
ar
X

iv
:0

80
2.

04
87

v1
 [

cs
.I

T
]

 4
 F

eb
 2

00
8

Algorithmically Independent Sequences

Cristian S. Calude ∗ Marius Zimand †

Abstract

Two objects are independent if they do not affect each other. Independence is well-
understood in classical information theory, but less in algorithmic information theory.
Working in the framework of algorithmic information theory, the paper proposes two
types of independence for arbitrary infinite binary sequences and studies their proper-
ties. Our two proposed notions of independence have some of the intuitive properties
that one naturally expects. For example, for every sequence x, the set of sequences
that are independent (in the weaker of the two senses) with x has measure one. For
both notions of independence we investigate to what extent pairs of independent se-
quences, can be effectively constructed via Turing reductions (from one or more input
sequences). In this respect, we prove several impossibility results. For example, it
is shown that there is no effective way of producing from an arbitrary sequence with
positive constructive Hausdorff dimension two sequences that are independent (even
in the weaker type of independence) and have super-logarithmic complexity. Finally,
a few conjectures and open questions are discussed.

1 Introduction

Intuitively, two objects are independent if they do not affect each other. The concept is
well-understood in classical information theory. There, the objects are random variables,
the information in a random variable is its Shannon entropy, and two random variables X
and Y are declared to be independent if the information in the join (X,Y) is equal to the
sum of the information in X and the information in Y . This is equivalent to saying that the
information in X conditioned by Y is equal to the information inX, with the interpretation
that, on average, knowing a particular value of Y does not affect the information in X.

The notion of independence has been defined in algorithmic information theory as well
for finite strings [Cha82]. The approach is very similar. This time the information in a
string x is the complexity (plain or prefix-free) of x, and two strings x and y are independent

∗Department of Computer Science, University of Auckland, New Zealand, www.cs.auckland.ac.nz/

~cristian. Calude was supported in part by UARC Grant 3607894/9343 and CS-PBRF Grant.
†Department of Computer and Information Sciences, Towson University, Baltimore, MD, USA,

http://triton.towson.edu/∼mzimand. Zimand was supported by NSF grant CCF 0634830. Part of this
work was done while visiting the CDMTCS of the University of Auckland, New Zealand.

1

http://arxiv.org/abs/0802.0487v1
http://triton.towson.edu/~mzimand

if the information in the join string 〈x, y〉 is equal to the sum of the information in x and
the information in y, up to logarithmic (or, in some cases, constant) precision.

The case of infinite sequences (in short, sequences) has been less studied. An inspection
of the literature reveals that for this setting, independence has been considered to be
synonymous with pairwise relative randomness, i.e., two sequences x and y are said to be
independent if they are (Martin-Löf) random relative to each other (see [vL90, DH]). The
effect of this approach is that the notion of independence is confined to the situation where
the sequences are random.

The main objective of this paper is to put forward a concept of independence that
applies to all sequences. One can envision various ways for doing this. One possibility
is to use Levin’s notion of mutual information for sequences [Lev84] (see also the survey
paper [GV04]) and declare two sequences to be independent if their mutual information
is small. If one pursues this direction, the main issue is to determine the right definition
for “small.” We take another approach, which consists in extending in the natural way
the notion of independence from finite strings to sequences. This leads us to two con-
cepts: independence and finitary-independence. We say that (1) two sequences x and y
are independent if, for all n, the complexity of x↾n (the prefix of x of length n) and the
complexity of x↾n relativized with y are within O(log n) (and the same relation holds if
we swap the roles of x and y), and (2) two sequences x and y are finitary-independent if,
for all n and m, the complexity of x↾n and the complexity of x↾n given y↾m are within
O(log n + logm) (and the same relation holds if we swap the roles of x and y). We have
settled for the additive logarithmical term of precision (rather than some higher accuracy)
since this provides robustness with respect to the type of complexity (plain or prefix-free)
and other technical advantages.

We establish a series of basic facts regarding the proposed notions of independence. We
show that independence is strictly stronger than finitary-independence. The two notions of
independence apply to a larger category of sequences than the family of random sequences,
as intended. However, they are too rough for being relevant for computable sequences. It
is not hard to see that a computable sequence x is independent with any other sequence y,
simply because the information in x can be obtained directly. In fact, this type of trivial
independence holds for a larger type of sequences, namely for any H-trivial sequence, and
trivial finitary-independence holds for any sequence x whose prefixes have logarithmic com-
plexity. It seems that for this type of sequences (computable or with very low complexity)
a more refined definition of independence is needed (perhaps, based on resource-bounded
complexity). We show that the two proposed notions of independence have some of the
intuitive properties that one naturally expects. For example, for every sequence x, the set
of sequences that are finitary-independent with x has measure one. The same issue for
independence remains open.

We next investigate to what extent pairs of independent, or finitary-independent se-
quences, can be effectively constructed via Turing reductions. For example, is there a
Turing reduction f that given oracle access to an arbitrary sequence x produces a sequence

2

that is finitary-independent with x? Clearly, if we allow the output of f to be a computable
sequence, then the answer is positive by the type of trivial finitary-independence that we
have noted above. We show that if we insist that the output of f has super-logarithmic
complexity whenever x has positive constructive Hausdorff dimension, then the answer is
negative. In the same vein, it is shown that there is no effective way of producing from an
arbitrary sequence x with positive constructive Hausdorff dimension two sequences that
are finitary-independent and have super-logarithmic complexity.

Similar questions are considered for the situation when we are given two (finitary-)
independent sequences. It is shown that there are independent sequences x and y and a
Turing reduction g such that x and g(y) are not independent. This appears to be a bad
artifact of the notion of independence proposed in this paper. We consider that this is the
only counter-intuitive effect of our definitions. We do not know if a similar phenomenon
holds for finitary-independence. On the other hand, for any independent sequences x and
y and for any Turing reduction g, x and g(y) are finitary-independent.

We also raise the question on whether given as input several (finitary-) independent
sequences x and y it is possible to effectively build a new sequence that is (finitary-)
independent (not in the trivial way) with each sequence in the input. It is observed that
the answer is positive if the sequences in the input are random, but for other types of
sequences the question remains open. The same issue can be raised regarding finite strings
and for this case a positive answer is obtained. Namely, it is shown that given three
independent finite strings x, y and z with linear complexity, one can effectively construct a
new string that is independent with each of x, y and z, and has high complexity and length
a constant fraction of the length of x, y and z.

1.1 Preliminaries

N denotes the set of non-negative integers; the size of a finite set A is denoted ||A||.
Unless stated otherwise, all numbers are in N and all logs are in base 2. We work
over the binary alphabet {0, 1}. A string is an element of {0, 1}∗ and a sequence is
an element of {0, 1}∞. If x is a string, |x| denotes its length; xy denotes the concate-
nation of the strings x and y. If x is a string or a sequence, x(i) denotes the i-th
bit of x and x↾n is the substring x(1)x(2) · · · x(n). For two sequences x and y, x ⊕ y
denotes the sequence x(1)y(1)x(2)y(2)x(3)y(3) · · · and x XOR y denotes the sequence
(x(1) XOR y(1))(x(2) XOR y(2))(x(3) XOR y(3)) · · · , where (x(i) XOR y(i)) is the sum
modulo 2 of the bits x(i) and y(i). We identify a sequence x with the set {n ∈ N | x(n) = 1}.
We say that a sequence x is computable (computably enumerable, or c.e.) if the corre-
sponding set is computable (respectively, computably enumerable, or c.e.). If x is c.e.,
then for every s ∈ N, xs is the sequence corresponding to the set of elements enumerated
within s steps by some machine M that enumerates x (the machine M is given in the
context). We also identify a sequence x with the real number in the interval [0, 1] whose
binary writing is 0.x(1)x(2) · · · . A sequence x is said to be left c.e. if the corresponding

3

real number x is the limit of a computable increasing sequence of rational numbers. The
plain and the prefix-free complexities of a string are defined in the standard way; however
we need to provide a few details regarding the computational models. The machines that
we consider process information given in three forms: (1) the input, (2) the oracle set, (3)
the conditional string. Correspondingly, a universal machine has 3 tapes:

• one tape for the input and work,

• one tape for storing the conditional string,

• one tape (called the oracle-query tape) for formulating queries to the oracle.

The oracle is a string or a sequence. If the machine enters the query state and the value
written in binary on the oracle-query tape is n, then the machine gets the n-th bit in the
oracle, or if n is larger than the length of the oracle, the machine enters an infinite loop.

We fix such a universal machine U . The notation Uw(u | v) means that the input is
u, the conditional string v and the oracle is given by w, which is a string or a sequence.
The plain complexity of a string x given the oracle w and the conditional string v is
Cw(x | v) = min{|u| | Uw(u | v) = x}. There exists a constant c such that for every x, v
and w Cw(x | v) < |x|+ c.

A machine is prefix-free (self-delimiting) if its domain is a prefix-free set. There exist
universal prefix-free machines; we fix such a machine U ; the prefix-free complexity of a
string x given the oracle w and the conditional string v is Hw(x | v) = min{|u| | Uw(u |
v) = x}.

In case w or v are the empty strings, we omit them in C(·) and H(·). Throughout
this paper we use the O(·) notation to hide constants that depend only on the choice
of the universal machine underlying the definitions of the complexities C and H. Since
the prefix-free universal machine is a particular type of machine, it follows that Cw(x |
v) < Hw(x | v) + O(1), for every x, v and w. The reverse inequality between C(·) and
H(·) also holds true, within an additive logarithmic term, and is obtained as follows.
For example, a string x = x(1)x(2) · · · x(n) can be coded in a self-delimiting way by
x 7→ code(x) = 11 · · · 1

︸ ︷︷ ︸

|bin(n)|

0bin(n)x(1)x(2) · · · x(n), where bin(n) is the binary representation

of n ∈ N. Note that |code(x)| = |x|+ 2 log |x|+O(1). This implies that for every x, v, and
w,

Cw(x | v) > Hw(x | v)− 2 log |x| −O(1). (1)

The following inequalities hold for all strings x and y:

Cy(x) ≤ C(x | y) + 2 log |y|+O(1), (2)

|C(xy)− (C(x|y) + C(y))| ≤ O(logC(x) + logC(y)). (3)

4

The first inequality is easy to derive directly; the second one is called the Symmetry of
Information Theorem, see [ZL70].

There are various equivalent definitions for (algorithmic) random sequences as defined
by Martin-Löf [ML66] (see [C02]). In what follows we will use the (weak) complexity-
theoretic one [Cha75] using the prefix-free complexity: A sequence x is Martin-Löf random
(in short, random) if there is a constant c such that for every n, H(x↾n) ≥ n− c. The set
of random sequences has constructive (Lebesgue) measure one [ML66].

The sequence x is random relative to the sequence y if there is a constant c such that for
every n, Hy(x↾n) ≥ n−c. Note that if x is random, then for every n, C(x↾n) ≥ n−2 log n−
O(1) (by inequality (1)). A similar inequality also holds for the relativized complexities,
i.e. for all x that are random relative to y and for all n, Cy(x↾n) > n − 2 log n − O(1).
These results will be repeatedly used throughout the paper.

In [vL90] van Lambalgen proves that x⊕ y is random iff x is random and y is random
relative to x. This implies that if x is random and y is random relative to x then x is
random relative to y.

The constructive Hausdorff dimension of a sequence x—which is the di-
rect effectivization of “classical Hausdorff dimension”—defined by dim(x) =
lim infn→∞C(x↾n)/n (= lim infn→∞H(x↾n)/n), measures intermediate levels of random-
ness (see [Rya84, Sta93, Tad02, May02, Lut03, Rei04, Sta05, CST06, DHNT06]).

A Turing reduction f is an oracle Turing machine; f(x) is the language computed by f
with oracle x, assuming that f halts on all inputs when working with oracle x (otherwise
we say that f(x) does not exist). In other words, if n ∈ f(x) then the machine f on input
n and with oracle x halts and outputs 1 and if n 6∈ f(x) then the machine f on input n
and with oracle x halts and outputs 0. The function use is defined as follows: usexf (n)
is the index of the rightmost position on the tape of f accessed during the computation
of f with oracle x on input n. The Turing reduction f is a wtt-reduction if there is a
computable function q such that usexf (n) ≤ q(n), for all n. The Turing reduction f is a
truth-table reduction if f halts on all inputs for every oracle. A truth-table reduction is a
wtt-reduction.

2 Defining independence

The basic idea is to declare that two objects are independent if none of them contains
significant information about the other one. Thus, if in some formalization, I(x) denotes
the information in x and I(x | y) denotes the information in x given y, x and y are
independent if I(x) − I(x | y) and I(y) − I(y | x) are both small. In this paper we work
in the framework of algorithmic information theory. In this setting, in case x is a string,
I(x) is the complexity of x (where for the “complexity of x” there are several possibilities,
the main ones being the plain complexity or the prefix-free complexity).

The independence of strings was studied in [Cha82]: two strings are independent if

5

I(xy) ≈ I(x) + I(y). This approach motivates our Definition 2.1 and Definition 2.2.
In case x is an infinite sequence, the information in x is characterized by the sequence

(I(x↾n))n∈N of information in the initial segments of x. In the infinite case, for the infor-
mation upon which we condition (e.g., the y in I(x | y)), there are two possibilities: either
the entire sequence is available in the form of an oracle, or we consider initial segments of
it. Accordingly, we propose two notions of independence.

Definition 2.1 (The “integral” type of independence) Two sequences x and y are
independent if Cx(y↾n) ≥ C(y↾n)−O(log n) and Cy(x↾n) ≥ C(x↾n)−O(log n).

Definition 2.2 (The finitary type of independence) Two sequences x, y are finitary-
independent if for all natural numbers n and m,

C(x↾n y↾m) ≥ C(x↾n) + C(y↾m)−O(log(n) + log(m)).

Remark 1 We will show in Proposition 2.4, that the inequality in Definition 2.2 is equiv-
alent to saying that for all n and m, C(x↾n | y↾m) ≥ C(x↾n) − O(log n + logm), which
is the finite analogue of the property in Definition 2.1 and is in line with our discussion
above.

Remark 2 If x and y are independent, then they are also finitary-independent (Proposi-
tion 2.5). The converse is not true (Corollary 4.13).

Remark 3 The proposed definitions use the plain complexity C(·), but we could have
used the prefix-free complexity as well, because the two types of complexity are within
an additive logarithmic term. Also, in Definition 2.2 (and throughout this paper), we use
concatenation to represent the joining of two strings. However, since any reasonable pairing
function 〈x, y〉 satisfies | |〈x, y〉| − |xy| | < O(log |x| + log |y|), it follows that |C(< x, y >
)−C(xy)| < O(log |x|+ log |y|), and thus any reasonable pairing function could have been
used instead.

Remark 4 A debatable issue is the subtraction of the logarithmic term. Indeed, there
are other natural possibilities. We argue that our choice has certain advantages over other
possibilities that come to mind.

Let us focus on the definition of finitary-independence. We want C(x↾n y↾m) ≥
C(x↾n)+C(y↾n)−O(f(x) + f(y)), for all n,m, where f should be some “small” function.
We would like the following two properties to hold:

(A) the sequences x and y are finitary-independent iff C(x↾n | y↾m) > C(x↾n) −
O(f(x↾n) + f(y↾m)), for all n and m,

(B) if x is “somewhat” random and y = 0ω, then x and y are finitary-independent.

6

Other natural possibilities for the definition could be:
(i) if f(x) = C(|x|), the definition of finitary independence–(i) would now be:

C(x↾n y↾m) ≥ C(x↾n) + C(y↾m)−O(C(n) + C(m)),

or
(ii) if f(x) = logC(x), the definition of finitary-independence–(ii) would now be:

C(x↾n y↾m) ≥ C(x↾n) + C(y↾m)−O(logC(x↾n) + logC(y↾m)).

If sequences x and y satisfy (i), or (ii), then they also satisfy Definition 2.2.
Variant (i) implies (B), but not(A) (for example, consider sequences x and y with

C(n) << logC(x↾n) and C(m) << logC(y↾m), for infinitely many n and m). Variant
(ii) implies (A), but does not imply (B) (for example if for infinitely many n, C(x↾n) =
O(log3 n); take such a value n, let p be a shortest description of x↾n, and let m be the
integer whose binary representation is 1p. Then x↾n and 0ω↾m, do not satisfy (B)). The
proposed definition implies both (A) and (B).

Another advantage is the robustness properties from Remark 3.

Remark 5 If the sequence x is computable, then x is independent with every sequence y.
In fact a stronger fact holds. A sequence is called H-trivial if, for all n, H(x↾n) ≤ H(n) +
O(1). This is a notion that has been intensively studied recently (see [DHNT06]). Clearly
every computable sequence is H-trivial, but the converse does not hold [Zam90, Sol75]. If
x is H-trivial, then it is independent with every sequence y. Indeed, Hy(x↾n) ≥ H(x↾n)−
O(log n), becauseH(x↾n) ≤ H(n)+O(1) ≤ log n+O(1), andHx(y↾n) ≥ H(y↾n)−O(log n),
because, in fact, Hx(y↾n) and H(y↾n) are within a constant of each other [Nie05]. The
same inequalities hold if we use the C(·) complexity (see Remark 3).

For the case of finitary-independence, a similar phenomenon holds for a (seemingly)
even larger class.

Definition 2.3 A sequence x is called C-logarithmic if C(x↾n) = O(log n).

It can be shown (for example using Proposition 2.4, (a)) that if x is C-logarithmic, then it
is finitary-independent with every sequence y.

Note that every sequence x that is the characteristic sequence of a c.e. set is C-
logarithmic. This follows from the observation that, for every n, the initial segment x↾n
can be constructed given the number of 1’s in x↾n (an information which can be written
with log n bits) and the finite description of the enumerator of the set represented by x. If
a sequence is H-trivial then it is C-logarithmic, but the converse probably does not hold.

In brief, the notions of independence and finitary-independence are relevant for strings
having complexity above that of H-trivial sequences, respectively C-logarithmic sequences.
The cases of independent (finitary-independent) pairs (x, y), where at least one of x and y
is H-trivial (respectively, C-logarithmic) will be referred to as trivial independence.

7

Remark 6 Some desirable properties of the independence relation are:

P1. Symmetry: x is independent with y iff y is independent with x.

P2. Robustness under type of complexity (plain or prefix-free).

P3. If f is a Turing reduction, except for some special cases, x and f(x) are dependent
(“independence cannot be created”).

P4. For every x, the set of sequences that are dependent with x is small (i.e., it has
measure zero).

Clearly both the independence and the finitary-independence relations satisfy P1. They
also satisfy P2, as we noted in Remark 3.

It is easy to see that the independence relation satisfies P3, whenever we require that
the initial segments of x and f(x) have plain complexity ω(log n) (because Cx(f(x)↾n) =
O(log n), while C(f(x)↾n) = ω(log n)). We shall see that the finitary-independence rela-
tion satisfies P3 under some stronger assumptions for f and f(x) (see Section 4.1 and in
particular Theorem 4.8).

We do not know whether the independence relation satisfies P4. Theorem 3.3 shows
that the finitary-independence relation satisfies P4.

2.1 Properties of independent and finitary-independent sequences

The following simple properties of finitary-independent sequences are technically useful in
some of the next proofs.

Proposition 2.4 (a) Two sequences x and y are finitary-independent ⇔ for all n and
m, C(x↾n | y↾m) ≥ C(x↾n)−O(log n+ logm).

(b) Two sequences x and y are finitary-independent if and only if for all n, C(x↾n y↾n) ≥
C(x↾n) + C(y↾n)−O(log(n)).

(c) Two sequences x and y are finitary-independent if and only if for all n, C(x↾n |
y↾n) ≥ C(x↾n)−O(log(n)).

(d) If x and y are not finitary-independent, then for every constant c there are infinitely
many n such that C(x↾n y↾n) < C(x↾n) + C(y↾n)− c log n.

(e) If x and y are not finitary-independent, then for every constant c there are infinitely
many n such that C(x↾n | y↾n) < C(x↾n)− c log n.

Proof. We use the following inequalities which hold for every strings x and y (they
follow from the Symmetry of Information Equation (3)):

C(xy) ≥ C(x) + C(y | x)−O(log |x|+ log |y|), (4)

8

and
C(xy) ≤ C(x) + C(y | x) +O(log |x|+ log |y|). (5)

(a)“⇒”

C(x↾n | y↾m) ≥ C(x↾n y↾m)− C(y↾m)−O(log n+ logm) (by (5))
≥ C(x↾n) + C(y↾m)− C(y↾m)−O(log n+ logm) (by independence)
= C(x↾n)−O(log n+ logm).

“⇐”

C(x↾n y↾m) ≥ C(y↾m) + C(x↾n | y↾m)−O(log n+ logm) (by (4))
≥ C(y↾m) + C(x↾n)−O(log n+ logm) (by hypothesis).

(b) “⇒” Take n = m.

“⇐” Suppose n ≥ m (the other case can be handled similarly).

C(x↾n y↾m) ≥ C(y↾m) + C(x↾n | y↾m)−O(log(n) + log(m)) (by (4))
≥ C(y↾m) + C(x↾n | y↾n)−O(log(n) + log(m))
≥ C(y↾m) + C(x↾n)−O(log(n) + log(m)) (by (a)).

(c) This follows from (b) with a similar proof as for (a).

(d) Suppose that for some constant c the inequality holds only for finitely many n.
Then one can choose a constant c′ > c for which the opposite inequality holds for every n,
which by (b) would imply the finitary-independence of x and y.

(e) Follows from (c), in a similar way as (d) follows from (b). �

Proposition 2.5 If the sequences x and y are independent, then they are also finitary-
independent.

Proof. Suppose x and y are not finitary-independent. By Proposition 2.4 (e), for every
constant c there are infinitely many n such that C(x↾n | y↾n) < C(x↾n)− c · log n. Taking
into account inequality (2), we obtain Cy(x↾n) < C(x↾n)− (c−3) log n, for infinitely many
n, which contradicts that x and y are independent. �

Proposition 2.6 If dim(x) = σ and (x, y) are finitary-independent, then dim(x XOR y) ≥
σ.

Proof. Note that C(x↾n | y↾n) ≤ C((x XOR y)↾n) + O(1), for all n (this holds for all
sequences x and y). Suppose there exists ǫ > 0 such that dim(x XOR y) ≤ σ− ǫ. It follows
that, for infinitely many n, C((x XOR y)↾n) ≤ (σ − ǫ)n. Then

C(x↾n | y↾n) < C((x XOR y)↾n) +O(1)
< (σ − ǫ)n+O(1) for infinitely many n.

9

By the finitary-independence of (x, y), C(x↾n) ≤ C(x↾n | y↾n) + O(log n) ≤ (σ − ǫ/2)n +
O(1), i.o. n, which contradicts the fact that dim(x) = σ. �

Proposition 2.7 (a) If x is random and (x, y) are finitary-independent, then
(y, x XOR y) are finitary-independent.

(b) If x is random and (x, y) are independent, then (y, x XOR y) are independent.

Proof. We prove (a) ((b) is similar). Suppose that y and x XOR y are not finitary-
independent. Then for every constant c, there are infinitely many n, such that
C((x XOR y)↾n | y↾n) < C((x XOR y)↾n) − c log n. Note that if a program can pro-
duce (x XOR y)↾n given y↾n, then by doing an extra bitwise XOR with y↾n it will produce
x↾n. Thus, C(x↾n | y↾n) < C((x XOR y)↾n | y↾n) + O(1) for all n. Combining with the
first inequality, for every constant c and for infinitely many n we have:

C(x↾n | y↾n) < C((x XOR y)↾n)− c log n+O(1)
< n− c log n+O(1)
< C(x↾n) + 2 log n− c log n+O(1)
= C(x↾n)− (c− 2) log n+O(1).

This contradicts the fact that x and y are finitary-independent. �

Proposition 2.8 There are sequences x, y, and z such that (x, y) are independent, (x, z)
are independent, but (x, y ⊕ z) are not finitary-independent.

Proof. Take y and z two sequences that are random relative to each other, and let x =
y XOR z. Then (x, y) are independent, and (x, z) are independent, by Proposition 2.7. On
the other hand note that dim(y XOR z) = 1 (by Proposition 2.6) and C((y XOR z)↾n | (y⊕
z)↾2n) < O(1). Consequently, for every constant c and for almost every n, C((y XOR z)↾n |
(y ⊕ z)↾2n) < C((y XOR z)↾n) − c(log n + log 2n), and thus, (y XOR z, y ⊕ z) are not
finitary-independent. �

In Remark 5, we have listed several types of sequences that are independent or finitary-
independent with any other sequence. The next result goes in the opposite direction: it
exhibits a pair of sequences that can not be finitary-independent (and thus not indepen-
dent).

Proposition 2.9 [Ste07] If x and y are left c.e. sequences, dim(x) > 0, and dim(y) > 0,
then x and y are not finitary-independent.

Proof. For each n, let cmx(n) = min{s | xs↾n = x↾n} and cmy(n) = min{s | ys↾n = y↾n}
(the convergence moduli of x and, respectively, y). Without loss of generality we can assume
that cmx(n) > cmy(n), for infinitely many n. For each n satisfying the inequality, y↾n can
be computed from x↾n as follows. First compute s = cmx(n) (which can be done because

10

x↾n is known) and output ys↾n. Consequently, for infinitely many n, C(y↾n | x↾n) < O(1).
On the other hand, since dim(y) > 0, there exists a constant c such that C(y↾n) ≥ c · n,
for almost every n. Consequently, x and y are not finitary-independent. �

3 Examples of independent and finitary-independent se-

quences

We give examples of pairs of sequences that are independent or finitary-independent (other
than the trivial examples from Remark 5).

Theorem 3.1 Let x be a random sequence and let y be a sequence that is random relative
to x. Then x and y are independent.

Proof. Since y is random relative to x, for all n, Cx(y↾n) > n− 2 log n−O(1) ≥ C(y↾n)−
2 log n−O(1). The van Lambalgen Theorem [vL90] implies that x is random relative to y
as well. Therefore, in the same way, Cy(x↾n) > n− 2 log n−O(1) ≥ C(x↾n)−O(log n). �

From Theorem 3.1 we can easily derive examples of pairs (x, y) that are independent and
which have constructive Hausdorff dimension ǫ, for every rational ǫ > 0. For example, if we
start with x and y that are random with respect to each other and build x′ = x(1) 0x(2) 0 . . .
(i.e., we insert 0s in the even positions) and similarly build y′ from y, then x′ and y′ have
constructive Hausdorff dimension equal to 1/2 and are independent (because Cx′

(y′↾n) and
Cx(y↾(n/2)) are within a constant of each other, as are C(y′↾n) and C(y↾(n/2))). The pairs
of sequences from Theorem 3.1 (plus those derived from there as above) and those from
Remark 5 are the only examples of independent sequences that we know. Thus, currently,
we have examples of independent pairs (x, y) only for the case when x has maximal prefix-
free complexity (i.e., x is random) or x is obtained via a straightforward transformation as
above from a random sequence, and for the case when x has minimal prefix-free complexity
(i.e., x is H-trivial). We believe that for every x, there are sequences y independent with
it, and moreover we believe that the set of sequences independent with x has measure one.
For finitary-independence these facts are true.

Theorem 3.2 Let x be an arbitrary sequence and let y be a sequence that is random
conditioned by x. Then x and y are finitary-independent.

Proof. Suppose x and y are not finitary-independent. Then there are infinitely many n
with C(y↾n | x↾n) < C(y↾n)− 5 log n. Consider a constant c1 satisfying C(y↾n) < n+ c1,
for all n. We get (under our assumption) that, for infinitely many n. C(y↾n | x↾n) <
n−5 log n+c1. Then, by inequality 2, for infinitely many n, Cx↾n(y↾n) < n−3 log n+c+c1.
Note that that for every n and every m ≥ n, Cx↾m(y↾n) < Cx↾n(y↾n). Thus, for infinitely
many n and for all m > n,

Cx↾m(y↾n) < n− 3 log n+ (c+ c1). (6)

11

On the other hand, y is random conditioned by x. Therefore, for all n, Hx(y↾n) > n−O(1).
Let U ′ be the universal machine underlying the complexity H(·) and let p∗ be the shortest
program such that U ′x(p∗) = y↾n (if there are ties, take p∗ to be the lexicographically
smallest among the tying programs). Letm(n) = min(n,use(U ′x(p∗))). Note that, for all n,
Hx(y↾n) = Hx↾m(n)(y↾n). It follows that, for every n, Hx↾m(n)(y↾n) = Hx(y↾n) > n−O(1).
Recall that for every strings u and v, Cv(u) > Hv(u)− 2 log |u| −O(1). Thus, for every n,

Cx↾m(n)(y↾n) > n− 2 log n−O(1). (7)

Inequalities (6) and (7) are contradictory. �

Theorem 3.3 For every x, the set {y | y finitary-independent with x} has measure one.

Proof. By the previous result, the set in the statement of the theorem contains the set
{y | y random conditioned by x} which has measure one. �

Thus there are many (in the measure-theoretical sense) pairs of sequences that are
finitary-independent. But is it possible to have such pairs satisfying a given constraint?
We consider one instance of this general issue.

Proposition 3.4 If x is a random sequence then there are y and z such that (y, z) are
finitary-independent and x = y XOR z.

Proof. Take a sequence y finitary-independent with x. Then, by Proposition 2.7, y and
(x XOR y) are finitary-independent. By taking z = x XOR y, it follows that x = y XOR z,
with y and z finitary-independent. �

4 Effective constructions of finitary-independent sequences

The examples of (finitary-) independent sequences that we have provided so far are exis-
tential (i.e., non-constructive). In this section we investigate to what extent it is possible
to effectively construct such sequences. We show some impossibility results and there-
fore we focus on the weaker type of independence, finitary-independence (clearly, if it is
not possible to produce a pair of sequences that are finitary-independent, then it is also
not possible to produce a pair of sequences that are independent). Since a C-logarithmic
sequence is finitary-independent with any other sequence, the issue of constructibility is in-
teresting if we also require that the sequences have complexity above that of C-logarithmic
sequences (see Remark 5). Such sequences are of course non-computable, and therefore
the whole issue of constructibility appears to be a moot point. However this is not so if we
assume that we already have in hand one (or several) non-computable sequence(s), and we
want to build additional sequences that are finitary-independent. Informally speaking, we
investigate the following questions:

12

Question (a) Is it possible to effectively construct from a sequence x another sequence
y (finitary-) independent with x, where the independence is not trivial (recall Remark 5)?
This question has two variants depending on whether we seek a uniform procedure (i.e.,
one procedure that works for all x), or whether we allow the procedure to depend on x.

Question (b) Is it possible to effectively construct from a sequence x two sequences
y and z that are (finitary-) independent, where the independence is not trivial? Again,
there are uniform and non-uniform variants of this question.

We analyze these questions in Section 4.1. Similar questions for the case when the
input consists of two sequences x1 and x2 are tackled in Section 4.2.

4.1 If we have one source

We first consider the uniform variant of Question (a): Is there a Turing reduction f such
that for all x ∈ {0, 1}∗, (x, f(x)) are (finitary-) independent? We even relax the require-
ment and demand that f should achieve this objective only if x has positive constructive
Hausdorff dimension (this only makes the following impossibility results stronger).

As discussed above, we first eliminate some trivial instances of this question. Without
any requirement on the algorithmic complexity of the desired f(x), the answer is trivially
YES because we can take f(x) = 0ω (or any other computable sequence). Even if we only
require that f(x) is not computable, then the answer is still trivially YES because we can
make f(x) to be C-logarithmic. For example, consider

f(x) = x(1) x(2)0 x(3)000 . . . x(k) 0 . . . 0
︸ ︷︷ ︸

2k−1−1

. . . .

Then f(x) is C-logarithmic, but not computable provided x is not computable, and (x, f(x))
are finitary-independent simply because f(x) is C-logarithmic.

As noted above, the question is interesting if we require f(x) to have some “significant”
amount of randomness whenever x has some “significant” amount of randomness. We
expect that in this case the answer should be negative, because, intuitively, one should not
be able to produce independence (this is property P3 in Remark 6).

We consider two situations depending on two different meanings of the concept of
“significant” amount of randomness.

Case 1: We require that f(x) is not C-logarithmic. We do not solve the question, but
we show that every reduction f that potentially does the job must have non-polynomial
use.

Proposition 4.1 Let f be a Turing reduction. For every sequence x, if the function
usexf (n) is polynomially bounded, then x and f(x) are not finitary-independent, unless
one of them is C-logarithmic.

13

Proof. Let y be f(x). Then for every n, let m(n) = maxk≤n use
x
f (1

n)). Then y↾n
depends only on x↾m(n) and m(n) is polynomial in n. Then C(y↾n | x↾m(n)) ≤ O(log n).
If x and y were finitary-independent, then C(y↾n) ≤ C(y↾(n) | x↾m(n)) + O(log n +
logm(n)) ≤ O(log(n))+ log(m(n)) ≤ O(log n), for all n, i.e., y would be C-logarithmic . �

Case 2: We require that f(x) has complexity just above that of C-logarithmic se-
quences (in the sense below). We show that in this case, the answer to the uniform variant
of Question (a) is negative: there is no such f . The following definition introduces a class
of sequences having complexity just above that of C-logarithmic sequences.

Definition 4.2 A sequence x is C-superlogarithmic if for every constant c > 0, C(x↾n) >
c log n, for almost every n.

The next proofs use the following facts.

Fact 4.3 (Variant of Theorem 3.1 in [NR06]) For all rationals 0 ≤ α < β < 1, and for
every set S that is infinite and computable, there exists a sequence x such that dim(x) = α
and for all wtt-reductions f , either f(x) does not exist or C(f(x)↾n) ≤ βn, for infinitely
many n in S.

Fact 4.4 (Variant of Theorem 3.1 in [BDS07]) For every Turing reduction h, for all ratio-
nals 0 < α < β < 1, and for every set S that is infinite and computable, there is a sequence
x with dim(x) ≥ α such that either h(x) does not exist or C(h(x)↾n) < βn, for infinitely
many n in S.

Fact 4.5 (Theorem 4.15 in ([Zim07]) For any δ > 0, there exist a constant c, a set S that
is infinite and computable, and a truth-table reduction g : {0, 1}∞ × {0, 1}∞ → {0, 1}∞

(i.e., g is a Turing machine with two oracles) with the following property:
If the input sequences x and y are finitary-independent and satisfy C(x↾n) > c·log n and

C(y↾n) > c · log n, for almost every n, then the output z = f(x, y) satisfies C(f(x, y)↾n) >
(1− δ) · n, for almost every n in S.

Theorem 3.1 in [NR06] is for S = N (and is stronger in that α = β) but its proof can be
modified in a straightforward manner to yield Fact 4.3. Theorem 3.1 in [BDS07] is also for
S = N and can also be modified in a simple manner – using Fact 4.3 – to yield Fact 4.4.

We can now state the impossibility results related to Case 2. To simplify the structure
of quantifiers in the statement of the following result, we posit here the following task for
a function f mapping sequences to sequences:

TASK A: for every x ∈ {0, 1}∞ with dim(x) > 0, the following should hold:

(a) f(x) exists.

(b) f(x) is C-superlogarithmic.

(c) x and f(x) are finitary-independent.

14

Theorem 4.6 There is no Turing reduction f that satisfies TASK A.

Proof. Suppose there exists f satisfying (a), (b) and (c) in TASK A. Let S be the
infinite, computable set and let g be the truth-table reduction promised by Fact 4.5 for
δ = 0.3. Let h be the Turing reduction h(x) = g(x, f(x)). Let x∗ be the sequence promised
by Fact 4.4 for α = 0.5, β = 0.6, and the above set S and Turing reduction h. On one
hand, by Fact 4.4, C(h(x∗)↾n) < 0.6n, for infinitely many n ∈ S. On the other hand, by
Fact 4.5, C(h(x∗)↾n) > 0.7n, for almost every n ∈ S. We have reached a contradiction. �

We next consider the uniform variant of Question (b).

First we remark, that by van Lambalgen Theorem [vL90], if the sequence x is random,
then xeven and xodd are random relative to each other (where xodd is x(1)x(3)x(5) . . . and
xeven is x(2)x(4)x(6) . . .). Thus, xeven and xodd are certainly independent.

Kautz [Kau03] has shown a much more general result by examining the splittings of
sequences obtained using bounded Kolmogorov-Loveland selection rules.1 He showed that
if x is a random sequence, x0 is the subsequence of x obtained by concatenating the bits of
x chosen by an arbitrary bounded Kolmogorov-Loveland selection rule, and x1 consists of
the bits of x that were not selected by the selection rule, then x0 and x1 are random with
respect to each other (and thus independent).

We show that the similar result for sequences with constructive Hausdorff dimension
σ ∈ (0, 1) is not valid. In fact, our next result is stronger, and essentially gives a negative
answer to the uniform variant of Question (b).

We posit the following task for two functions f1 and f2 mapping sequences to sequences:

TASK B: for every x ∈ {0, 1}∞ with dim(x) > 0, the following should hold:

(a) f1(x) and f2(x) exist,

(b) f1(x) and f2(x) are C-superlogarithmic,

(c) f1(x) and f2(x) are finitary-independent.

Theorem 4.7 There are no Turing reductions f1 and f2 satisfying TASK B.

Proof. Similar to the proof of Theorem 4.6. �

The non-uniform variants of Questions (a) and (b) remain open. In the particular
case when f is a wtt-reduction, we present impossibility results analogous to those in
Theorem 4.6 and Theorem 4.7. The proofs are similar, with the difference that we use
Fact 4.3 instead of Fact 4.4.

1A Kolmogorov-Loveland selection rule is an effective process for selecting bits from a sequence. Infor-
mally, it is an iterative process and at each step, based on the bits that have been already read, a new bit
from the sequence is chosen to be read and (before that bit is actually read) the decision on whether that
bit is selected or not is taken. A bounded Kolmogorov-Loveland selection rule satisfies a certain requirement
of monotonocity for deciding the selected bits, see [Kau03].

15

Theorem 4.8 For all rational σ ∈ (0, 1), there exists dim(x) = σ such that for every
wtt-reduction f , at least one of the following holds true:

(a) f(x) does not exist,

(b) f(x) is not finitary-independent with x,

(c) f(x) is not C-superlogarithmic.

Theorem 4.9 For all rational σ ∈ (0, 1), there exists x with dim(x) = σ such that for
every wtt-reductions f1 and f2, at least one of the following holds true:

(a) f1(x) does not exist or f2(x) does not exist,

(b) f1(x) and f2(x) are not finitary-independent,

(c) f1(x) is not C-superlogarithmic or f2(x) is not C-superlogarithmic.

Theorem 4.9 has an interesting implication regarding sequences with constructive Hausdorff
dimension in the interval (0, 1). Suppose, for example that we want to construct a sequence
with constructive Hausdorff dimension 1/2. The first idea that comes to mind is to take a
random sequence x = x(1)x(2) . . . and either consider the sequence y = x(1)0x(2)0 . . . (we
insert 0s in all even positions) or the sequence z = x(1)x(1)x(2)x(2) . . . (we double every
bit). The sequences y and z have constructive Hausdorff dimension 1/2. Theorem 4.9
shows, roughly speaking, that there are sequences with dimension strictly between 0 and
1, where the partial randomness is due necessarily to one of the two methods stated above.
Formally, for every rational σ ∈ (0, 1), there is a sequence x with dim(x) = σ so that
no matter what wtt method we use for selecting from x two subsequences, either one of
the resulting subsequences has low complexity or the two resulting subsequences are not
independent.

4.2 If we have two sources

We have seen some limits on the possibility of constructing a finitary-independent sequences
starting from one sequence. What if we are given two finitary-independent sequences: is it
possible to construct from them more finitary-independent sequences?

First we observe that if x and y are two independent sequences and g is an arbitrary
Turing reduction, then it does not necessarily follow that x and g(y) are independent (as
one may expect). On the other hand it does follow that x and g(y) are finitary-independent.

Proposition 4.10 [Ste07] There are two independent sequences x and y and a Turing
reduction g such that x and g(y) are not independent.

Proof. Let z be a random sequence and let u, v, and w be sequences such that z = u⊕v⊕w.
By van Lambalgen Theorem [vL90], each of the sequences u, v, and w are random relative

16

to the join of the other two. We define the sequences x and y as follows:

x(2n) = u(n), for all n ∈ N

x(m) = v(m), for every m that is not a power of 2
y(2n) = u(n), for all n ∈ N

y(m) = w(m), for every m that is not a power of 2

Claim 4.11 The sequences x and y are independent.

Proof. Suppose x and y are not independent. Then, similarly to Proposition 2.4 (e), for
infinitely many n, Cx(y↾n) < C(y↾n)− 7 log n. Then

Cu⊕v(w↾n) ≤ Cu⊕v(y↾n) + 2 log n+O(1)
(because w↾n and y↾n differ in only log n bits)

≤ Cx(y↾n) + 2 log n+O(1)
(because queries to x can be replaced by queries to u and v)

≤ C(y↾n)− 7 log n+ 2 log n+O(1),
for infinitely many n

≤ C(w↾n) + 2 log n− 7 log n+ 2 log n+O(1)
= C(w↾n)− 2 log n+O(1)
≤ n− 3 log n+O(1).

This contradicts that w is random with respect to u⊕ v. �

It is easy to define a Turing reduction g such that g(y) = u. Notice that Cx(u↾n) =
O(log n), because u is many-one reducible to x. On the other hand C(u↾n) ≥ n− 2 log n+
O(1), for every n, because u is random. Therefore x and g(y) are not independent. �

We do not know if the facts that x and y are finitary-independent and g is a Turing
reduction, imply that x and g(y) are finitary-independent This would show that finitary-
dependency cannot be created.

The following weaker result holds.

Proposition 4.12 If x and y are independent, and g is a Turing reduction, then x and
g(y) are finitary-independent (provided g(y) exists).

Proof. Since x and y are independent, there exists a constant c such that for all n,

Cy(x↾n) ≥ C(x↾n)− c log n.

Suppose that x and g(y) are not finitary-independent. Then there are infinitely many n
such that C(x↾n | g(y)↾n) < C(x↾n) − (c + 4) log n. Since Cy(x↾n) ≤ C(x↾n | g(y)↾n) +
2 log n+O(1), it would follow that, for infinitely many n,

Cy(x↾n) ≤ C(x↾n)− (c+ 1) log n,

which contradicts the first inequality. �

17

Corollary 4.13 There are sequences that are finitary-independent but not independent.

Proof. The sequences x and g(y) from Proposition 4.10 are not independent, but they are
finitary-independent by Proposition 4.12. �

As we mentioned, we do not know if Proposition 4.12 can be strengthened to hold if x
and y are finitary-independent. However, for such x and y, there exists a simple procedure
that starting with the pair (x, y), produces a new pair of finitary-independent sequences.
Namely, we take the pair (x, yodd).

Proposition 4.14 If x and y are finitary-independent, then x and yodd are finitary-
independent.

Proof. Suppose that for every constant c there are infinitely many n such that C(x↾n |
yodd↾n) < C(x↾n)− c · log n. Note that, for all n, C(x↾n | y↾2n) ≤ C(x↾n | yodd↾n) +O(1).
Our assumption implies that for every constant c there are infinitely many n such that
C(x↾n | y↾2n) < C(x↾n)− c log n+O(1). By Proposition 2.4, (a), this contradicts the fact
that x and y are finitary-independent. �

The next issue that we study is whether given a pair of (finitary-)independent strings
(x, y), it is possible to effectively produce another string that is (finitary-)independent with
both x and y. We give a positive answer for the case when x and y are both random. The
similar question for non-random x and y remains open (but see Section 4.3).

Theorem 4.15 There exists an effective transformation f with polynomially-bounded use
such that if x and y are random and independent (respectively finitary-independent), then
f(x, y) is independent (respectively, finitary-independent) with both x and y, and the inde-
pendence is not trivial (recall Remark 5).

Remark: Contrast with Proposition 4.1, where we have shown that for every x, for ev-
ery effective transformation f with polynomially-bounded use, x and f(x) are not finitary-
independent.

Proof. We take f(x, y) = x XOR y and take into account Proposition 2.7. �

4.3 Producing independence: the finite case

An interesting issue is whether given as input several sequences that are (finitary-) inde-
pendent, there is an effective way to construct a sequence that is (finitary-) independent
with each sequence in the input (and the independence is not trivial). A result of this
type is obtained for the case when the input consists of two random sequences x and y in
Theorem 4.15. We do not know if in Theorem 4.15 we can remove the assumption that x
and y are random.

18

In what follows we will consider the simpler case of strings. In this setting we are able
to give a positive answer for the situation when we start with three2 input strings that are
independent (and not necessarily random). First we define the analogue of independence
for strings.

Definition 4.16 Let c ∈ R
+ and k ∈ N. We say that strings x1, x2, . . . , xk in {0, 1}∗ are

c-independent if

C(x1x2 . . . xk) ≥ C(x1) + C(x2) + . . .+ C(xk)− c(log |x1|+ log |x2|+ . . .+ log |xk|).

The main result of this section is the following theorem, whose proof draws from the
techniques of [Zim07].

Theorem 4.17 For all constants σ > 0 and σ1 ∈ (0, σ), there exists a computable function
f : {0, 1}∗ ×{0, 1}∗ ×{0, 1}∗ → {0, 1}∗ with the following property: For every c ∈ R

+ there
exists c ∈ R

+ such that if the input consists of a triplet of c-independent strings having
sufficiently large length n and plain complexity at least σ·n, then the output is c-independent
with each element in the input triplet and has length ⌊σ1n⌋.

More precisely, if

(i) (x, y, z) are c-independent,

(ii) |x| = |y| = |z| = n, and

(iii) C(x) ≥ σ · n, C(y) ≥ σ · n, C(z) ≥ σ · n,

then, provided n is large enough, the following pairs of strings (f(x, y, z), x), (f(x, y, z), y),
(f(x, y, z), z) are c-independent, |f(x, y, z)| = ⌊σ1n⌋, and C(f(x, y, z)) ≥ ⌊σ1n⌋−O(log n).

Before we delve into the proof, we establish several preliminary facts.

Lemma 4.18 If x1, x2, x3 are three strings that are c-independent, then

C(x1 | x2x3) ≥ C(x1)− (c+ 2)(log |x1|+ log |x2|+ log |x3|)−O(1).

Proof. The following inequalities hold for every three strings and in particular for the
strings x1, x2, and x3:

C(x1x2x3) ≤ C(x2x3) +C(x1 | x2x3) + 2 log |x1|+O(1),

and
C(x2x3) ≤ C(x2) + C(x3) + 2 log |x2|+O(1).

2The case when the input consists of two independent strings remains open.

19

Then

C(x1 | x2x3) ≥ C(x1x2x3)− C(x2x3)− 2 log |x1| −O(1)
≥ C(x1) + C(x2) + C(x3)− c(log |x1|+ log |x2|+ log |x3|)
− (C(x2) + C(x3) + 2 log |x2|+O(1)) − 2 log |x1| −O(1)

≥ C(x1)− (c+ 2)(log |x1|+ log |x2|+ log |x3|)−O(1).

�

The next lemma establishes a combinatorial fact about the possibility of coloring the
cube [N] × [N] × [N] with M colors such that every planar rectangle contains all the
colors in about the same proportion. Here N and M are natural numbers, [N] denotes
the set {1, 2, . . . , N}, [M] denotes the set {1, 2, . . . ,M}and a planar rectangle is a subset
of [N]× [N]× [N] having one of the following three forms: B1 ×B2 ×{k}, B1 ×{k} ×B2,
or {k} ×B1 ×B2, where k ∈ [N], B1 ⊆ [N] and B2 ⊆ [N].

Lemma 4.19 Let 0 < σ1 < σ2 < 1. For every n sufficiently large, it is possible to color
the cube [2n]× [2n]× [2n] with M = 2⌊σ1n⌋ colors in such a way that every planar rectangle
satisfying ‖B1‖ = a2⌈σ2n⌉ and ‖B2‖ = b2⌈σ2n⌉ for some natural numbers a and b contains
at most (2/M)‖B1‖‖B2‖ occurrences of color c, for every color c ∈ [M].

Proof. We use the probabilistic method. Let N = 2n. We color each cell of the
[N]× [N]× [N] cube with one color chosen independently and uniformly at random from
[M]. For i, j, k ∈ [N], let T (i, j, k) be the random variable that designates the color of
the cell (i, j, k) in the cube. For every fixed cell (i, j, k) and for every fixed color c ∈ [M],
Prob(T (i, j, k) = c) = 1/M , because the colors are assigned independently and uniformly
at random. Let us first consider some fixed subsets B1 and B2 of [N] having size 2⌈σ2n⌉, a
fixed k ∈ [N], and a fixed color c ∈ [M]. Let A be the event “the fraction of occurences of
c in the planar rectangle B1 ×B2 ×{k} is greater than 2/M .” Using the Chernoff bounds,
it follows that

Prob(A) < e−(1/3)(1/M)N2σ2

.

The same upper bounds hold for the probabilities of the similar events regarding the planar
rectangles B1 × {k} × B2 and {k} × B1 × B2. Thus, if we consider the event B “there is
some color with a fraction of appearances in one of the three planar rectangles mentioned
above greater than (2/M)”, then, by the union bound,

Prob(B) < 3Me−(1/3)(1/M)N2σ2

. (8)

The number of ways to choose B1 ⊆ [N] with ‖B1‖ = 2⌈σ2n⌉, B2 ⊆ [N] with ‖B2‖ = 2⌈σ2n⌉

and k ∈ [N] is approximately (ignoring the truncation)
(N
Nσ2

)
·
(N
Nσ2

)
·N , which is bounded

by
e2N

σ2

· e2N
σ2 (1−σ2) ln(N) · elnN , (9)

20

(we have used the inequality
(n
k

)
< (en/k)k). Clearly, for our choice of M , the right hand

side in (9) times the right hand side in (8) is less than 1. It means that there exists a
coloring where no color appears a fraction larger than (2/M) in every planar rectangle
with B1 and B2 having size exactly 2⌈σ2n⌉. For planar rectangles having the sizes of B1

and B2 an integer multiple of 2⌈σ2n⌉, the assertion holds as well because such rectangles
can be partitioned into subrectangles having the size exactly 2⌈σ2n⌉. �

Proof of Theorem 4.17. We take n sufficiently large so that all the following inequal-
ities hold. Let x∗, y∗ and z∗ be a triplet of strings of length n satisfying the assumptions
in the statement. Let N = 2n and let us consider a constant σ2 ∈ (σ1, σ). By exhaustive
search we find a coloring T : [N]×[N]×[N] → [M] satisfying the properties in Lemma 4.19.
Identifying the strings x∗, y∗ and z∗ with their indeces in the lexicographical ordering of
Σn, we define w∗ = T (x∗, y∗, z∗). Note that the length of w∗ is logM = ⌊σ1n⌋, which
we denote m. We will show that C(w∗ | z∗) ≥ m − c′ logm, for c′ = 3c + d + 13, for a
constant d that will be specified later. Since C(w∗) ≤ m+O(1), it follows that w∗ and z∗

are independent. In a similar way, it can be shown that w∗ and x∗ are independent, and
w∗ and y∗ are independent.

For the sake of obtaining a contradiction, suppose that C(w∗ | z∗) < m− c′ logm. The
set A = {w | C(w | z∗) < m − c′ logm} has size < 2m−c′ logm and, by our assumption,
contains w∗.

Let t1 be such that C(x∗) = t1 and t2 be such that C(y∗ | z∗) = t2. Note that t1 > σ2n.
The integer t2 is also larger than σ2n, because C(y∗ | z∗) ≥ C(y∗ | z∗x∗)− 2 log n−O(1) ≥
C(y∗)−(c+4)(3 log n)−O(1) ≥ σn−(3c+12) log n−O(1) > σ2n. For the second inequality
we have used Lemma 4.18.

Let B1 = {x ∈ Σn | C(x) ≤ t1}. Note that B1 has size bounded by 2t1+1. We take a
set B′

1 including B1 having size exactly 2t1+1. Similarly, let B2 = {y ∈ Σn | C(y | z∗) ≤ t2}
and let B′

2 be a set that includes B2 and has size exactly 2t2+1. Let k be the index of z∗

in the lexicographical ordering of Σn. By Lemma 4.19, it follows that for every a ∈ [M],

‖T−1(a) ∩ (B′
1 ×B′

2 × {k})‖ ≤ (2/M)‖B′
1‖‖B

′
2‖.

Consequently,

‖T−1(A) ∩ (B1 ×B2 × {k})‖ ≤ ‖T−1(A) ∩ (B′
1 ×B′

2 × {k})‖

=
∑

a∈A‖T
−1(a) ∩ (B′

1 ×B′
2 × {k})‖

< 2m−c′ logm · (2/2m)‖B′
1‖‖B

′
2‖ = 2t1+t2+3−c′ logm.

Note that given z∗, m− c′ logm, t1 and t2, we can enumerate T−1(A) ∩ (B1 × B2 × {k}).
Since (x∗, y∗, z∗) is in this set, it follows that the complexity of x∗y∗ given z∗ is bounded
by the rank of the triplet (x∗, y∗, z∗) in a fixed enumeration of the set and the information
needed to perform the enumeration. Thus,

C(x∗y∗ | z∗) ≤ t1 + t2 + 3− c′ logm+ 2 log(m− c′ logm) + 2 log t1 + 2 log t2 +O(1)
≤ t1 + t2 − (c′ − 2) logm+ 2 log t1 + 2 log t2 +O(1).

21

On the other hand, by the conditional version of the Symmetry of Information Equa-
tion (3), there exists a constant d such that for all strings u, v, w, C(uv | w) ≥ C(v |
w) + C(u | uw)− d(log |uv|). It follows that

C(x∗y∗ | z∗) ≥ C(y∗ | z∗) + C(x∗ | y∗z∗)− d log n−O(1)
≥ t2 + t1 − (c+ 2)(3 log n)− d log n−O(1)
= t1 + t2 − (3c + d+ 6) log n−O(1).

For the second inequality we have used Lemma 4.18. Note that t1 < n + O(1) and t2 <
n + O(1) and m = σ1n. Combining the above inequalities, we obtain (c′ − 2) log σ1n ≤
(3c+ d+ 10) log n+O(1). Since c′ = 3c+ d+ 13, we have obtained a contradiction. �

5 Acknowledgments

We are grateful to André Nies and Frank Stephan for their insightful comments. In partic-
ular, Definition 2.1 has emerged after several discussions with André, and Proposition 2.9
and Proposition 4.10 are due to Frank [Ste07]. We also thank Jan Reimann for his assis-
tance with establishing Fact 4.3.

References

[BDS07] L. Bienvenu, D. Doty, and F. Stephan. Constructive dimension and weak truth-
table degrees. In Computation and Logic in the Real World - Third Conference
of Computability in Europe. Springer-Verlag Lecture Notes in Computer Science
#4497, 2007. To Appear. Available as Technical Report arXiv:cs/0701089 ar
arxiv.org.

[C02] C. S. Calude. Information and Randomness: An Algorithmic Perspective, 2nd
Edition, Revised and Extended, Springer-Verlag, Berlin, 2002.

[CST06] C. Calude, L. Staiger, and S. Terwijn, On partial randomness. Annals of Pure
and Applied Logic, 138:20–30, 2006.

[Cha75] G. Chaitin. A theory of program size formally identical to information theory,
Journal of the ACM, 22:329–340, 1975.

[Cha82] G. Chaitin. Gödel’s Theorem and Information, International Journal of Theo-
retical Physics 21: 941–954, 1982.

[DH] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. To be
published by Springer Verlag.

[DHNT06] R. Downey, D. Hirschfeldt, A. Nies, and S. Terwijn. Calibrating randomness,
The Bulletin of Symbolic Logic, 12(3):411–492, 2006.

22

http://arxiv.org/abs/cs/0701089

[GV04] P. Grünwald and P. Vitanyi. Shannon information and Kolmogorov complexity,
2004. CORR Technical report arxiv:cs.IT/0410002, revised May 2006.

[Kau03] S.M. Kautz. Independence properties of algorithmically random sequences,
2003. CORR Technical Report arXiv:cs/0301013.

[Lev84] L. Levin. Randomness conservation inequalities: information and independence
in mathematical theories. Information and Control, 61(1), 1984.

[Lut03] J. Lutz. The dimensions of individual strings and sequences, Information and
Control, 187:49–79, 2003.

[May02] E. Mayordomo. A Kolmogorov complexity characterization of constructive
Hausdorff dimension, Information Processing Letters, 84:1–3, 2002.

[ML66] P. Martin-Löf. The definition of random sequences, Information and Control,
9:602–619, 1966.

[Nie05] A. Nies. Lowness properties and randomness, Advances in Mathematics,
197:274–305, 2005.

[NR06] A. Nies and J. Reimann. A lower cone in the wtt degrees of non-integral effective
dimension, In Proceedings of IMS workshop on Computational Prospects of
Infinity, Singapore, 2006. To appear.

[Rei04] J. Reimann. Computability and fractal dimension, Technical report, Univer-
sität Heidelberg, 2004. Ph.D. thesis.

[Rya84] B. Ryabko. Coding of combinatorial sources and Hausdorff dimension, Doklady
Akademii Nauk SSR, 277:1066–1070, 1984.

[Sol75] R. Solovay. Draft of a paper (or series of papers) on Chaitin’s work, 1975.
unpublished manuscript, IBM Thomas J. Watson Reserach Center, 215 pp.

[Sta93] L. Staiger. Kolmogorov complexity and Hausdorff dimension, Inform. and Com-
put. 103 (1993) 159-194.

[Sta05] L. Staiger. Constructive dimension equals Kolmogorov complexity, Information
Processing Letters, 93:149–153, 2005. Preliminary version: Research Report
CDMTCS-210, Univ. of Auckland, January 2003.

[Ste07] F. Stephan. Email communication, May 2007.

[Tad02] K. Tadaki. A generalization of Chaitin’s halting probability Ω and halting
self-similar sets, Hokkaido Math. J., 31:219–253, 2002.

[vL90] M. van Lambalgen. The axiomatization of randomness, The Journal of Symbolic
Logic, 55:1143–1167, 1990.

23

http://arxiv.org/abs/cs/0410002
http://arxiv.org/abs/cs/0301013

[Zam90] D. Zambella. On sequences with simple initial segments, 1990. ILLC Technical
Report ML 1990-05, University of Amsterdam.

[Zim07] M. Zimand. Two sources are better than one for increasing the Kol-
mogorov complexity of infinite sequences, 2007. CORR Techical Report.
arXiv:0705.4658.

[ZL70] A. Zvonkin and L. Levin. The complexity of finite objects and the develop-
ment of the concepts of information and randomness by means of the theory of
algorithms, Russian Mathematical Surveys, 25(6):83–124, 1970.

24

http://arxiv.org/abs/0705.4658

	Introduction
	Preliminaries

	Defining independence
	Properties of independent and finitary-independent sequences

	Examples of independent and finitary-independent sequences
	Effective constructions of finitary-independent sequences
	If we have one source
	If we have two sources
	Producing independence: the finite case

	Acknowledgments

