which allows for model checking the CSL until operator
on JQNs; the proposed algorithm generalizes our previous work for QBDs [13].
We elaborate on the form and the growth of the data structures, as needed for
JQNs, that make our algorithm memory efficient. Furthermore, we explain that
our algorithm is computationally efficient, as it uses just as many iterations as
necessary to decide whether the transient probabilities meet a given probability
bound.
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Related work on transient analysis on queueing networks is mostly restricted
to finite state spaces. For instance, Harrison [8] presents an iterative method
to solve the time-dependent Kolmogorov equations of finite queueing networks.
In [4] Buchholz applies uniformization to hierarchical queueing networks that
have a finite structured state-space. We are not aware about any approach that
tackles the problem we are solving with our new algorithm.

This paper is organized as follows: In Section 2 we introduce Jackson queueing
networks and the partitioning of the underlying infinite state space. The
general approach for model checking the time-bounded until operator on JQNs is
discussed in Section 3, before we present the details of the uniformization-based
algorithm on JQNs in Section 4. Section 5 shows how the presented algorithm can
be used to facilitate model checking the CSL until operator. As a case study, we
model an e-business site as JQN and analyze its scalability with the newly devel-
oped model checking techniques in Section 6 before we conclude in Section 7.

2 Jackson Queueing Networks

In the following we recapitulate some of the foundations needed for CSL model
checking of Jackson queueing networks [9], as presented in [12]. A labeled JQN
consists of a number of interconnected queues and is defined as follows:

Definition 1 (Labeled Jackson queueing network)
A labeled Jackson queueing network JQN J of order M (with M ∈ N

+) is a
tuple (λ, μ,R, L) with arrival rate λ, a vector of size M of service rates μ, a
routing matrix R ∈ R

(M+1)×(M+1) and a labeling function L that assigns a set
of valid atomic propositions from a fixed and finite set AP of atomic propositions
to each state s = (s1, s2, . . . , sM ). �

The underlying state space of a JQN J of order M is a highly-structured labeled
infinite state continuous-time Markov chain, J , with state space S = N

M , that
is infinite in M dimensions. Every state s ∈ S is represented as an M -tuple
s = (s1, s2, · · · , sM ) and denoted the number of customers per queue. To deal
with the underlying infinite state space we presented a partition into an infinite
number of disjoint finite sets [12], such that with one step only the next higher or
the next lower partition of the state space can be reached. A given corner point1

v partitions the state space into rectangular shaped fronts, that are pairwise
disjoint and situated like shells around each other. In an M dimensional JQN
the front F (v + ı) is a finite set of states defined by

F (v + ı) = {s ∈ S | ∃m(sm = vm + i) ∧ (∀n �= m(sn ≤ vn + i))}, (1)

with m ∈ {1, . . . , M}. The number of states per front in a partitioning with
corner point v equals:

|F (v)| =
M∏

m=1

(vm + 1) −
M∏

m=1

vm. (2)

1 Denoted splitting vector in [12].
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Fig. 1. (a) Partitioning of the underlying state space (b) Representative front, state
and set according to Definition 2

In the following we introduce the concept of representative fronts, states and
sets for JQNs, as visualized in Figure 1. A CSL state formula Φ is independent
as of g if the validity of Φ remains the same in corresponding states in fronts
F (g + ı) for i ≥ 0.

Definition 2 (Representative front, state and set)
For a JQN and a CSL formula that is independent as of g the notion of repre-
sentatives is defined as follows: The front F (g) is called representative front and
denoted as R(g). The states in the representative front are called representative
states r ∈ R(g). Each representative state r represents a distinct infinite set of
states, denoted Sr, such that for all r ∈ R(g) and for all s ∈ Sr it holds that
r |= Φ ⇔ s |= Φ. In general, in an M -dimensional JQN, there are M types of rep-
resentative sets that account for 1 up to M infinite dimensions. A representative
set Sr is called infinite in dimension m if and only if rm = gm, and restricted in
dimension m otherwise. In case a representative state r equals g in k dimensions
it represents a k-dimensional set Sr, such that

s ∈ Sr ⇔
{

sm ≥ rm, iff rm = gm,

sm = rm, otherwise.
�

Hence, a state s belongs to Sr when it takes the same value as r in the restricted
dimensions and any value at least ri in the infinite dimensions.
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3 Time-Bounded Until Operator

Recall that the CSL path formula Φ UIΨ is valid if a Ψ -state is reached on a path
during the time interval I vial only Φ-states. As shown is [2], for model checking
the time-bounded until operator with a time intervals of the form I = [0, t], the
future behavior of the JQN is irrelevant for the validity of ϕ, as soon as a Ψ -
state is reached. Thus all Ψ -states can be made absorbing without affecting the
satisfaction set of formula ϕ. On the other hand, as soon as a (¬Φ∧¬Ψ)-state is
reached, ϕ will be invalid, regardless of the future evolution. As a result of the
above consideration, we may switch from checking the underlying CTMC J to
checking a new, derived, Markov chain denoted as J [Ψ ][¬Φ ∧ ¬Ψ ] = J [¬Φ ∨ Ψ ],
where all states in the underlying Markov chain that satisfy the formula in
square brackets are made absorbing. Model checking a formula involving the until
operator then reduces to calculating the transient probabilities πJ [¬Φ∨Ψ ](s, s′, t)
for all Ψ -states s′. Exploiting the partitioning of the underlying state space yields:

s |= P��p(Φ U [0,t]Ψ) ⇔ ProbJ (s, Φ U [0,t]Ψ) �� p

⇔
( ∞∑

i=0

∑

s′∈SatF (ı)(Ψ)

πJ [¬Φ∨Ψ ](s, s′, t)

)
�� p.

(3)

The transient probabilities are accumulated for the Ψ states in fronts F (ı) for i ∈
N. The transient probability of being in each state of the infinite-state JQN for
any possible initial state can be calculated with a new iterative uniformization-
based method, which we present in the Section 4.

4 Uniformization with Representatives

We recapitulate the basic idea of uniformization with representatives as intro-
duced in [13], before we present the details of applying uniformization with
representatives to JQNs.

4.1 Uniformization

Uniformization is a well-known technique to compute the transient probabilities
V(t) in a CTMC [7]. As standard property of uniformization, the finite time
bound t is transformed to a finite number of steps n. The probability matrix
P(s, s′) for the uniformized DTMC is defined as

P(s, s′) =
G(s, s′)

ν
for s �= s′, and P(s, s) =

G(s, s)
ν

+ 1, for all s, s′.

The uniformization constant ν must be at least equal to the maximum of absolute
values of G(s, s); for JQNs, the value ν = λ+

∑M
m=1 μm suffices. Let U(k) be the

state probability distribution matrix after k epochs in the DTMC with transition
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matrix P. That is, entry (i, j) of U(k) is the probability that j is reached from
i in k steps. U(k) can be derived recursively as:

U(0) = I, and U(k) = U(k−1)P, k ∈ N
+. (4)

Then, the matrix of transient state probabilities for the original CTMC at time
t, can be calculated as:

V(t) =
∞∑

k=0

ψ(νt; k)Pk =
∞∑

k=0

ψ(νt; k)U(k), (5)

where ψ(νt; k) is the probability of k events occurring in the interval [0, t) in a
Poisson process with rate ν. The probability distribution in the DTMC after k
steps is described by V(0) · Pk (note that V(0) = I).

Note that matrices V(t) and U(k), k ∈ N, have infinite size. To avoid the
infinite summation over the number of steps k, the sum (5) needs to be truncated.
We denote the approximation of V(t) that has been calculated with up to n + 1
terms of the summation with V(n+1)(t):

V(n+1)(t) =
n+1∑

k=0

ψ(νt; k)U(k) = V(n)(t) + ψ(νt; n + 1)U(n+1). (6)

Note that V(n)(t) follows the structure of the previous U(m) (m ≤ n) in terms of
zeroes and non-zeroes because any non-zero entry in V(n) corresponds to a non-
zero in U(m)(m ≤ n). We denote a maximum bound on the error that possibly
occurs in an entry of V(t) when the series is truncated after n steps as ε

(n)
t,ν . For

a given number of steps n, ε
(n)
t,ν increases linearly with ν · t and decreases linearly

with n:
�����

∞∑

k=n+1

ψ(νt; k)U(k)

����� ≤ 1 −
n∑

k=0

e−νt (νt)k

k!
= ε

(n)
t,ν . (7)

4.2 Finite Representation

In the following we will use uniformization to compute the transient probabil-
ities to reach all possible goal states from all (starting) states in a JQN. The
homogeneous probability matrix P contains the probability to reach a state s′

from a state s within one step for all s, s′ ∈ S. From every possible starting state,
only n fronts can be reached with n steps. Hence, for a given number of steps
n all states that are n + 1 steps away from the origin ŝ seem to be identical in
the JQN. We only need to consider a finite part of the JQN, depending on the
number of steps n. As we will see, the homogenous structure of the JQN and
of the probability matrix implies that we obtain identical transient probabili-
ties for states s, s′ ∈ Sr with r ∈ R(l), within the error bounds of uniformization
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Fig. 2. Finite state space that needs to be considered for a given l = (4, 4)

given n steps. In fact, we restrict the computation to a finite number of starting
states and still perform a comprehensive transient analysis for every possible
state as starting state. As shown in Figure 2, starting from every representa-
tive state r ∈ R(n), still n steps can be undertaken in every direction without
reaching beyond the origin ŝ. In a two-dimensional JQN the total amount of
starting states we have to consider equals (n + 1)2 and the total amount of goal
states equals (2n+1)2. In an M dimensional setting (l+1)M starting states and
(2l+1)M goal states have to be considered out of which (l+1)M − lM states are
representative. The matrix U(n) is the state probability matrix after n discrete
epochs and V(n)(t) holds the approximated transient probabilities after n steps.
Note that these matrices remain two-dimensional for JQNs, as they represent
all possible combinations of starting states and goal states. It is now sufficient
to consider only starting states that belong to fronts F (ı) for i ≤ n for a finite
representation of U(n) and V(n)(t). The size of the finite representation depends
on the considered number of steps n, hence, on the time, the uniformization rate,
and the required accuracy. We now address the growth of the matrices U(n) in
the course of the computation. Figure 3(a) shows that the dimension of the finite
representation of U(0) is: dim(U(0)) = (|F (0)|)2 = (1M −0M )2 = 1. Since n = 0,
we cannot leave a state and the first front R(0) is already a representative front.
Figure 3(b) shows the dimension of the finite representation of U(1). Since n = 1,
we can reach the next higher or the next lower fronts. Thus, front F (0) cannot
be used as representative front, but we can use the next higher front R(1) as
representative front, as shown in Figure 3(b). Since n = 1, it is possible to reach
the front F (2) as well; thus we have to consider starting in one of the first two
fronts F (i) for i = {0, 1} and ending up in one of the first three fronts F (j)
for j = {0, 1, 2}. The dimension of the finite representation of U(1) depends on
the fronts that contain the starting states and on the fronts containing the goal
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states. The number of states of a given front can be calculated according to
Equation (2). The dimension of U(1) is given by:

dim(U(1)) =
(
|F (0)| + |R(1)|

)
×

(
|F (0)| + |R(1)| + |F (2)|

)

=
(
1M − 0M + 2M − 1M

)
×

(
1M − 0M + 2M − 1M + 3M − 2M

)

= 2M × 3M .

Figure 3(c) shows the finite representation of the matrix U(2). From a given
front, we can reach at most two more fronts in both directions. Picking the
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second front as new representative, ensures that we cannot reach beyond the
origin ŝ. We have to attach another row of states to represent starting from the
new representative front. Furthermore, we attach two more columns to account
for the fronts F (3) and F (4) that can now be reached from the new representative
front. In a general JQN, for a given number of steps n, the size of the matrix
U(n) is then

dim(U(n)) =

(
n∑

i=0

|F (i)|
)

×

⎛

⎝
2·n∑

j=0

|F (j)|

⎞

⎠ = (n + 1)M × (2 · n + 1)M . (8)

Note that, even though the left side of Figure 3 only shows the two dimensional
case, (M = 2) the right side is also correctly depicted for an M dimensional
setting. As before, the finite representation of the matrix V(n)(t) has the same
dimension as U(n).

4.3 Uniformization with Representatives

We now proceed with the actual computation of the state probability matrix
U(n) and the approximated transient probability matrix V(n)(t) according to
(6). Starting with n = 0, and thus with the smallest finite portion of the JQN,
cf. Figure 3(a), we increase n step by step, thus increasing accuracy and size
of the considered finite representation of the JQN. However, in each iteration
we always use the smallest possible representation. Considering n steps, the
probability of starting in a state in the representative front r ∈ R(n) and ending
in a state s′ in one of the fronts F (i), for i ∈ {0, . . . , 2 · n}, represents the
probability of starting in a state s ∈ Sr and ending in the corresponding state
s′′. In order to increase the number of steps from n − 1 to n we first adapt the
size of the data structure before computing the values for n steps. Moving from
step n − 1 to n we have to add the front F (n) that is going to be representative
for n steps, to the set of starting states and the fronts F (2n − 1) and F (2n)
to the set of goal states. First, the two new sets of columns of goal states are
initialized with zero, as it is impossible to reach these states with n − 1 steps.
Second, the new row of starting states F (n) is initialized with the probabilities
of the corresponding entries from front R(n − 1) that is representative for n − 1
steps. Note that this holds for U(n) and V(n)(t). An entry (s, s′) in the new
row of starting states F (n) constitutes moving from a starting state s to a goal
state s′ with s ∈ F (n) and s′ ∈ F (ı) for i = 0, . . . 2n. We first need to find the
corresponding starting state r ∈ R(n − 1) such that s ∈ Sr. The corresponding
goal state then is the state s′′ that is, in every dimension, exactly as far away
from r than s′ is from s, (r− s′′ = s− s′). Given a tuple of starting and goal state
(s, s′) with s ∈ F (n), the corresponding tuple (r, s′′) with r ∈ R(n − 1) is given
by r = s − h(s) and s′′ = s′ − s + r, with

h(s) =

{
hi = 1, si = n,

hi = 0, si �= n,
(9)
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The matrices U(n) and V(n)(t) have a block structure, according to the fronts of
a JQN; we denote the blocks that give the probabilities from states in front F (ı)
to states in front F (j) as U(n)

ı,j and Vı,j(t). Note that P can also be organized
according to this block structure. In iteration step n, we then need to multiply
the enlarged representation of U(n−1) with the square part of P that accounts
for the one-step probabilities for all states in the first 2 · n fronts. In general, for
n ≥ 1,U(n) is computed as U(n−1) · P, cf. (4), as follows:

U(n)
ı,j =

2n+1∑

k=0

U(n−1)
ı,k

· Pk,j, (10)

for ı = 0, . . . , n and j = 0, . . . , 2 · n. Due to the block structure of V(n)(t), we
can rewrite (6) as:

V(n)
ı,j (t) = V(n−1)

ı,j (t) + ψ(νt; n) · U(n)
ı,j , (11)

again for ı = 0, . . . , n and j = 0, . . . , 2 · n + 1.

4.4 Complexity Issues

In the k-th iteration, we actually consider the states of the first k fronts as
starting states and the states of the first 2 · k fronts as goal states, resulting
in matrices with (k + 1)M × (2 · k + 1)M entries, as given by (8). If n is the
maximum number of steps considered, the overall storage complexity for the
three probability matrices U(n−1), U(n), V(n) and the discrete transition matrix
P is O(4n2·M ). The k-th multiplication of matrix U(n−1) with P is carried out
in O(k6M ). For n the maximum number of considered steps, the overall time
complexity therefore equals O(n6·M+1). Note that the iteration costs per step
increase. However, when full probability matrices of the size U(n) and V(n) are
used throughout the complete computation, the iteration costs are much higher.

5 How to Stop?

For model checking an until-formula P��p(Φ U [t1,t2]Ψ) we have to compare for
each starting state the probability to follow a (Φ U [t1,t2]Ψ)-path with the proba-
bility bound p. In the transformed JQN J [¬Φ∨Ψ ] the set of goal states consists
of all Ψ -states. We denote the probability to end up in a Ψ -state before time t,
given starting state s, as γs(t). For the time interval I = [0, t], we have:

γs(t) =
∞∑

i=0

∑

s′∈SatF (ı)(Ψ)

πJ [¬Φ∨Ψ ](s, s′, t).

Note that the vector γ(t) consists of sub-vectors corresponding to the fronts
of the JQN. The approximation of γs(t) after n iterations is denoted γ(n)(t) =
V(n)(t) · γ(0), with

γs(0) =

{
1, s |= Ψ,

0, otherwise.



A Uniformization-Based Algorithm for Model Checking the CSL 197

In principle, γ(n)(t) is of infinite size, but we can cut it to a finite representation,
as from a representative front on, corresponding states have the same probability
values. For all states s ∈ S, we add the computed transient probabilities to reach
any Ψ -state and check whether the accumulated probability meets the bound p
on a regular basis. The accumulated probability is always an underestimation of
the actual probability. Recall that ε

(n)
t,ν is the maximum error of uniformization

after n iteration steps (cf. (7)), such that γs(t) ≤ γ
(n)
s (t) + ε

(n)
t,ν for time interval

I = [0, t]. From (7) it follows that the value of ε
(n)
t,ν decreases as n increases.

Exploiting the above inequality, we obtain the following stopping criteria:

(a) γ
(n)
s (t) ≥ p ⇒ γs(t) ≥ p,

(b) γ
(n)
s (t) < p − ε

(n)
t,ν ⇒ γs(t) < p.

These criteria can be exploited as follows. Starting with a small number of steps,
we check whether for the current approximation one of the inequalities (a) or
(b) holds for all starting states. If this is not the case we continue, check again,
etc., until either of the stopping criteria holds. However, if for one of the starting
states s ∈ S we have γs(t) = p, the iteration never stops, as neither of the
stopping criteria ever holds. However, this is highly unlikely to occur in practice.
In case (¬Φ ∨ Ψ) is independent as of g and either (a) or (b) holds for all
considered starting states with n steps, front R(g + n) is representative and the
transient probabilities for all s ∈ Sr computed with n steps will be the same.
P��p(Φ U [0,t]Ψ) then is independent as of g + n. In that case, we check for all
states s ≤ g + n whether the accumulated transient probability of reaching a Ψ -
state meets the bound p. The representative states that satisfy P��p(Φ U [0,t]Ψ)
form the representative satisfaction set SatR(g+l)(P��p(Φ U [0,t]Ψ)).

6 Case Study: An E-Business Site

Modeling an e-business site as Jackson queueing network facilitates analyzing its
scalability. This is extremely important as customers become dissatisfied easily
in case such a site is overloaded. We are able to model an e-business site in as
much detail as shown in [10], however, we use a model with one queue per server
instead of two, to keep the model concise. On the other hand, where [10] only
analyzes average response times, we are able to analyze a wide range of more
advanced measures, given by the logic CSL and the new analysis algorithm.

6.1 System Description and Model

Consider an online retail shop, where requests arrive from a potentially infinite
customer base. The site itself consists of three servers: a web server, an applica-
tion server and a database server. The requests are first dealt with by the web
server that manages all the web pages and handles the direct interactions with
the customer. The application server implements the core logic of the site and
the database server stores persistent information about registered customers,
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prices and article descriptions. Arriving requests first visit the web server, after
which they are either forwarded to the application server, routed back to the web
server itself or leave the system, when they have been completed. Jobs that visit
the application server are either forwarded to the database server or routed back
to either the web server or the application server. From the database server, jobs
are routed to either the application server or back to the database server itself.
Note that requests can only leave the system via the web server. As illustrated in
Figure 4, the associated JQN then consists of three unbounded queues modeling
the buffer of the web server, the buffer of the application server and the buffer
of the database server, respectively. Requests from the infinite population arrive
according to a Poisson process with rate λ and are then routed as shown in Fig-
ure 4. The arrival rates per queue that follow from solving the traffic equation
and the service rates per queue are given in Table 1.

To analyze the scalability of the e-business site, we define the CSL formula
overflow to indicate that all queues are filled above a certain threshold as

overflow = (s1 ≥ full) ∨ (s2 ≥ full) ∨ (s3 ≥ full),

for different possible values of full. The atomic proposition

no overflow = ¬overflow = (s1 < full) ∧ (s2 < full) ∧ (s3 < full)

indicates that all queues contain less than full requests.

application serverweb server database server

completed requests

λ
μ1 μ2

0.3

0.4

0.3

0.4

0.3

0.3
μ3

0.3

0.7
requests
arriving

Fig. 4. Queueing network model for an online auction site

6.2 Model Checking Time-Bounded Until

Figure 5 shows the number of uniformization steps needed for model checking

Sat(P≥p(overflow U [0,t] no overflow)) for t = {5; 10; 5},

depending on the probability bound p. We show the number of iterations with
the dynamic stopping criterion, as well as the a priori computed number of
steps required for an error ε

(n)
t,ν = 10−7. Clearly, the a priori number of steps is

independent of the probability bound p and increases with time bound t. After 0
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Table 1. Numerical values for the parameters of the model

parameter λ1 λ2 λ3 μ1 μ2 μ3

sec−1 5
2 · λ 5

2 · λ 15
14 · λ 5 5 3

steps the comparison can be evaluated for p = 0 for all time bounds when using
the dynamic stopping criterion. Then the number of iterations first increases
steeply and the maximum number of iterations is reached for a probability bound
at most 0.2 for all four time bounds. In general, the number of iteration steps
using the dynamic stopping criterion decreases for larger p. Note that the step
size of p, as shown in Figure 5 was taken to be 0.01. The number of iterations
in Figure 5 clearly varies over time. A peak occurs whenever the computed
probability for some state is really close to the probability bound p we have to
compare with. The maximum number of iterations with the dynamic stopping
criterion approximates the a priori computed number of steps for ε

(n)
t,ν = 1 ·10−7.

For larger time bounds t, the difference between the number of iterations for
the dynamic and the a priori stopping criterion increases, showing the efficiency
gain using the dynamic stopping criterion.

In Table 2 the first group of rows show the minimum and maximum number
of iterations, depending on the probability bound p, per time bound with the
dynamic stopping criterion and the a priori computed number of iterations per
time bound. The second group of rows then show the finite number of states
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Table 2. Numerical values for the parameters of the model

t dynamic a priori
min max ε

(n)
t,ν = 1 · 10−6

number of iterations
0.5 7 19 20
1 15 29 30
2 30 47 48
5 73 89 92

number of states in
J

0.5 7770 260130 273819
1 23426 877975 1004731
2 91881 2081156 2362041
5 782246 1333300 1456935

number of states in
J [¬Φ ∨ Ψ ]

0.5 121768 252132 265821
1 532276 869977 996733
2 1406912 2073158 2354043
5 782246 1325302 1448937

uniformization error
ε
(n)
t,ν

0.5 1.3 · 10−1 4.0 · 10−7 1 · 10−7

1 2.4 · 10−2 3.1 · 10−7 1 · 10−7

2 1.5 · 10−2 1.0 · 10−7 1 · 10−7

5 1.1 · 10−3 3.45 · 10−7 1 · 10−7

that is considered of the underlying infinite Markov chain J , depending on the
number of iterations and again depending on the time bound t. The correspond-
ing number of states in the absorbing Markov chain J [¬Φ∨Ψ ] is shown in third
row. In the last group of rows, the numerical error ε

(n)
t,ν for the corresponding

number of iterations is given.
Using the dynamic stopping criterion, the number of iterations that is nec-

essary to decide whether s |= P≥p(overflow U [0,t] no overflow) for all s ∈ S
grows with increasing time bound t. This is due to the fact, that with a larger
time bound more steps can be taken. With an increasing number of iterations
also the considered finite part of the underlying infinite Markov chain grows.
In contrast, with more iterations, the introduced numerical error ε

(n)
t,ν decreases.

Therefore, the error bound in column dynamic min is larger than the error
bound in column dynamic max. For time bound t = 5, ε

(n)
t,ν = 1.1 · 10−7 is

enough to decide that s |= P≥p(overflow U [0,t] no overflow) for probability
bound p = 0.98. Whereas ε

(n)
t,ν = 3.45 · 10−7 is enough to decide this for all

probability bounds p ∈ {0.0, 0.01, 0.02, . . . , 0.99, 1.0}. However, this small error
is only necessary to decide the validity of the CSL formula for probability bound
p = 0.15. Note that the given number of iterations and the given error might
not be enough to decide for every other probability bound. The last column
of Table 2 shows the number of iterations that has to be undertaken to keep
ε
(n)
t,ν ≤ 1 · 10−7. Figure 5 shows that an error of 1 · 10−7 is always enough to de-

cide whether s |= P≥p(overflow U [0,t] no overflow) for all s ∈ S. The number
of states of the infinite Markov chain that has to be considered is always slightly
larger than for the maximum in case the dynamic stopping criterion is used.
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6.3 Tool Usage

To model check the time bounded until operator the JQN has been transformed
manually into a stochastic Petri net [5]. To model the possible infinite population
of the JQN, an additional place si added to the SPN from which all arrivals
take place and to which all departures are routed. In case the inner formula
¬Φ ∨ Ψ is independent of g and given the number of iterations is n, the place
finite is initialized with g +2 ·n tokens. Then the CSPL implementation by Bell
[3] is used to generate the underlying Markov chain and an implementation of
the uniformization method for finite state Markov chains by Cloth [6] is used
to compute the transient probabilities. A script then emulated the dynamic
behavior of the algorithm. The time to compute the transient probabilities ranges
from 0.4 seconds to 22 seconds for the different time bounds, when using the
dynamic stopping criterion, and between 1.3 seconds and 26 seconds, when using
the a priori stopping criterion.

7 Conclusion

In this paper we presented a model checking algorithm for efficiently checking
the time-bounded until operator labeled Jackson queueing networks. Note that
with this algorithm the until operator with time interval [t1, t2] and with time
interval [t, t] can be model checked on JQNs along the same lines as presented
for QBDs in [13]; even more details on this can be found in [11]. Hence, we have
shown that it is possible to carry the idea of uniformization with representatives
to other highly structured classes of infinite-state CTMCs as well.

Storage complexity and the computational complexity for doing uniformiza-
tion with representatives on JQNs is much higher than for uniformization with
representatives on QBDs. This is due to the fact that the state space of a QBD
grows without bound in just one direction, whereas the state space of a JQNs
grows without bound in as many directions as the JQN has queues.

Note that we used an approximate algorithm to construct a decision procedure
for model checking the until operator. The approximate algorithm, uniformiza-
tion, computes the transient probabilities for a given error bound. Comparing
the computed probability with the given probability bound and the uniformiza-
tion error allows us to decide for a given starting state whether or not a CSL
formula that contains the until operator is valid.
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