
Non-Deterministic Communication

Complexity of Regular Languages

Anil Ada

School of Computer Science

McGill University, Montréal

J anuary, 2008

A thesis submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements of the degree

of Master of Science.

Copyright @Anil A da 2007.

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Bran ch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-51056-8
Our file Notre référence
ISBN: 978-0-494-51056-8

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

The notion of communication complexity was introduced by Yao in his sem

inal paper [Yao79]. In [BFS86], Babai Frankl and Simon developed a rich

structure of communication complexity classes to understand the relation

ships between various models of communication complexity. This made it

apparent that communication complexity was a self-contained mini-world

within complexity theory. In this thesis, we study the place of regulàr lan

guages within this mini-world. In particular, we are interested in the non

deterministic communication complexity of regular languages.

We show that a regular language has either 0(1) or O(logn) non-determi

nistic complexity. We obtain severallinear lower bound results which cover a

wide range of regular languages having linear non-deterministic complexity.

These lower bound results also imply a result in semigroup theory: we obtain

sufficient conditions for not being in the positive variety Pol(Com).

To obtain our results, we use algebraic techniques. In the study of regular

languages, the algebraic point ofview pioneered by Eilenberg ([Ei174]) has led

to many interesting results. Viewing a semigroup as a computational deviee

that recognizes languages has proven to be prolific from both semigroup

theory and formai languages perspectives. In this thesis, we provide further

instances of such mutualism.

.~·

Résumé

La notion de complexité de communication a d'abord été introduite par Yao

[Yao79]. Les travaux fondateurs de Babai et al. [BFS86] ont dévoilé une

riche structures de classes de complexité de communication qui permettent

de mieux comprendre la puissance de divers modles de complexité de commu

nication. Ces résultats ont fait de la complexité de communication une sorte

de maquette petite chelle du monde de la complexit. Dans ce mémoire,

nous étudions la place des langages réguliers dans cette maquette. Plus

précisément, nous chercherons déterminer la complexité de communication

non-déterministe de ces langages.

Nous montrons qu'un langage régulier a une complexité de communi

cation soit O(logn), soit O(logn). Nous établissons de plus des bornes

inférieures linéaires sur la complexité non-déterministe d'une vaste classe

de langages. Celles-ci fournissent également des conditions suffisantes pour

qu'un langage donné n'appartienne pas la variété positive Pol(Com).

Nos résultats se basent sur des techniques algébriques. Dans l'étude des

langages réguliers, le point de vue algébrique, développé initialement par

Eilenberg [Eil74] s'est révélé comme un outil central. En effet, on peut voir

un semigroupe fini comme une machine capable de reconnaître des langages

et cette perspective a permis des avancées tant en théorie des semigroupes

qu'en théorie des langages formels. Dans ce mémoire, nous établissons de

nouveaux exemples de ce mutualisme.

11

Acknow ledgments

First, I would like to express my deepest gratitude to Prof. Denis Thérien. I

thank him for trusting me and accepting me as his student. His enthusiasm

for complexity theory and mathematics was highly contagious and is one of

the reasons I am in this field. I also thank him for supporting me financially.

I am indebted to my co-supervisor Prof. Pascal Tesson for many things.

I thank him for introducing me to the subject of this thesis. I am grateful

for the extremely useful discussions we had, which taught me a lot of things.

I also thank him for his constructive comments on the earlier drafts of the

thesis.

I am very fortunate to have met Arkadev Chattopadhyay, Laszl6 Egri,

Navin Goyal and Mark Mercer in the complexity theory group. Thanks to

my office mate Laszl6 for discussions about mathematics and many other

topics. I thank Arkadev for discussing the thesis problem with me and for

sharing his keen insight on various things. Thanks to Navin anq Mark for

generously sharing their knowledge. I have learned a lot from all of them.

I thank the academie and administrative staff of the computer science

department. I have met many wonderful people over the years and I feel

privileged to be a part of this family.

I would also like to thank all my friends in Montréal for making life fun

for me here.

iii

Finally, biggest thanks go to my parents. Their love and support never

wavered and this has made everything possible.

iv

Contents

1 Introduction

1.1 Computational Complexity Theory

1.2 Communication Complexity

1.3 Algebraic Automata Theory

1.4 Outline

2 Communication Complexity

2.1 Deterministic Madel

2.1.1 Definition ..

2.1.2 Lower Bound Techniques .

2.2 Non-Deterministic Madel .

2.2.1 Definition

2.2.2 Power of Non-Determinism.

2.2.3 Lower Bound Techniques .

2.3 Other Models

2.4 Communication Complexity Classes .

2.5 Summary

3 Algebraic Automata Theory

3.1 Monoids- Automata- Regular Languages

3.1.1 Monoids: A Computational Madel

v

1

1

3

4

6

9

10

10

12

19

19

23

24

26

28

30

32

33

33

3.1.2 The Syntactic Monoid

3.1.3 Varieties .

3.2 Ordered Monoids

3.2.1 Recognition by Ordered Monoids

3.2.2 The Syntactic Ordered Monoid

3.2.3 Varieties

36

38

44

45

46

48

4 Communication Complexity of Regular Languages 51

4.1 Algebraic Approach to Communication Complexity . 52

4.2 Complexity Bounds for Regular Languages and Monoids 56

5 Conclusion 69

A Facts About L5 75

Bibliography 80

Vl

Chapter 1

Introduction

1.1 Computational Complexity Theory

The theory of computation is one of the fundamental branches of computer

science that is concerned with the computability and complexity of prob

lems in different computational models. Computability theory focuses on

the question of whether a problem can be solved in a certain computational

madel. On the other hand, complexity theory seeks to determine how much

resource is sufficient and necessary for a computable problem to be solved in

a computational madel.

Simply put, a computing deviee is a machine that performs calculations

automatically:. it can be as complicated as a personal computer and as simple

as an automatic door. ·In theoretical computer science, a computational modeZ

is a pure mathematical definition which models a real-world computing de

vice. This abstraction is necessary in arder to rigorously study computation,

its power and limitations. The most studied computational madel (which

physically corresponds to the everyday computers we use) is the Turing Ma

chine. The most studied resources are time and space (memory) measured

with respect to the input size. Based on these resources, different complexity

1

1.1. Computational Complexity Theory 2

classes can be defined. For instance, P and NP are classes of problems that

can be solved in polynomial (in the input size) time using a deterministic and

a non-deterministic Turing Machine respectively. Whether these classes are

equal or not is without a doubt one of the biggest open questions in computer

science and mathematics.

There are various interesting computational models including (but not

limited to) Turing Machines, finite automata, context-free grammars, boolean

circuits and branching programs. Their countless applications span com

puter science. For instance, when designing a new programming language

one would find grammars useful. Finite automata and regular languages

have applications in string searching and pattern matching. When trying to

come up with an efficient algorithm, the theory of NP-completeness can be

insightful. Many cryptographie protocols rely on theoretical principles. All

these applications aside, the mathematical elegance and aesthetic inherent

in theory of computation is enough to attract many minds around the world.

And perhaps the main reason that computer science is called a "science" is

because of the study of theoretical foundations of computer science.

Despite the intense efforts of many researchers, our understanding and

knowledge of computational complexity is quite limited. Similar to the P

versus NP question, there are many other core questions (in different com

putational models) that beg to be answered. The focus of research in com

plexity theory is twofold. Given a certain problem, a computational model

and a rèsource:

• What is the maximum amount of resource we need to solve the problem

in the computational model?

• What is the minimum amount of resource we need to solve the problem

in the computational model?

The ultimate goal is to find matching upper and lower bounds. The first

. ,--.\

3 CHAPTER 1. Introduction

question can be answered by depicting a method 1 of solving the problem and

analyzing the amount of resource this method consumes. Almost always,

the more challenging question is the second one. Proving results of the form

"Problem p requires at least x resource." requires us to argue against all

possible methods that solve the problem. In most computational models,

this is intrinsically hard. Yet it should be also noted that complexity theory

is a relatively new field and therefore can be considered as an amenable

discipline of mathematics.

1.2 Communication Complexity

In this thesis, we will be studying a computational model which emulates

distributed computing: communication protocols. In this model, there are

usually two computers that are trying to collaboratively evaluate the value

of a given function. The difficulty is that the input is distributed among the

two computers in a predetermined adversarial way so that neither computer

can evaluate the value of the function by itself. Therefore, in orcier to deter

mine the value of the function, these computers need to communicate over

a network. The communication will be carried out according to a protocol

that has been agreed upon beforehand. The resource we are interested in is

the number of bits that is communicated i.e. we would like to determine the

communication complexity of a given function.

As an example, consider two files that reside in two computers. Suppose

we wanted to know if these two files were copies of each other. How many

bits would the computers need to communicate in orcier to conclude that the

files are the same or not? What is the best protocol for the computers to

accomplish this task?

Note that the scenario here is quite different from information theory. In

1 ln the Thring Machine computational model, the method is called an algorithm.

1.3. Algebraic Automata Theory 4

information theory, the goal is to robustly transmit a predetermined mes

sage through ·a noisy channel and there is no function to be computed. ln

the communication complexity setting, the channel of communication is not

noisy. What is sent through the channel is determined by the protocol and

it usually changes according to the inputs of the computers and the commu-

. nication history.

There are various models for communication complexity. The first de

fined was the 2-player deterministic model. Since then, non-deterministic,

randomized, multi-party, distributional, simultaneous and many more mod

els have been defined and analyzed.

Although the mathematical theory of communication' complexity was first

introduced in light of its applications to parallel computers ([Yao79]), it

has been shown to have many more applications where the need for com

munication is not explicit. These applications include timejspace lower

bounds for VLSI chips ([KN97]), time/space tradeoffs for Thring Machines

([BNS92]), data structures ([KN97]), boolean circuit lower bounds ([Gro92],

[HG91],[Nis93],[RM97]), pseudorandomness ([BNS92]), separation of proof

systems ([BPS07]) and lower bounds on the size of polytopes representing

N ?-complete problems ([Yan91]).

1.3 Algebraic Automata Theory

One of the fundamental (and simplest) computational models is the fini te

automaton and it is usually the first model in theory of computation that

computer science students are introduced to. The word "finite" refers to the

memory of the machine and finite automata are models for computers with

an extremely limited amount of memory (for example an automatic door),

Even though it is a quite limited model, its well-known applications include

text processing, compilers and hardware design.

5 CHAPTER 1. Introduction

ln a nutshell, finite automata are abstract machines such that given a

word over sorne alphabet as an input, it either accepts or rejects the word

after processing each letter of the word sequentially: The set of all words that

a fini te au toma ton -accepts is called the language corresponding to the fini te

automaton and we say that the language is recognized by this automaton. A

language recognized by sorne finite automaton is called a regular language.

Algebra has always been an important tool in the study of computational

complexity. ln the study of regular languages, semigroup theory2 has been

the dominant tool. It should be·mentioned that semigroups have shed new

light not only on regular languages but on computational theory in general.

On top of this, it is also true that computational theory has led to advances

in the study of semigroup theory ([TT04]).

The link between semigroups and regular languages has been established

by viewing a semigroup as a computational machine that accepts/rejects

words over sorne alphabet. In this context, it is not difficult to prove that

the family of languages that fini te semigroups recognize is exactly the regular

languages. In fact, the connection between finite automata and semigroups

is much more profound. There are several reasons why this point of view is

beneficiai. First of all, the semigroup approach to regular languages allows

one to use tools from semigroup theory while investigating the properties of

these languages. Eilenberg showed that there is a one to one correspondence

between certain robust and natural classes of languages and semigroups.

This has organized and heightened our understanding of regular languages.

Furthermore, in certain computational models, the complexity of a regular

language can be parametrized by the complexity of the corresponding semi

group and so this provides us alternate avenues to analyze the complexity of

regular languages. Often the combinatoria1 descriptions of regular languages

suffice to obtain upper bounds on their complexity. The algebraic point of

2 A semigroup is a set equipped with a binary associative operation.

1.4. Outline 6

view proves to be useful when proving hardness results. Communication

complexity is one of the computational models where this is the case.

1.4 Outline

ln this thesis, we study the non-deterministic communication complexity of

regular languages. The ultimate goal is to find functions ft (n), h (n), ... , fk (n)

such that each regular language has 8(fi(n)) non-deterministic communica

tion complexity for sorne i E {1, 2, ... , k }. Furthermore, we would like a char

acterization of the languages with 8(/ï(n)) complexity for alli E {1, 2, ... , k }.

In [TT03], this goal was reached for the following communication mo d

els: deterministic, simultaneous, probabilistic, simultaneous probabilistic and

Modp-counting. Obtaining a similar result for the non-deterministic model

requires a refinement of the techniques used in [TT03].

The study of the non-deterministic communication complexity of regular

languages from an algebraic point of view is important for several reasons .

. We can summarize it by stating that it increases our understanding of regular

languages and non-deterministic communication complexity.

From regular languages perspective, our results yield sufficient. algebraic

conditions for not being in a certain class of languages. This is an interesting

result within algebraic automata theory. Furthermore, given the fact that

communication complexity has many ties with other computational models,

understanding the communication complexity of regular languages helps us

understand the power of regular languages in different computational models

and where they stand within the complexity theory frame.

From a communication complexity perspective, there are several inter

esting consequences. ln [TT03], it was shown that in the regulàr languages

set ting, 8(log log n) probabilistic communication complexity coin ci des with

8(logn) simultaneous communication complexity. Results about the non-

7 CHAPTER l. Introduction

detertninistic communication complexity leads to further such correspon

dences which allows us the compare different communication models within

the regular languages framework. Even though regular languages are "sim

ple" with respect to Turing Machines for example, they provide a non-trivial

case-study of non-deterministic communication complexity since there are

both "hard" and "easy" regular languages with respect to this madel. There

fore, a complete characterization of regular languages in this madel is likely

to force one to develop new lower bound techniques and study functions (for

example promise functions) other than the commonplace ones which have

been intensively studied.

Through the notion of programs over monoids ([Bar86]), a connection be

tween algebraic automata theory and circuit complexity has been formed. For

example algebraic characterizations of sorne of the most studied circuit classes

AC0 , ACC0 and NC1 have been obtained ([BT87]). The connection between

communication complexity and circuit complexity is well known. Currently,

techniques from communication complexity provide one of the most powerful

tools for proving circuit lower bounds ([Gro92j,[HG91j,[Nis93],[RM97]). Al

gebraic characterization of regular languages with respect to communication

complexity cpmpletes a full circle and further strengthens our understanding

of the three fields.

Communication Complexity Algebraic Automata Theory

~ CITcllits J

1.4. Outline 8

The breakdown of the thesis is as follows. In Chapter 2, we give an in

troduction to communication complexity and present the fundamental tech

niques in this field. Chapter 3 is devoted to the basics of algebraic automata

theory. The main purpose of these two chapters is to deliver the background

material needed for Chapter 4. In Chapter 4, we present the results obtained

about the non-deterministic communication complexÙ;y of regular languages.

Finally we conclude in Chapter 5.

Chapter 2

-Communication Complexity

In this chapter, we present the notion of communication complexity as in

troduced by Yao in [Yao79]. We start in Section 2.1 with the deterministic

model in which we look at the fundamental concepts. In Section 2.2, we move

to the non-deterministic model which is the model of interest for this work.

In Section 2.3, we briefly mention other popular communication models. In

Section 2.4, we introduce the notion of a reduction which plays a key role

in our arguments in Chapter 4. We also define communication complexity

classes and see a beautiful analogy between these classes and Turing Machine

classes. Finally we summarize this chapter in Section 2.5.

We refer the reader to the much celebrated book by Kushilevitz and Nisan

[KN97] for an in depth survey of the subject. One can also find and excellent

introduction in the lecture notes by _Ran Raz [Raz04]. We mostly use the

notation used in [KN97].

9

2.1. Deterministic Madel 10

2.1 Deterministic Model

2.1.1 Definition

In the two-party communication complexity madel, we have two players (usu

ally referred ta as Alice and Bob) and a function f : X x Y - Z. Alice is

given x E X and Bob is given y E Y. Bath know the function f and their

goal is to collaboratively compute f(x, y) i.e. they bath want to know the

value f(x, y). In arder to do this they have to communicate (for most func

tions) since neither of them see the whole input. We are only interested in

the number of bits that they need to communicate to compute f(x, y). Thus

the complexity of their individual computations are irrelevant and we assume

that bath Alice and Bob have unlimited computational power.

The communication of Alice and Bob is carried out according to a protocol

P that bath players have agreed upon beforehand. The protocol P specifies

in each step the value of the next bit communicated as a function of the input

of the player who sends it and the sequence of previously communicated bits

by the two players. The protocol also determines who sends the next bit as

a function of the bits communicated thus far.

More formally, a protocol is a 5-tuple of functions (cA, cs, n, fA, fs) such

that:

• At each step of the communication, CA takes as input the communica

tion history thus far and the input for Alice and retu~ns the bit that

Alice will communicate (similarly for cs and Bob).

• n takes as input the communication history thus far and decides whether

the communication is over or not. If not, it decides who speaks next.

• After the communication is over, fA takes as input the communication

history and the input for Alice and returns one bit (similarly for fs

11 CHAPTER 2. Communication Complexity

and Bob). This bit is the output of the proto col and the values of fA

and fB should be the same.

Unless stated otherwise, the functions we consider in this chapter are of

the form f : {0, 1 }n x {0, 1 }n --+ {0, 1 }. Since the output of the function is

just one bit, we can assume that the last bit communicated is this value.

Let P(x, y) be the output of the protocol P, i.e. the last bit commu

nicated. Then we say that P is a protocol for f if for all x, y E {0, 1}n,

P(x, y) = f(x, y). The cost of P is defined as

cost(P) := max number of bits communicated for (x, y).
(x,y)EXxY ·

The deterministic communication complexi,ty of a function f, denoted as

D(J), is defined as

D(J) := min cost(P)
P protocol for f

Example 2.1. Define the EQUALITY function as

EQ(x,y) :~ { ~ if x= y,

otherwise.

An obvious upper bound for D(EQ) is n + 1 since one of the players, say

Alice, can just send all her bits to Bob and Bob can simply compare the

string he has with the string Alice has sent. If the strings are equal he can

send 1 to Alice and otherwise he can send O. In fact, this protocol gives an

upper bound for any boolean function. Once one of the players knows all the

input, s/he can compute the value of the function and send this value to the

other player. The number of bits communicated is n + 1.

Intuitively, one e.xpects that D(EQ) = n + 1, i.e. n + 1 is also a lower

bound for D(EQ). Although this intuition is correct, how can one rigorously

prove this lower bound?

2.1. Deterministic Madel

000 001 010 010 100 101110 111

00010 J 10 0 01

001 0 :-0 - -0- - 0 -: 1 :0 : 1 0

010 0 : 0 0 0 : 0 : 0 : 1 1

011 1

100 1

101 0

L-------J
0 0 1 1 0 0 r-------, ---

10 0 010:0:1
L-------J ---

1 1 0 0 0 0

1

0

1

110 0 0 0

ill 0 0 1

1 0 1 1 1

1 1 0 0 1

12

Figure 2.1: Example of an input matrix and a 0-monochromatic rectangle.

2.1.2 Lower Bound Techniques

As in any other computational madel, proving tight lower bounds for the

complexity of explicit functions in the communication madel is usually a

non-trivial task. Nevertheless, there are a number of effective techniques one

can use to accomplish this. Now we explore three of these methods: the

disjoint caver method, -the rectangle size method and thé fooling set method.

For a function f, define the input matrix by A~Y = f(x, y) where the rows

are indexed by xE X and the columns are indexed by y E Y. We say that

R is a rectangle if R = S x T for sorne S Ç X and T Ç Y. This is equivalent

to saying that (xi, YI) ER and (x2,Y2) ER together imply (xi,Y2) ER. We

say that R is monochromatic with respect to f if for sorne z E Z we have

A~y = z for all (x, y) ER (see Figure 2.1.2).

Given J, let P be a protocol for f. For simplicity let us assume that the

players send bits alternately. Also without loss of generality we can assume

Alice (who has the input x) sends the first bit. Thus at step 1, the protocol

13 CHAPTER 2. Communication Complexity

partitions X x Y= (X0 x Y) U (X1 x Y) such that

Vx E X 0 , Alice sends 0,

Vx E X~, Alice sends 1.

At the second step it is Bob's turn to send a bit so the protocol partitions

bath Xo x Y= (Xo x Yoo) U (Xo x Yo1) and X1 x Y= (X1 x Yw) U (X1 x YJ.1).

Here, if the first communicated bit was a 0, then

Vy E Yoo, Bob sends 0,

Vy E Y01, Bob sends 1,

and if the first communicated bit was a 1, then

Vy E Yw, Bob sends 0,

Vy E Yi1, Bob sends 1.

In general, if it is A>lice's turn to speak and the bits communicated thus far

are b11 b2, ... bk, then Alice partitions Xbi, ... ,bk-l x Yb1 , •.• ,bk into Xb1 , ••• ,bk,o x Yb1, .•• ,bk

and Xb1 , ••• ,bk,l x Yb1 , ••• ,bk· A protocol partitioning tree nicely illustrates what

happens (see Figure 2.2).

Observe that each node in the protocol partitioning tree is a rectangle

and two nades intersect if and only if one is the ancestor of the other. In

particulai", the leaves of the tree are disjoint rectangles. The same bits are

communicated for all the inputs in a leaf so ·P(x, y) is the same for all these

inputs, i.e. the leaves are monochromatic. The height of the tree is equal to

cost(P). Thus we have proved the following lemma which is a key combina

torial property of a protocol.

Lemma 2.1. A protocol P for f with cost(P) = c partitions the input matrix

Af into at most 2c monochromatic rectangles.

2.1. Deterministic Model

Alice

X 0 x Y

Bob Alice

0 XoooXYoo··· --. 0 Xo x Yoo---
___.::--- 1 Xoo1 x Yoo · · ·

/

~ __J_Xolo x Yo1· · ·
Xo x Yol---

1 Xon x Yo1 · · ·
Xx Y

·~ 0 X1oo x Y10···
.

1 0 x1 x Y10::=::
___.::--- 1 x 101 x ylO ...

X 1 x Y

~ 0 X 110 xYn···
1 --xl.x yll---

1 X111 x Y11 • · ·

Figure 2.2: Protocol partitioning tree.

14

.~·

15 CHAPTER 2. Communication Complexity

A monochromatic disjoint caver is a partition of a matrix into disjoint

monochromatic rectangles. We denote by CD(!), the minimum number of

rectangles in any monochromatic disjoint cover of Af. With this definition

and the previous lemma at hand, we can present the first lower bound tech

nique.

Corollary 2.2 {Disjoint Cover Method). For a function f we have

D(f) ~ log2 CD(!).

With this tool it is now easy to show a linear lower bound for D(EQ),

Observe that the input matrix for EQUALITY is a 2n by 2n identity ma

trix. No 1-monochromatic rectangle can contain more than one 1. Thus

any monochromatic disjoint cover has 2n 1-monochromatic rectangles and at

least one 0-monochromatic rectangle. So D(EQ) ~ flog 2 (2n + 1)1 = n + 1

as predicted.

Although every protocol for a function induces a monochromatic disjoint

cover of the input matrix, simple examples show that the converse is not

true. So if sorne of the monochromatic disjoint covers do not correspond to

any protocol, how good can the disjoint cover method be? The next theorem

states that the gap is not very large.

Theorem 2.3. For a function J, we have D(f) = O(log~ CD(!)).

Proof. For any function f, we present a protocol for it with complexity

O(log~ CD(!)). The protocol consists of at most log2 CD(!) r~unds and in

each round at most log2 CD(!)+ 0(1) bits are communicated. The basic

idea is as follows:

Alice and Bob agree upon an optimal disjoint monochromatic cover before

hand. They try to figure out whether (x, y) lies in a 0-monochromatic rect

angle or a 1-monochromatic rectangle. The protocol proceeds in rounds. If

f(x, y) = 1 then in each round they successfully eliminate at least half of the

2.1. Deterministic Model 16

0-monochromatic rectangles. At the end, all 0-monochromatic rectangles are

eliminated and they conclude f(x, y) = 1. If on the other hand f(x, y) = 0,

then in one of the rounds they are not able to eliminate at least half of the

0-monochromatic rectangle~. At this point they conclude f(x, y)= O.

Before giving the details of a round, we make two crucial observations. The

first observation implies the second one. The correctness of the protocol fol

lows from the second observation.

Observation 1: Suppose R0 = 80 x T0 is a 0-monochromatic rectangle and

R 1 = 8 1 x T1 is a 1-monochromatic rectangle. Then either Ro and R 1 are

disjoint in rows or they are disjoint in columns, i.e. either S0 and S1 are

disjoint or T0 and T1 are disjoint.

Observation 2: Let C be any collection of 0-monochromatic rectangles and

R 1 any 1-monochromatic rectangle. Then either

- R1 intersects with at most half of the rectangles in C in rows or

- R 1 intersects with at most half of the rectangles in C in columns.

Otherwise there is at least one rectangle R0 in C such. that Ro and R 1 intersect

both in rows and columns. This contradicts the first observation.

Now we can describe how a· round is carried out. lnitially C contains all the

0-monochromatic rectangles.

A. If C =· 0 then Alice communicates to Bob that f(x, y)= 1 and the pro

tocol ends. Otherwise, Alice tries to find a 1-monochromatic rectangle

R1 ::::: S1 x T1 such that x E S1 and R 1 intersects with at most half

of the rectangles in C in rows. If such a rectangle exists, then Alice

sends its name (log2 CD(!) bits) to Bob and they both update C so

it contains all the rectangles that intersect with R 1 in rows (the other

rectangles cannat con tain (x, y)). At this point the round is over sin ce

they successfully eliminated at least half of the rectangles in C. If Alice

is unable find such a rectangle then she communicates this to Bob.

17 CHAPTER 2. Communication Complexity

B. At this point we know Alice could not find a 1-monochromatic rect

angle to end the round so Bob tries to end the round by finding a

1-monochromatic rectangle R1 = S1 x T 1 such that y E T1 and R1

intersects with at most half of the rectangles in C in columns. If he

finds such a rectangle, he communicates its name to Alice and they

bath update C so it contains all the rectangles that intersect with R1

in columns. After this point the round is over. If he cannat find such a

rectangle this means bath Alice and Bob failed and therefore he corn-.

municates to Alice that f(x, y) = 0 because by the second observation,

he knows thatthere is no 1-monochromatic rectangle containing (x, y).

D

In niost cases it is hard to exactly determine CD(!). So the nat ur al next

step is to find lower bounds on en(!) which in turn gives lower bounds on

D(f). (This is actually what we did for the EQUALITY function.)

An obvious way of bounding (from below) the number of monochromatic

rectangles needed in a monochromatic disjoint caver is to bound (from above)

the size of every monochromatic rectangle. In other words, if every monochro

matic rectangle in the input matrix has size less than or equal to s, then we

need at least 22n / s monochromatic rectangles in a monochromatic disjoint

caver of the matrix. Here 'size' refers to the number of pairs (x, y) in the

rectangle and we can interpret this as a measure f.L· The above actually

generalizes to any kind of measure.

Proposition 2.4 (Rectangle Size Method). Let f.L be a measure defined

on the space X x Y. If all monochromatic rectangles R (with respect to f)

a.re such that f.L(R)::; s, then D(f) ~ log2 (f.L(X x Y)/s).

In particular, if f.L is a probability and every monochromatic rectangle R sat

isfiesp(R)::; E, then D(f);:: log2 1/c

.2.1. Deterministic Madel 18

Example 2.2. Let us see an application of the rectangle size method by

proving a linear lower bound for the communication complexity of the DIS

JOINTNESS function. We define DISJOINTNESS as

DISJ(x, y),~ { ~ if x n y= 0,
otherwise.

where x and y are viewed as subsets of [n] (xi = 1 if x contains the element

i E [n]). We daim that any 1-monochromatic rectangle R = S x T has size

at most 2n. It is easy to show that the number of (x,y)'s such that xny = 0
is E;=O (;)2n-j =an. Now if for all x and y that intersect we set p,(x, y)= 0

and for all x and y that are disjoint we set p,(x, y) = 1 then p,(X x Y) = 3n

and the above daim together with Proposition 2.4 imply D(DISJ) = O(n).

Proof of claim: Suppose ISI = k and 1 UxEsxl = c. Then dearly k s 2c. Also

ITI S 2n-c since eve~y set in T must be disjoint from every set in S. Thus

the size of the rectangle is ISI · ITI S k2n-c S 2c2n-c = 2n.

The last lower bound technique we look at in this section is the well

known fooling set technique. It is a direct consequence of the disjoint caver

method and in fact it is a special case of Proposition 2.4. First we make the

formai definition of a fooling set.

Definition 2.5. A set F Ç X x Y is a fooling set for f if the following

conditions are satisfied.

1. For all (x, y) E F, J(x, y)= z for sorne z E Z.

z.

By the definition of a fooling set, no two elements in F can be in the

same monochromatic rectangle. Therefore there must be at least IFI many

monochromatic rectangles in any monochromatic disjoint caver of the input

matrix. So by Corollary 2.2 we get the following fact.

~ 1 •

19 CHAPTER 2. Communication Complexity

Lemma 2.6 (Fooling Set Method). If F isafooling set for f then D(f) 2:

log2 IFI.

To see that the fooling set method is indeed a special case of Proposition

2.4, for a fooling set F, let 11(x, y)= c > 0 for every (x, y) E F and for every

(x, y) tf- F set Il(x, y) = O. Then any monochromatic rectangle R satisfies

11(R) ::; c and therefore

Example 2.3. Define the LESS-THAN function as

LT(x, y):= {
1

. 0
if x ::; y,

otherwise.

where x and y are viewed as binary numbers. We can show that LT has

linear deterministic communication complexity by the fooling set technique.

Let F = {(x, x) : x E {0, 1 }n}. It is easy to see that F is a fooling set.

Clearly IFI = 2n and this proves our daim. In fact Fis also a fooling set for

the EQUALITY function.

From our discussion in this section, it is clear that we can exploit the nice

combinatorial structure of protocols to prove tight lower bounds for explicit

functions. In the next section, we see that most of the techniques seen in

this section can be applied to the non-deterministic model as well.

2.2 Non-Deterministic Model

2.2.1 Definition

The definition of the non-deterministic communication model is analogous to

the non-deterministic model in the Turing Machine world. There are several

2.2. Non-Deterministic Madel 20

ways of defining non-determinism, all of which are equivalent. Here we will

present the one that best suits our needs.

Intuitively, non-determinism can be viewed as a certificate verification

process1: A third player (referred to as God) gives a proof (bit string) that

f(x, y)~ z to bath Alice and Bob. If indeed f(x, y)= z, then Alice and Bob

must be able to convince themselves that this is the case by communicating

with each other. If on the other hand f(x, y) =1- z, then the verification pro

cess should fail and Alice and Bob should be able to conclude that the proof

was wrong. We consider the bits sent by God as a part of the communicated

bits.

More formally, in the non-deterministic set ting, Alice and Bob ·communi

cate according to a non-deterministic protocol pz. This protocol differs from

the deterministic one as follows. pz takes three inputs, x, y and s, where

a; and y are perceived as the inputs for Alice and Bob respectively, and s

is sorne bit string which we think of as the "proof string". pz specifies in

each step the value of the next bit communicated as a function of the input

of the player who sends it, the sequence of previously communicated bits

as well as s. It also determines who will send the next bit as a function of

the communicated bits thus far. So it differs from a deterministic protocol

because what a player sends also depends on the string s. We will denote

the output of the protocol by pz(x, y, s).

We say that pz is a non-deterministic protocol for f if for all (x, y) such

that f(x, y)= z, there exists a strings such that pz(x, y, s) = z, and for all

(x, y) such that f(x,y) i= z we have pz(x,y,s) i= z for any s.

The the cast of pz is defined as

cost(Pz) := max m~n jsj + no of communicated bits for (x, y, s).
(x y)· s.

' · P'(x y s)=z
f(x,y)=z ' '

1 Equivalently one can view it as a communication game in which the players are allowed

to take non-deterministic steps.

21 CHAPTER 2. Communication Complexity

Figure 2.3: An example of a monochromatic caver of the 1-inputs.

We define the non-deterministic communication complexity of f as

N 1(f) := min cost(P1
)

pl non-deterministic protocol for f

The co-non-deterministic communication complexity off is defined similarly

and is denoted by N° (!).

Example 2.4. Let us show N°(DISJ) = O(log2n) by exhibiting a proof

and a verification protocol. God can prove DIS J (x, y) = 0 by telling Alice

and Bob the index i in which x and y intersect. This proof is O(log2 n) bits

long and Alice and Bob can convince themselves that the proof is correct by

exchanging the bits Xi and Yi· If DISJ(x, y)= 1, then given any index as a

proof, Alice and Bob can detect that the proof is wrong. (Any other kind of

proof is considered as a wrong proof.)

U nlike the deterministic communication complexity, we can get an exact

characterization of non-deterministic communication complexity in terms of

monochromatic rectangles. We denote by cz(f) the minimum number of

z-monochromatic rectangles in any monochromatic caver of the z-inputs of

f (observe that here we dropped the word "disjoint" since we allow the

rectangles to intersect). This quantity exactly determines Nz(f).

Proof.

2.2: Non-Deterministic Model 22

• log2 cz(f) :S Nz(f)

We have seen in the deterministic case that a certain communication

pattern corresponds to a certain monochromatic rectangle. This situa

tion is not much different in the non-deterministic model. In this case,

what Alice and Bob send in each·step also depends on the proof bits. So

for every fixed proof string, there corresponds a protocol partitioning

tree as in Figure 2.2.

Now observe that for this particular proof, every communication pat

tern that convinces Alice and Bob leads to a z-monochromatic rectan

gle. (Other communication patterns may not lead to a monochromatic

rectangle since the proof we fixed may not be a prooffor all (x, y) with

f(x, y) = z.) So each convincing communication pattern (including

the proof) corresponds to a z-monochromatic rectangle. Since for ev

ery (x, y) such that f(x, y) = z there must be a proof that convinces

Alice and Bob, all the convincing communication patterns together cor

respond to a covering of the z-inputs. Here the rectangles are allowed

to intersect since for sorne (x, y) with f(x, y)= z, there might be more

than one proof that leads Alice and Bob to be convinced. There are at

most 2N'(f) communication patterns and therefore cz(f) :S 2N'(f).

• Nz(f) :S log2 Cz(f) + 2

Fix any optimal monochromatic cover of the z-inputs. If God sends

Alice and Bob the name of a monochromatic rectangle R = S x T that

(x, y) lies in, then Alice can check that x E Sand if so, she can send 1

to Bob. Bob can similarly check if y ET and send 1 to Alice if this is

the case.

0

23 CHAPTER 2. Communication Complexity

2.2.2 Power of Non-Determinism

A natural question that arises in this context 1s: how much power does

non-determinism give? Non-determinism in the finite automaton computa

tional madel do es not· give extra power with respect to the class of languages

recognized. In the Turing Machine model, it is not known whether non

determinism p:rovides significantly more power. In the communication com

plexity model we can answer this question and prove that non-determinism

is strictly more powerful. First we observe that the gap between determinism

and non-determinism cannat be more than exponential.

Proposition 2.8. For any z E {0, 1}, D(f) ::; cz(f) + 1.

Proof. Alice and Bob agree on an optimal caver of the z-inputs. Alice com

municates to Bob the z-monochromatic rectangles that x lies in (this requir.es

cz(f) bits of communication). Bob, with this information, can determine if

there is a z-monochromatic rectangle that (x, y) lies in and send the answer

to Alice. 0

The above is actually tight. For example the EQUALITY function sat

isfies D(EQ) = n + 1 and N°(EQ) ::; log2 n + 2 (similar protocol to the one

in Example 2.4).

Can it be the case that both N°(f) and N 1(f) are exponentially smaller

than D(f)? The answer to this question is given by the next theorem.

Theorem 2.9. For every function f: X x Y~ {0, 1},

The proof of this theorem is the same as the proof of Theorem 2.3. It

was shawn in [Fur87] that this bound is tight.

Observe that there are two reasons why non-determinism is more powerful

than determinism:

2.2. Non-Deterministic Madel 24

1. non-determinism is one sided in the sense that we only need to caver

the z-inputs,

2. the z-monochromatic rectangles in the caver are allowed to overlap.

From our discussion above it should be clear that the ultimate power cornes

from the first point. In the EQUALITY example we see that it is "easy" to

caver the 0-inputs in the sense that we do not need exponentially many 0-

monochromatic rectangles to caver the 0-inputs. The hardness lies in covering

the 1-inputs. The exponential gap is a product of this fact. The power of a

caver against a disjoint caver is only quadratic as implied by Theorem 2.9.

2.2.3 Lower Bound Techniques

In the deterministic madel, we saw the rectangle size method as a lower

bound technique. It is clear that the same approach gives a lower bound

for the non-deterministic communication complexity as well. If every z

monochromatic rectangle has size less than or equal to s and there are k

z-inputs, then we need at least k/ s many rectangles to caver these inputs.

The non-deterministic version· of Proposition 2.4 is as follows.

Proposition 2.10. Let K Ç X x Y be the set of all z-inputs and let 11 be a

measure defined on the space K. If all z-monochromatic rectangles R satisfy

11(R) ~ s, then Nz(J) ~ log2 (!l(K)/ s).

It can be shawn that the rectangle size method in the non-deterministic

case is almost tight. Suppose we choose the best possible measure 11 (i.e. the

one that gives the best bound) and the maximum size (with respect to 11) of

a z-monochromatic rectangle is s. Then we have:

Theorem 2.11 (see (KN97]). Nz(J) ~ log2 (!l(K)/s) + log2 n + 0(1).

25 CHAPTER 2. Communication Complexity

There are examples that show that we cannot do better than this.

The fact that we can use the rectangle size method here implies that we

can also use the fooling set method. However, as the next proposition shows,

the quality of the fooling set method is questionable.

Proposition 2.12 (see [KN97]). Almost allfunctions f: {0, 1}nx{O, 1}n--+

{0, 1} satisfy N 1(f) = O(n) but the size of their largest footing set is O(n).

We finish off this section by looking at the non-deterministic communica

tion complexity of the PROMISE-DISJOINTNESS function. This function

is defined the same way as the DISJOINTNESS function but the input space

is different: it is the union of the following two setsA and B.

A:= {(x, y) E {0, 1}n x {0, 1}n: xny = 0}.

B := {(x,y) E {0,1}n X {0,1}n: jxnyj = 1}.

In other words Alice and Bob are promised that if they get an input that

intersects, then the size of the intersection is exactly 1.

Now we show that the PROMISE-DISJOINTNESS (PDISJ) function

has linear non-deterministic complexity. This fact is used in Chapter 4 to

prove linear lower bounds for the complexity of certain regular languages.

To show the linear lower bound, we use a result that implies a linear lower

bound on the randomized communication complexity of the DISJOINTNESS

function. Before we can state this result, we first need to define two measures

on {0,1}nx {0,1}n.

I'A(x, y):= { ~11

() ïBf
{

1

J.lB X, Y := Û

if (x, y) E A,

otherwise.

if (x, y) E B,

otherwise.

2.3. Other Models 26

Lemma 2.13 (~ee [Raz04]). For any rectangle R = S x T, if

th en

(for n large enough).

In particular, if t-tA(R) > 2-n/lOO then R contains elements from bothA

and B. Therefore to caver the inputs in A with 1-monochromatic rectangles2
,

we need exponentially many rectangles. This shows N 1(PDISJ) = O(n).

2.3 Other Models

In this section, we mention sorne of the most interesting and well-studied

communication complexity models.

Randomized Communication Complexity

In the randomized setting, Alice and Bob both have access to random bit

strings that are generated according to sorne probability distribution. These

random strings are private to them and are independent. What Alice and

Bob communicate depends on these random strings as well as their input

and the previously communicated bits. We say that P is a protocol for f
with E error if the following holds.

V(x, y) EX x Y, Pr[P(x, y)= f(x, y)] 2: 1- t:

The cast of P is defined as the maximum number of bits communicated where

the maximum is taken over all possible random strings and all inputs (x, y).

2Inthis setting 1-monochromatic rectangles can contain any element from (X x Y)\B

/

27 CHAPTER 2. Communication Complexity

The randomized communication complexity of f is

R(f) := min cost(P).
P protocol for f with error 1/3

One can also define the one sided error randomized complexity. We say

that P is a protocol for f with one sided E error if the following holds.

V(x, y) EX x Y with f(x, y)= 0, Pr[P(x, y)= 0] = 1 and

V(x, y) EX x Y with f(x, y)= 1, Pr[P(x, y)= 1] ~ 1- E.

Then the one sided randomized communication complexity of f is

R1(f) := min cost(P).
P protocol for f with one sided error 1/2

There are also variations of the randomized model in which Alice and Bob

have access to one public random string. (For a comparison see [New91].)

Distributional Communication Complexity

In this setting, the definition of the cost of a protocol and the communica

tion complexity of a function are the same as the deterministic model. The

difference is that we relax the condition

V(x,y) EX x Y, P(x,y) = f(x,y)

to

Prll[P(x, y) = f(x, y)] ~ 1- E

for a given probability distribution p on the input space X x Y and a constant

E. The distributional communication complexity of a function is denoted by

D~(f).

2.4. Communication Complexity Classes 28

Multiparty Communication Complexity

A natural way of generalizing the two player model to k-players is as follows.

k-players try to compute a function f : xl x x2 x ... x xk ---+ z where

player i gets xi E Xi and communication is established by broadcasting

(every player receives the communicated bit). Observe that as the number

of players increases, the power of the model decreases.

Another way of generalizing the two party model to k players was pro

posed in [CFL83]. This model is referred to as "number on the forehead"

model because here each player i sees every input but Xi· This can be viewed

as each player having their input on their forehead and not being able to see

it. The power of this model increases as the number of players increases. In

this setting, coming up with lower bounds is considerably harder. However,

these lower bounds imply lower. bounds in other computational mo dels such

as circuits and bounded-width branching programs. This is one of the rea

sons why this model has attracted more interest than the natural generaliza

tion mentioned previously. There are applications in time-space tradeoffs for

Turing Machines ([BNS92]), length-width tradeoffs for branching programs

([BNS92]), circuit complexity ([HG91], [Gro92], [Nis93], [Gro98]), proof com

plexity ([BPS07]) and pseudorandom generators ([BNS92]), to cite only a

few.

2.4 Communication Complexity Classes

It is possible to define complexity classes with respect to communication com

plexity once we settle what it means to'be "easy" or "tractable". Communica

tion complexity classes were introduced in [BFS86] in which "tractable" was

defined to be pol y log(n) complexity. That is, a function is tractable if its com

plexity is O(logc n) for sorne constant c. From this foundation, one can build

29 CHAPTER 2. Communication Complexity

communication complexity classes analogous to P, NP, coN P, BP P, RP and

many more. For example pcc = {f : D(f) = polylog(n)}. The correspon

dence between sorne of the complexity classes and the complexity measures

can be summarized as follows.

Complexity class pcc NPCC coN pcc BPPCC RPCC

Complexity measure D Nl No R RI

The relationship between these classes are much better known than their

Turing Machine counterparts since proving lower bounds for explicit func

tions is easier in the communication world. We have seen that the function

NOT-EQUALITY satisfies D(N EQ) = n + 1 and N 1 (N EQ) ::; log2 n + 1.

This proves pcc f= NPcc. Since N°(NEQ) = O(n), we have coN Pcc f= NPcc.

Theorem 2.9 shows that pcc= NPcc n coN Pcc. lt can also be shawn that

pcc -1= RPCC and N pcc ct. BP pcc.

Remark. It is also possible to define analogs of the polynomial hierarchy.

Reducibîlity and completeness are fundamental concepts in the Turing

Machine computational madel so it is natural to define the communication

complexity analogs.

The idea of reduction is as follows. Given two functions f and g, f reduces

to gif Alice and Bob can privately convert their inputs x and y tox' and y'

such that f(x,y) = 1 if and only if g(x',y') = 1. Suppose f reduces to gand

that the inputs of length n are converted into inputs of length t(n). The:b. it

is clear that if the communication complexity of gis O(h(n)) then the com

munication complexity off is O(h(t(n))). If the communication complexity

off is n(h(n)) then the communication complexity of gis n(h(C1(n))).

Reductions of particular interest with respect to the communication com

plexity classes are those with t(n) = 210g~ n for sorne constant c. The formai

definition as given in [BFS86] is as follows.

Definition 2.14. Let t = 210g~n for sorne constant c. A rectangular reduction

2.5. Summary 30

from a functiori f : {0, 1 }n x {0, 1 }n ---+ {0, 1} to a function g : {0, 1 V x

{0, 1P---+ {0, 1} is a pair of functions a: {0, 1}n---+ {0,1p and b: {0, l}n---+

{0, 1 P such that f(x, y) = 1 if and only if g(a(x), b(y)) = 1.

From this definition it is clear that if there is a rectangular reduction from

f to g and g E pcc then f E pcc. The same is true for N pcc (and in fact for

every level of the polynomial hierarchy).

Example 2.5. For a fixed constant q > 1, defirie the INNER-PRODUCT

function as follows.

IP,(x,y) '~ { ~ if L:~=l Xi Yi = 0 mod q,

otherwise.

We exhibit a reduction from PD I S J to I Pq such that an input of length n

is converted into an input of length n + q. Since q is a constant, this proves

that N 1(1Pq) = O(n).

Given x and y, Alice and Bob each append q 1 's at the end of their inputs

to obtain x' and y'. If PDISJ(x,y) = 1 then clearly IPq(x',y') = 1. If on

the other hand PDISJ(x,y) = 0, then we know that x and y intersect only

at one position and therefore x' and y' will intersect in q + 1 positions. This

implies IPq(x', y')= O.

Having established the definition of a reduction, we can define the notion

of completeness. For a class of fun etions C, we say f E C is complete in C if

there is a rectangular reduction 'from every function in C to. f. In [BFS86], a

complete function is found in every level of the polynomial hierarchy.

2.5 Summary

In this chapter we took a glimpse at the mini-world within complexity the

ory: communication complexity. The main focus in this area has been prov

ing tight lower bounds for specifie functions. We showed three lower bound

~-·

31 CHAPTER 2. Communication Complexity

techniques for the deterministic model. These were the disjoint cover method,

rectangle size method and the fooling set method. We introduced the non

deterministic model and saw that the non-deterministic communication com

plexity of a function was essentially the number of z-monochromatic rectan

gles needed to cover the z-inputs. We saw that the rectangle size method,

and therefore the fooling set method were also applicable in this setting.

We looked at the power of non-determinism and observed that the possible

exponential gap between the deterministic. and the non-deterministic com

plexity arose from the fact that non-determinism was one sided. Later we

touched on sorne other communication models: randomized complexity, dis

tributional complexity and multiparty complexity. Finally we defined sorne

of the communication complexity classes, pcc, N pcc, coN pcc, B P pcc, RPcc,

by considering polylog(n) complexity as tractable. Natural definitions of

reducibility and completeness were also introduced.

The deterministic and the non-deterministic communication complexities

of the functions seen in this chapter are summarized with the following table.

Il EQ 1 NEQ 1 LT 1 DISJ 1 PDISJ 1 IPq 1

D 8(n) e(n) 8(n) 8(n) 8(n) 8(n)

Nl 8(n) 8(log2 n) 8(n) 8(n) 8(n) 8(n)

r-'··

Chapter 3

Algebraic Automata Theory

In this chapter, we introduce the reader to algebraic automata theory by

presenting the fundamental concepts in this area. The heart of this theor~ is ··

viewing a monoid as a language recognizer. Therefore we begin this chapter

in Section3.1 by explaining how a monoid can be viewed as a computational

machine. Later we define the syntactic monoid of a language which is anal

ogous to the minimal automaton. Then we define varieties and state the

variety theorem which establishes a one to one correspondence between va

rieties of finite monoids and varieties of regular languages. This conveys the

intimate relationship between finite monoids and regular languages. In Sec

tion 3.2, we extend the theory to ordered monoids since (as we see in Chapter

4) this provides the proper framework to analyze the non-deterministic com

munication complexity of regular languages.

We assume that the reader has basic knowledge in automata theory. For

more details on the subjects covered in this chapter, see [Pin86] and [Pin97]

for the ordered case.

32

.r--.
33 CHAPTER 3. Algebraic Autornata Theory

3.1 Monoids- Automata- Regular Languages

3.1.1 Monoids: A Computational Model

Before we can present how a rnonoid can be viewed as a cornputational

machine, we first need to forrnally define a rnonoid and a rnorphisrn between

rnonoids. A semigroup (S,·) is a set S together with an associative binary

operation defined on this set. A monoid (M, ·) is a sernigroup that hasan

identity: 3 lM E M which satisfies lM· m = m ·lM = m for any mE M.

We denote a mono id by its underlying set and write m 1 m2 instead of m1 · m2

when" there is no arnbiguity about the operation. Observe that a group is

just a rnonoid in which each element has an inverse.

Given two monoids M and N, a function <p : M --+ N is a morphism if

t.p{lM) = lN and if <p preserves the operation, i.e. t.p{mm') = <p(m)<p(m') for

any m,m' E M.

We assur:ne that the monoids we are dealing with are finite, with the

exception of the free monoid ~· which consists of all words (including the

empty word E) over the alphabet ~' with the underlying operation being

concatenation. Observe that any function <p : ~ --+ M extends uniquely to a

morphism ci> : ~· --+ M.

One branch of algebraic graph theory studies the connection between

groups and corresponding Cayley graph representations of the groups. Sim

Harly, monoids also have graph representations. Given a monoid M, we can

construct a labeled multidigraph G = (V, A) as follows. Let V be the under

lying set of the monoid and let (ml? m 2) E A with label m 3 if m 1m 3 = m2.

See Figure 3.1 for an example.

Now the correspondence between monoids and automata should be clear

since we can easily view the graph of M as an automaton which recognizes a

language over the alphabet M. All we need to dois declare the vertex lM as

the initial state and agree upon a set of accepting vertices F Ç M. Observe

3.1. Monoids- Automata- Regular Languages 34

0 0

0

Figure 3.1: Graph of (Z3 , +).

that the graph of a monoid accepts a word m 1m2 ... mn iff m1 ·m2 · ... ·mn E F.

In fact, once we fix a function cp.: E ~ M, the graph of M recognizes a

. language over the alphabet E: replace each arc's label by its preimage under

cp (now an arc can have more than one label). A word s 1s2 ••• sn .E E* is

accepted iff cp(s1) · cp(s2) · ... · cp(sn) E F.

If we allow the set of accepting states to vary and the function cp : E ~ M

to vary (for fixed E and M) then by viewing the monoid's graph as an

automaton, we see that a single monoid can be used to recognize a family

of languages over E. Each language in the family corresponds to a fixed set

of accepting states and a fixed function cp. This leads to the more formai

definition of recognition by a monoid. We say that a language L Ç E* is

recognized by a finite monoid M if there exists a morphism <I> : E* ~ M

and an accepting set F Ç M such that L = <I>-1(F). Similarly, we say that

<I>: E* ~ M recognizes L if there exists F Ç M such that L = <I>-1(F). See

Figure 3.2 for an alternative way of viewing M as a language recognizer.

Given any monoid morphism W: M ~ N, the nuclear congruence with

respect to w is denoted by =.v and is defined by m =.v m'if w(m) = w(m').

.r---.
35 CHAPTER 3. Algebraic Automata Theory

Multiply
in M B-Yes

m- or

No

Figure 3.2: Another way of viewing a monoid as a machine.

We say that a set of words is homogeneous with respect to L if either every

word in the set is in L or none o(the words is in L. Now observe that

<I> : E* --+ M recognizes L if and only if the nuclear congruence classes of <I>

are homogeneous. This fact is used in the upcoming proofs.

From the earlier discussion, we can conclude that if L is recognized by a

finite monoid, then it is recognized by a finite automaton (the graph of the

monoid) and therefore it is regular. In fact, the converse is also true.

Theorem 3.1. L is regular if and only if a finite monoid recognizes L.

Proof. If L is regular then it is recognized by a finite automaton. The def

inition of an automaton includes the transition function fJ : Q x E --+ Q
where Q is the set of states. This function can be naturally extended to

fJ : Q x E* --+ Q. In other words, every word in E* defines a function from

Q to Q. Let flw : Q ·--+ Q, q ~---+ fJ (q, w), be the function corresponding to the

word w. Then it is easy to see that the set T := { flw : w E E*} is a monoid

with the operation being composition of functions. Furthermore T is finite

since Q is finite. We call T the transformation monoid of the automaton.

We daim that the transformation monoid T recognizes L. To see this let

3.1. Monoids - Automata - Regular Languages 36

<I> : 'E* --+ T be the canonical rnapping: w ~ Ow. <I> is a morphism since

<I>(uv) = Ouv =Ou o Ov = <I>(u) o <I>(v).

If <I> (u) = <I> (v) th en u E L iff v E L so the nuclear congruence classes are

homogeneous and thus <I> recognizes L, which means T recognizes L. 0

Theorem 3.1 constitutes the foundation of algebraic automata theory. It

shows that finite monoids and finite automata have the same computational

power with respect to the class of languages recognized. The proof reveals the

strong link between monoids and automata. In fact, this link can be seen to

be much stronger via the relation between the combinatorial properties 1 of L

and the algebraic properties of a monoid recognizing L. With the purpose of

exploring this relation, we define the syntactic monoid of a regular language.

3.1.2 The Syntactic Monoid

For every regular language there is a minimal automaton that recognizes it.

Similarly, every regular language has a "minimal" monoid tliat recognizes it.

We call this monoid the syntactic monoid and it is unique.

The syntactic congruence associated with a language L Ç 'E* is denoted

by =L and x =L y if for all u, v E 'E* we have uxv E L iff uyv E L. It is

straightforward to check that this relation is indeed a congruence. The syn

tactic monoid of L is the quotient mono id 'E* / = L and is denoted by M (L).

Let [w] represent the congruence class of w with respect to the syntactic

congruence. There is a well-defined operation: [w][u] = [wu], so the canon

ica! surjective mapping <I> : 'E* --+ M(L), w ~ [w], is a morphism. Observe

that any congruence class of =L is homogeneous (i.e. the nuclear congru

ence classes are homogeneous) so <I> recognizes L. We call <I> the syntactic

morphism.
1 Regular languages are definable by regular expressions which are combinatorial de

scriptioll$ of the language.

37 CHAPTER 3. Algebraic Automata Theory

It is quite easy to verify the following fact.

Proposition 3.2. L is regular if and only if its syntactic monoid is finite.

We say that a mono id N di vides a monoid M (denoted by N -< M) if there

exists a surjective morphism from a submonoid2 of M onto N. Intuitively,

this means that the multiplicative structure of N is embedded in M. The

syntactic monoid of L recognizes L and is the minimal monoid with this

property with respect to division.

Proposition 3.3. M(L) recognizes L and divides any other monoid that also

recognizes L.

Proof We have already proved that M(L) recognizes L so we prove the

second statement.

Let M be any monoid that recognizes L. So there exists a morphism

W : :E* ~ M recognizing L. Let Il> be the syntactic morphism. To show

M(L) divides M, we find a surjective morphism Y from a submonoid N of

M onto M(L).

Before defining Y we first prove the following daim: if W (a) = W (b)

then Il>(a) = ll>(b). Suppose not, so there exists a, b such that w(a) = w(b)

but ll>(a) =/= ll>(b). By the definition of Il> this means that without loss of

generality, there exists u, v such that uav EL but ubv ~ L. We have

w(uav) = w(u)w(a)w(v) = w(u)w(b)w(v) = w(ubv)

so W maps uav and ubv to the same element. Since nuclear congruence classes

(with respect to '11) must be homogeneous and uav EL but ubv ~ L, we get

a contradiction.

Now let N := w(:E*). SoN is a submonoid of M. Define Y: N ~ M(L),

w(w) f----7 ll>(w), i.e. Il>= y 0 w.

2 A submonoid is a subset that contains the identity and is closed under the operation.

3.1. Monoids- Automata- Regular Languages 38

<I>
E* A1(L)

N

By daim Y is well-defined. Since cl> is surjective, Y is surjective. Fur

thermore,

Y(w(u)w(v)) = Y(w(uv)) = ci>(uv) = ci>(u)ci>(v) = Y(w(u))Y(w(v))

and so Y is a morphism. D

If A1-< N and N-< A1 then A1 is isomorphic toN. So as claimed before,

for every regular language there is a unique (up to isomorphism) canonical

monoid, the syntactic monoid, attached to it. An interesting property of

M (L) is that it is isomorphic to the transformation monoid of the minimal

automaton recognizing L.

In the next subsection, we introduce the notion of language and monoid

varieties. The combinatorial properties of a language are refl.ected on the

algebraic properties of A1(L) and varieties are the proper framework to for

malize this.

3.1.3 "arieties

We first give a brief overview of varieties and how monoid varieties and

language varieties relate to each other.

A variety of languages is a family of languages that satisfy certain condi

tions. Similarly a variety of monoids is a family of monoids satisfying certain

conditions. The variety theorem states that there is a one to one correspon

dence between varieties of regular languages and varieties of finite monoids:

. r'·

39 CHAPTER 3. Algebraic Automata Theory

a variety of mono ids V corresponds to the variety of regular languages V con

sisting of all the languages whose syntactic mono id is in V. Consequently,

we are able to state results of the form:

"A regular language belongs to the language variety V if and only if its

syntactic monoid belongs to the monoid variety V."

Many classes of languages that are defined combinatorially form language

varieties and many classes of monoids that are defined algebraically form

monoid varieties. So from above we can hope to reach results of the form:

"A regular language has the combinatorial property P if and only if its

syntactic monoid has the algebraic property Q."
Schützenberger was the first to establish such a result: A regular lan

guage is star-free3 if and only if its syntactic monoid is finite and aperiodic4

([Sch65]). Several important classes of regular languages admit a similar al

gebraic characterization. This often yields decidability results which are not

known to be obtainable by other means. For instance, by a result of Me

N aughton and Pa pert ([MP71]), we know that regular languages definable

by a first-order formula are exactly the star-free languages. This implies that

we can decide if a regular language is first-order definable by checking if its

syntactic monoid is aperiodic and this is the only known way of doing this.

These types of algebraic characterizations of regular languages. also provide

one with powerful algebraic tools when analyzing and proving results about

regular languages.

Varieties of Finite Monoids

A variety of finite monoids is a family of finite monoids V that satisfies the

following two conditions:

3 A language is star-free if it can be defined by a extended regular expression without

the Kleene star operation.
4 A monoid is aperiodic if no subset of it forms a non-trivial group .

3.1. Monoids- Automata- Regular Languages 40

(i) Vis closed under division: if ME V and N-< M then· NE V,

(ii) Vis closed under direct product: if M1 , M2 EV then M1 x M2 EV.

Example 3.1. The following are sorne examples of varieties of monoids:

• 1 is the trivial variety consisting of only the trivial monoid I = { 1}.

• M is the variety containing · all fini te mono ids.

• Corn is the variety of all commutative monoids.

• G is the variety of groups.

• A is the variety of aperiodic monoids.

• J is the variety of monoids M "that satisfy Mm 1M = Mm2M ~

m 1 = m2 . We call these monoids ..7-trivial.

There is a conv.enient way of defining varieties of monoids through iden

tities. The notion of identities can be presented in two ways. One involves ,

topological semigroups (see [Pin97]), which we wish to avoid. Therefore we

use the presentation which we think is more intuitive.

Let L; be a countable alphabet and u, v two words in E*. We say that a

monoid M satisfies the identity u = v if for all morphisms cp : E* -t M we

have cp(u) =cp(v). This means that if we replace the letters of u and v with

arbitr~ry (but consistent) elements of M th en we will arrive. at an equality

in M. For example a mono id is commutative if and only if it satisfies the

identity ab = ba.

It can be shown that the family of fini te monoids consisting of the monoids

that satisfy the identity u = v forms a variety. This variety is denoted by

V(u,v).

41 CHAPTER 3. Algebraic Automata Theory

Now let (Un, vn)n>O be a sequence of pair of words in :E*. Define

m>On:?_m

Observe that M E W if and only if there exists an n0 > 0 such that for every

n > no, M satisfies Un = Vn· Here we say that W is ultimately defined by

the sequence of identities (Un = vn)n>O·

Theorem 3.4 (see [Pin86]). Every variety of monoids is ultimately defined

by some sequence of equations.

For example the variety of commutative monoids is ultimately defined by

.the constant sequence (ab = ba)n>O· A less trivial example is the variety

of aperiodic monoids. It can be shown that a finite monoid is aperiodic

if and only if for each m E M there exists n 2: 0 such that mn = mn+l.

Consequently, the variety of aperiodic monoids is ultimately defined by the

sequence (an = an+l)n>O· The variety of commutative aperiodic monoids is

ultimately defined by the sequence

a 1 = a2
, ab = ba, a2 = a3

, ab = ba, a3 = a4
, ab = ba, ...

In such a case, for clarity, we say that the variety is ultimately defined by

two sequences.

An element m of a monoid is called idempotent if m · m ==: m. In finite

monoids, idempotents play a key role. For instan~e, every non-empty monoid

contains an idempotent. Indeed, if we take any element m of the monoid,

then there exists a number n > 0 such that mn is an idempotent (in fact ·

this is the unique idempotent generated by m). This implies thàt for any

finite monoid, there is a number k > 0 such that for every element m in

the monoid, we have that mk is an idempote~t. We cali k an exponent of

M. Observe that if k is an exponent of M then for any n 2: k, n! is also an

exponent of M.

3.1. Monoids- Automata- Regular Languages 42

We use n! in many sequences of identities that ultimately define varieties

of monoids. For example, the sequence (xn'yxn! = xn')n>O ultimately defines

the variety of locally trivial monoids. From this, it should be clear that a

monoid M is locally trivial if and only if for every idempotent e E M and

every element m E M we have eme = e. As a convention, a sequence of

equations involving n! is written by replacing n! with w. So for example we

use xwyxw = xw as an abbreviation for (xn'yxn! = xn')n>O· lt is easy to see

that the variety of groups G is ultimately defined by xw = t.
Given a sequence of identities E, we denote by [[E]] the variety that is

ultimately defined by E. So for example we have G = [[xw = E]j and the

variety of locally trivial monoids is [[xwyxw = xw]].

Varieties of Regular Languages

Before we can define a variety of regular languages we need sorne preliminary

definitions.

A class of regular languages is a function C that maps every alphabet I:

to a set of regular languages in ~·.

A set of languages in I:* that is closed under finite intersection, finite

union and complementation is callèd a boolean algebra.

Now a variety of regular languages is a class of regular languages V that

satisfies the following conditions:

(i) For any alphabet ~' V(~) is a boolean algebra.

(ii) Vis closed under inverse morphisms: given any alphabets ~and r, for

any morphism <I>: ~· ~ r*, if LE V(r) then <I>-1(L) EV(~).

(iii) V is closed under left and right quotients: for L E V(~) and s E ~' we

have s-1L := {w E Lisw EL} and Ls-1 := {w E Liws EL} are in

V(~).

43 CHAPTER 3. Algebraic Automata Theory

Example 3.2. The following are sorne examples of varieties of regular lan

guages:

• The trivial variety: V(:E) = {0, :E*}.

• The variety of all regular languages (each alphabet is mapped to all

the regular languages over this alphabet).

• The variety of star-free languages.

• The variety of piecewise testable languages: A language is called piece

wise testable if there exists a k E N such that membership of any word

in the language depends on the set of subwords5 of length at most k

occurring in that ward.

The Variety Theorem

For a given fini te monoid variety V, let V(:E) be the set of languages in :E*

whose syntactic monoid belongs to V. Alternatively, we can define V as

follows.

Proposition 3.5. Let C(:E) be the set of languages over :E that is recognized

by a monoid in V. Then V= C.

Proof. V Ç C: If LE V then M(L) EV. M(L) recognizes L soLE C.

C Ç V: If LE C then there exists ME V recognizing L. M(L) --< M and V

is closed under division so M (L) E V. Therefore L E V. D

Now we can state the variety theorem due to Eilenberg ([Eil74]).

Theorem 3.6 (The Variety Theorem). Vis a variety of languages and

the mapping V ~-----+ V is one to one.

5 A word u = a1 ••• an is a subword of a word x if x= x 0a1x 1a2 ... anXn for sorne words

Xt, ..• ,Xn·

,~

3.2. Ordered Monoids 44

In light of this theorem, one can hope to explicitly make such correspon

dences. Two important correspondence results are the following.

Theoreni 3.7 ([Sch65]). The monoid variety A corresponds to the variety

of star-free languages. Equivalently, a regular language is star-free if and

only if its syntactic monoid is aperiodic.

Theorem 3.8 ([Sim75]). The monoid variety J corresponds to the variety

of piecewise testable languages. Equivalently, a regular language is piecewise

testable if and only if its syntactic monoid is .J -trivial.

Furthermore we can restate Theorem 3.1 as follows.

Theorem 3.9. The monoid variety M corresponds to the variety of all reg

ular languages. Equivalently, L is regular if and only if its syntactic monoid

is finite.

3.2 Ordered Monoids

ln the previous section, we have seen that we can classify regular languages

in terms of the monoids that recognize them. We were able to .obtain alge

braic characterizations for certain classes of languages: varieties of languages.

Many interesting combinatorially defined classes of languages form varieties.

But there are other combinatorially defined classes of languages that do not

form a variety. Of particular interest are families of languages that are not

necessarily closed under complementation but satisfy the other properties of

a variety. We call such families "positive varieties of languages". Is it pos

sible to get a similar algebraic characterization for these languages as well?

In particular, is there a result similar to Eilenberg's variety theorem that

permits us to treat positive varieties?

Fortunately the answers to the above questions are "yes". The idea is

to attach an order on the monoids and adapt the definition of recognition

45 CHAPTER 3. Algebraic Automata Theory

by monoids to ordered monoids. This point of view is a generalization of

the unordered case and allows us to make a one to one correspondence be

tween varieties of ordered monoids and positive varieties of languages. This

extension was introduced in [Pin95].

Intuitively speaking, the syntactic monoid has less information than the

minimal automaton. One reason for this is that in the minimal automa

ton the accepting states are predetermined, but in the syntactic monoid the

accepting set is not. As we see in the next subsection, the order on the

monoid restricts the way we can choose the accepting set and consequently

the ordered syntactic tnonoid recovers sorne of the missing information. This

restriction lets us analyze classes of languages that are not closed under com

plementation.

In this section, we go over the definitions and the results· seen thus far,

and present the analogous ordered counterparts. We start with the notion

of recognition by ordered monoids. Then we define the syntactic ordered

monoid. Later we look at varieties of brdered monoids, positive varieties of

languages and the variety theorem that establishes a one to one correspon

dence between these ordered monoid varieties and positive language varieties.

3.2.1 Recognition by Ordered Monoids

An order relation on a set S is a relation that is reflexive, anti-symmetric and

transitive and it is denoted by ~. We say that ~ is a stable order relation

on a monoid M if for all x, y, z E M, x ~ y implies zx ~ zy and xz ~ yz.

An ordered monoid (M, ~M) is a monoid M together with a stable order

relation ~M that is defined on M. A morphism of ordered monoids cp :

(M, ~M) -+ (N, ~N) is a morphism between M and N that also preserves

the order relation, i.e. for all m, m' E M, m ~Mm' implies cp(m) ~N cp(m').

The free monoid E* will always be equipped with the equality relation.

3.2. Ordered Monoids 46

Observe· that any morphism <I> : E* --t M is also a morphism of ordered

monoids <I> : (E*, =) --t (M, 'S:M) for any stable order 'S:M and vice versa.

A subset I Ç M is called an arder ideal if for any y E J, x 'S:M y implies

xE J. Observe that every order ideal I in a finite monoid M has a generating

set x1, ... ,xk such that I = (x1, ... ,xk) :={y E M: :lxi with y 'S:M xi}·

Now the concept ofrecognizability is very similar to the unordered case.

We say that a language L Ç E* is recognized by an ordered monoid (M, 'S:M)

if there exists a morphism of ordered monoids <I> : (E*, =) --t (M, 'S:M) and

an order ideal I Ç M such that L = <I>- 1(1). Equivalently, Lis recognized

by (M, 'S:M) i(there exists a morphism <I> : E* --t M and an order ideal

I Ç M such that L = <I>-1(!). Observe that this is a generalization of the

unordered case in the sense that any monoid is an ordered monoid with the

equality order (the trivial order) and any subset of the monoid is an order

ideal with respect to equality. Also note that in the unordered case, if L is

recognized by M, then so is the complement of L. In the ordered case, since

we require the accepting set to be an order ideal, this statement is no longer

true. This restriction on the accepting set allows the ordered mcinoid to keep

more information about the automaton recognizing L. In this sense, one can

think of the ordered case as a refinement of the unordered case.

3.2.2 The Syntactic Ordered Monoid

The definition of the syntactic congruence with respect to L is as exactly

as ·before: x =L y if for all u,.v E E* we have uxv E L iff uyv E L. Also

the syntactic monoid is the quotient monoid M(L) = E* / =L· To be able

to get a similar variety theorem for classes of languages not closed under

complementation, we need to define a stable order on M(L) that allows us

to obtain an ordered counterpart of the variety theorem.

First, break up =L: Let x :S.L y iffor all u, v E E*, uyv E L ===> uxv E L.

47 CHAPTER 3. Algebraic Automata Theory

So x =L y if and only if x -jL y and y -jL x. Now -jL induces a well-defined

stable order ~Lon M(L) given by

[x] ~L [y] if and only if x -jL y .

. It is straightforward to check that this is indeed a well-defined stable order.

The ordered monoid (M(L), ~L) is the syntactiè ordered monoid of L.

We say that an ordered monoid (N, ~N) divides an ordered monoid

(M, ~M) if there exists a surjective morphism of ordered monoids from a

submonoid6 of(M,~M) onto (N,~N)·

Now we state and prove the analog of Proposition 3.3. We give the

proof to demonstrate that slight modifications to the original proof suffi.ces

to obtain the proof for the ordered counterpart.

Proposition 3.10. (M(L), ~L) recognizes L and is the minimal ordered

monoid with this property.

Proof. Let <I> : :E* ~ M(L) be the surjective canonical mapping: w t-t '[w],

i.e. <I> is the syntactic morphism. We already know that the congruence

classes are homogeneous so all we need to show is that the accepting set

I is an order ideal, i.e. we need to show that if [y] E I and [x] ~L [y],

then [x] E J. Since [x] ~L [y], we have x -jL y and so for all u, v E :E*,

uyv E L =::::::} uxv E L. In particular y E L =::::::} x E L. Since [y] E I,

y EL and therefore xE Land so [x] E I as required.

Let (M, ~M) be any monoid that recognizes L. So there exists a mor

phism w : :E* ~ M and an order ideal I Ç M such that L = w-1(1). Let

<I> be defined as above. To show (M(L), ~L) divides (M, ~M) we find a sur

jective morphism of ordered monoids T from a submonoid of (M, ~M) onto

(M(L), ~L)·

6 A submonoid of (M, SM) is a submonoid of M with the order being the restriction of

SM to the submonoid.

3.2. Ordered Monoids 48

We let N := w(M) so (N, ~M) is a submonoid of (M, ~M). Define Y

to be the same function ·as the one we defined in the pro of of Proposition

3.3, so Y is such that Y : (N, ~M) ~ (M(L), ~L), \li(w) ~ <I>(w), i.e.

<I> = Y o w. As shown bef ore, Y is a well-defined surjective morphism.

What remains to be shown is that Y is a morphism of ordered monoids.

For this, we need to show w(a) ~M w(b) ===? Y(w(a)) ~L Y(w(b)), i.e.

W(a) ~M W(b) ===? <l>(a) ~L <l>(b).

Suppose the above is not true: So there exists a and b such that w(a) ~M

w(b) but <I>(a) iL <l>(b). This means that a t.L band therefore there exists

u, v E E* such that ubv E L but uav rf: L. On the other hand, since ~M is a

stable order we have

W(uav) = W(u)\lf(a)\lf(v) ~M W(u)\lf(b)\lf(v) = \lf(ubv).

ubv E L implies that w(ubv) E I and by above and the fact that I is an

order ideal we must have that w(uav) E J. This is a contradiction since

uav rf: L. D

3.2.3 "arieties

The definition of an ordered monoid variety is identical to the unordered case.

We say that a family of ordered monoids V is a variety of ordered monoids

if it is closed under division of ordered monoids and finite direct product1.

Similar to unordered monoid varieties, varieties of ordered monoids can

be defined using identities. We say that (M, ~M) satisfies the identity u ~v

if and only if for every morphism cp: E* ~ M we have c.p(u) ~M cp(v). Let

V(u, v) be the variety of ordered monoids that satisfy the identity u ~ v.

Then given a sequence of pair of words (Un, vn)n>O, W := lim V (Un, vn) is

said to be ultimately defined by this sequence.

7The order in a finite direct product M 1 x ... x Mn is given by (m1, ... , mn) :::::; (m~, ... , m~)

iff m; :::::; m~ Vi E [n],

49 CHAPTER 3. Algebraic Automata Theory

Theorem 3.11 {[PW96]). Every variety of ordered monoids is ultimately

defined by some sequence of identities.

Now we define positive variety of languages. A set of languages in L:* that

is closed under finite intersection and finite union is called a positive boolean

algebra. So it differs from a boolean algebra because we do not require the

set to be closed under compl~mentation. A class of languages V is called a

positive variety of languages if it is a positive boolean algebra, is closed under

inverse morphisms and is closed under left and right quotients.

For a given variety of finite ordered monoids V, let V(L:) be the set of

languages over L: whose syntactic ordered monoid belongs to V. As before,

this is equivalent to saying that V(L:) is the set of languages over L: that are

recognized by an ordered monoid in V.

Theorem 3.12 (The Vàriety Theorem [Pin95]). Vis a positive variety

of languages and the mapping V t-t V is one to one.

Now we give two explicit correspondences. The interested reader can find

the proof~ in [Pin95].

Let r be a subset of the alphabet L:. Define L(r) as

L(r) := n L:* aL:*.
aEr

This is equivalent to saying that L(r) is the set of words that contain at least

one occurrence of each letter in r.
A monoid is idempotent if every element in the monoid is idempotent.

Theorem 3.13. A language in L:* is a finite union of languages of the form

L(r) for r Ç L: if and only if it is recognized by a finite commutative idem

potent ordered monoid (M, '5:.M) in which the identity is the greatest element

with respect to the arder.

..

3.2. Ordered Monoids 50

A language L is a shuffle ideal if it satisfies the following property: if a

word w has a subword in L, then w is in L.

Theorem 3.14. A language is a shuffle ideal if and only if it is recognized

by a finite ordered monoid in which the identity is the greatest element.

We conclude this chapter by painting out that our main interest is in pos

itive varieties of languages (and consequent! y in ordered monoids) because

regular languages having O(J) non-deterministic communication complexity

form a positive variety oflanguages (see next chapter). For the communica

tion models studied in [TT03], regular languages having O(J) communication

complexity form a variety of languages and so the theory of ordered monoids

is not necessary. From now on, we aband0n unordered monoids and work

with the more general theory of ordered monoids.

Chapter 4

Communication Complexity of

Regular Languages

The main goal of this chapter is to prove upper and lower bounds on the non

deterministic communication complexity of regular languages. In Section 4.1,

we formally define the communication complexity of finite ordered monoids

and regular languages. We prove two theorems that establish the soundness

of an algebraic approach to the communication complexity of regular lan- 1

guages. In Section 4.2, we present a form of the definition of rectangular

reductions and introduce local rectangular reductions. Then we present up

per and lower bound results for regular languages in which the lower bounds

are established using rectangular reductions from three functions we have

seen in Chapter 2. We also state an intriguing conjecture that gives an ex

act characterization of the non-deterministic communication complexity of

regular languages.

51

.r~'
4.1. Algebraic Approach to Communication Complexity 52

4.1 Algebraic Approach to Communication

Complexity

In Chapter 2, we studied the communication complexity of functions that

have 2 explicit inputs, each being an n-bit string. In orcier to define the

communication complexity of a monoid, and a regular language, we need to

generalize the definition of communication complexity to include functions

that have a single input string. Suppose a function f has one n-bit string

x1 ... xn as input and let AU B be a partition of [n]. Then the communication

complexity of f with respect to this partition is the communication complex

ity of f when Alice receives the bits xi for all i E A and Bob receives the bits

xi for all j E B. For instance, in the non-deterministic model we denote this

by N18 (f). In this case, the non-deterministic communication complexity of

f is defined as

N 1(f) := ~BffN1B(f) ,

where the maximum is taken over all possible partitions of [n]. The partition

that achieves this maximum is called a worst case partition.

Note that the communication complexity definitions and results seen thus

far apply to functions that have inputs that are strings of length n over any

fixed alphabet. That is, the requirement of bit strings as inputs can be

relaxed.

We define the communication complexity of a finite ordered monoid using

the worst-case partitioning notion. The communication complexity of a pair

(M, I) where Mis a finite ordered monoid and I is an order ideal in Mis the

communication complexity of the monoid evaluation problem corresponding

toM and J: Alice is given m1, m3, ... , m2n-1 and Bob is given m2, m4, ... , m2n

such that each mi E M. They want to decide if the product m 1m 2 ... m 2n is

in J. The communication complexity of Mis the maximum communication

complexity of (M, I) where I ranges over all order ideals in M. Observe that

r--'··

~ ..

53 CHAPTER 4. Communication Complexity of Regular Languages

if for example Alice were to receive mi and mi+1, then she could multiply

these monoid elements and treat them as one monoid element. This is why

for a worst-case partition, Alice and Bob should not get consecutive monoid

elements.

Similarly, we define the communication complexity of a regular language

L Ç E* as the communication complexity of the language problem corre

sponding to L: Alice is given a1, a3, •.. , a2n-1 and Bob is given a2, a4, •.. , a2n

such that each ai E E U { E} where E represents the empty word in E* (also

referred to as the empty letter). They want to determine if a 1a 2 ... a 2n E L.

The way the input is distributed corresponds to the worst-case partition since

we allow ai to be empty letters.

As mentioned in Chapter 1, our aim is to find functions fi(n), ... , fk(n)

such that each regular language has e (fi (n)) non-deterministic communi

cation complexity for sorne i E {1, 2, ... , k }. We would also like a charac

terization of the languages with 8(fi(n)) complexity for alli E {1, 2, ... , k}.

The next two results show that such a characterization can be obtained by

looking at the algebraic properties of regular languages.

Theorem 4.1. Let L Ç E* be a regular language with M (L) = M. We have

N 1(M) = 8(N1(L)).

Theorem 4.2. For any increasing function f: N-t N, the class of ordered

monoids V such that each monoid ME V satisfies N 1(M) = 0(!) forms a

variety of ordered monoids.

These two theorems together with the variety theorem imply that the class

of languages V such that for any LE V we have N 1(L) = 0(!) forms a pos

itive variety of languages. So a characterization in terms of positive varieties

is possible. Furthermore, observe that communication complexity of monoids

parametrize the communication complexity of regular languages. Bounds on

monoids yield bounds on regular languages and vice versa. When proving

4.1. Algebraic Approach to Communication Complexity 54

such bounds, carefully choosing between the two directions can considerably

simplify the analysis. Usually we find that upper bound arguments are easier

to establish with the combinatorial descriptions of a language whereas lower

bound arguments are easier to establish with the algebraic descriptions of

the corresponding syntactic monoid.

Proof of Theorem 4.1. First we show that N 1(L) = O(N1(M)). For this, we

present a non-deterministic protocol for L. Suppose Alice is given a1a2: .. an

and Bob is given b1b2 ... bn. Let <1> be the syntactic morphism and let I

be the accepting arder ideal. The protocol is as follows: Alice computes

<!>(ai), ... , <!>(an) and Bob computes <I>(bi), ... , <I>(bn)· Using the protocol for

the monoid evaluation problem of (M, !), they can decide at O(N1(M)) cost

if

This determines if a1b1 ••• anbn is in L or not.

Now we show that N 1(M) = O(N1(L)). We present a protocol for (M, I)

where I = (i1, ... , ik) is sorne arder ideal in M. Before presenting the protocol,

we first fix sorne notation and definitions. Again let <1> be the syntactic

morphism. For each monoid element m, fix a ward that is in the preimage of

m unçl.er <1>, and denote it by Wm· Let Ya := {(u,v): uav EL}. Recall that

a ~L b if for all u, v E I:*, ubv E L =::;.. ua v E L. So

<I>(a) S:L <I>(b) iff a ~Lb iff Yb Ç Ya.

For each Ya . and Yb with Yb 1;. Ya, pick (u, v) su ch that (u, v) E Yb but

(u, v) ~ Ya. Let K be the set of all these (u, v). One can think of K as

containing a witness for Yb 1;. Ya for each such pair. Note that K is finite.

Now pad each Wm and each ward appearing in a pair in K with the empty

letter E so that each of these words have the same length. Observe that this

length is a constant that does not depend on the length of the input that

Alice and Bob will receive.

55 CHAPTER 4. Communication Complexity of Regular Languages

Now assuming that Alice and Bob have agreed upon the definitions made

th us far, the protocol is as follows. Suppose Alice is given m~, m~, ... , m~

and Bob is giveri m~, m~, ... , m~. For each ii they want to determine if
a b a b <. · Th' · · 1 d · · 'f -< m 1m 1 ... mnmn _L 'tj. ISIS eqmva ent to etermmmg 1 wm~mt ... m~m~ _L

Wi-J and this is equivalent to WmaWmL .. WmaWmb -<L Wi .. If this is not the
J 1 1 n n- J

case, then Yw;. %. Yw aW boo•W aw b and so there will be a witness of this in
·J ml ml mn ~n

K, i.e. there exists (u, v) such that UWi. v E L but UWma Wmb ... Wma Wmb v d L.
J 1 1 n n "F

If indeed WmaWmb ... WmaWmb -<L Wi· then for each (u, v) E K with uwi.v EL, 1 1 n n- J J

we will have UWmaWmb ... WmaWmbV EL. Using the protocol for L, Alice and
1 1 n n .

Bob can check which of the two cases is true. The following shows how Alice

and Bob's inputs look like before running the protocol for L. Note that each

block has the same constant length.

Alice U Wmj EE ... E

Bob EE ... E EE ... E Wmt EE ... E Wm~ 1 EE ... E

0

The proof of Theorem 4.2 follows from the following two lemmas. The

first lemma shows that V is closed under finite direct product. The second

lemma shows that V is closed under division of monoids.

Lemma 4.3. Let (M, ~M) and (N, ~N) be ordered monoids. Then N 1(M x

N) ~ N 1(M) + N 1(N).

Proof. Any order ideal in M x N will be of the form I x J where I is an

order ideal in M and J is an order ideal in N. Therefore testing whether a

product of elements in M x N is in an order ideal I x J or not can be done

by testing if the product of the first coordinate elements is in I and testing

if the product of the second coordinate elements is in J. D

4.2. Complexity Bounds for Regular Languages and Monoids 56

Lemma 4.4. Let (M, ~M) and (N, ~N) be ordered monoids such that N -<
M. Then N 1(N) ~ N1(M).

Proof. Since N -< M, there is a surjective morphism cjJ from a submonoid M'

of MontoN. Denote by c/J-1(n) a fixed element from the preimage of n.

Let I be an order ideal in N. A protocol for (N, I) is as follows. Alice

· · a a a d B b · · b b b Th t t d. "d "f 1s g1ven n 1 ,n2 , ••• ,nt an o 1s g1ven n 1,n2 , ••• ,nt. ey wan o ec1 e 1

nfn~ ... nrn~ E I. This is equivalent to deciding if

It can be easily seen that c/J-1(!) is an order ideal in M' so Alice and Bob

can use the protocol for M' to decide if the above is true. Therefore we have

N 1(N) ~ N 1(M'). It is straightforward to check that N 1(M') ~ N 1(M) and

so N 1(N) ~ N 1(M) as required. 0

4.2 Complexity Bounds for Regular Languages

and Monoids

In this section, we present upper and lower bounds for the non-deterministic

communication complexity of certain classes of languages. Upper bounds

are established by presenting an appropriate protocol whereas lower bound

arguments are based on rectangular reductions from the following functions:

LESS-THAN, PROMISE-DISJOINTNESS, INNER-PRODUCT. In Chapter

2, we have seen that each of these functions require linear communication in

the non-deterministic model. We have also seen the definition of a rectangular

reduction. We give here a form of this definition which specifically suits our

needs in this section.

Definition 4.5. Let f : {0, l}n x {0, l}n ~ {0, 1}, M a finite ordered

monoid and I an order ideal in M. A rectangular reduction of length t

.r-"·
57 CHAPTER 4. Communication Complexity of Regular Languages

from f to (M, I) is a sequence of 2t functions a~, b2 , a3 , ... , a2t-b b2t with

ai: {0, 1}n -tM and bi : {0, 1}n--+ M and such that for every x, y E {0, 1}n

we have f(x, y)= 1 if and only if the product a1(x)b2 (y) ... b2t(Y) is in/.

Such a reduction transforms an input (x, y) of the function f into a se

quence of 2t monoid elements m 1, m2, ... , m 2t where the odd-indexed mi are

obtained as a function of x only and the even-indexed mi are a function of

y.

We write f ~; (M, I) to indicate that f has a rectangular reduction of

length t to (M, I). When t = O(n) we omit the superscript t. It should be

clear that if f ~; {M, I) and f has communication complexity O.(g(n)), then

(M, I) has communication complexity O.(g(t~ 1 (n))).

Most of the reductions we use here are special kinds of rectangular reduc

tions. We call these reductions local rectangular reductions. In a local rectan

gular reduction, Alice converts each bit Xi to a sequence of s monoid elements

mi,u mf.2 , ••. , mi,8 by applying a fixed function a : {0, 1} --+ M 8
• Similarly Bob

converts each bit Yi to a sequence of s monoid elements mL, m~ 2 , ... ,mL by
. ' ' '

applying a fixed function b : { 0, 1} -t Ms. f (x, y) = 1 if and only if

We often view the above product as a word over M. The reduction transforms

an input (x, y) into a sequence of 2sn monoid elements. Let a(z)k denote the

kth coordinate of the tuple a(z). We specify this kind of local transformation

with a 2 x 2s matrix:

a(Oh b(O)I a(O)s b(O)s

a(1h b(1h a(1)s b(1) 8

It is convenient to see what happens for all possible values of Xi and Yi and

the following table shows the word that corresponds to these possibilities.

4.2. Complexity Bounds for Regular Languages and Monoids 58

For simplicity let us assume s is even.

Xi Yi corresponding word

0 0 a(O) 1b(O) 1 ... a(O)sb(O)s

0 1 a(O) 1 b(l) 1 a(0)2b(l)2 ... a(0) 8 b(l)8

1 0 a(l)1 b(0)1a(l)2b(0)2 ... a(l)sb(l)s

1 1 a(1) 1 b(l) 1 ... a(l)8 b(l)s

Now we are ready to present the upper and lower bound results.

Lemma 4.6. If Mis commutative then N 1(M) = 0(1).

Proof Let I be an arder ideal in M. Suppose Alice is given mf, ... , m~ and

Bob is given m~, ... , m~. They want to decide if mfm~ ... m~m~ E I. Since Mis

commutative, this is equivalent to determining if mim~ ... m~m~m~ ... m~ E I.

So Alice can privately compute the product mi ... m~ and send the result m

to Bob. Observe that this requires a constant number of bits to be commu

nicated since the size of M is a constant. Bob can check if mm~ ... m~ E I

and send the outcome to Alice. 0

Lemma 4.7. If M is not commutative then for any order on M we have

N 1(M) = n(logn).

Proof Since M is not commutative, there must be a, b E M such that ab =f.
ba. Therefore either ab i.M ba or ba i.M ab. Without loss of generality

assume ba i.M ab. Let I = (ab). We show that LT ~~" (M, I). Alice gets

x and constructs a sequence of 2n monoid elements in which a is in position

x and lM is in everywhere else. Bob gets y and constructs a sequence of 2n

monoid elements in which bis in position y and lM is in everywhere else. If

x ~ y then the product of the monoid elements will be ab which is in I. If

x >y then the product will be ba which is not in I. 0

Denote by C om the positive language variety corresponding to the variety

of commutative monoids Corn. The above two results show that regular

59 CHAPTER 4. Communication Complexity of Regular Languages

languages that have constant non-deterministic communication complexity

are exactly those languages in Com.

The next step is to determine if there are regular languages outside of

C om that have O(log n) non-deterministic complexity. For this, we first need

the definition of a polynomial closure.

The polynomial closure of a set of languages C, in E* is a family of lan

guages such that each of these languages are fini te unions of languages of the

form

where k 2: 0, ai E E and Li E C,, If V is a variety of languages, then

we denote by Pol(V) the class of languages such that for every alphabet E,

Pol(V)(E) is the polynomial closure of V(E). Pol(V) is a positive variety of

languages ([PW95]).

Lemma 4.8. If Lis a language of Pol(Com) then N 1(L) = O(logn).

Proof. Suppose L is a union of t languages of the form L0a1L 1 ... akLk. Alice

and Bob know beforehand the value of t and the structure of each of these t

languages. So a protocol for L is as follows.

A Al. . . a . a d B b . . b b G d ssume 1ce 1s g1ven x1, ... , xn an o 1s g1ven x1, ... , xn. o com-

municates to Alice and Bob which of the t languages the word x~ x~ ... x~x~

resides in. This requires a constant number of bits to be communicated since

t is a constant. Now that Alice and Bob know the L0a1L 1 ... akLk the word

is in, God communicates the positions of each ai. This requires k log n bits

of communication where k is a constant. The validity of the information

communicated by God can be immediately checked by Alice and Bob. All

they have to do is check if the words in between the ai 's belong to the right

languages. Since these languages are in C om, this can be clone in constant

communication as proved in Lemma 4.6. Therefore in total we require only

O(logn) communication. D

4.2. Complexity Bounds for Regular Languages and Monoids 60

From the above proof, we see that we can actually afford to communicate

O(logn) bits to check that the words between the ai's belong to the corre

sponding language. In other words, we could have Li E Pol(Com). Note

that this does not matter since Pol(Pol(Com)) = Pol(Com).

Denote by (L Lx L) the number of factorizations of the word x as
OGl 1 ... ak k

x = woa1w1 ... akwk with wi E Li. When the ai and the Li are such that

for any x we have (L Lx L) E {0, 1}, then we say that the concate-oal 1 ... ak k

nation L0a1L1 ... akLk is unambiguous. We denote by UPol(V) the vari-

ety of languages that is disjoint unions of the unambiguous concatenations

L0a1L1 ... akLk with Li EV (in sorne sense, there is only one witness for x in

U Pol(V)). Similarly we denote by MpPol(V) the language variety generated

by the languages

for sorne 0 ~ j ~ p- 1 and Li E V. Observe that for Pql(Com) we have

(L L x L) unrestricted.
oa1 1 ... ak k

Denote by U P the subclass of NP in which the number of accepting paths

(or number of witnesses) is exactly one. We know that U pcc= pcc ([Yan91]).

From [TT03] we know that regular languages having O(log n) deterministic

communication complexity are exactly those languages in U Pol (C om) and

regular languages having O(log n) Modp counting communication complexity

are exactly those languages in MpPol(Com). Furthermore, it was shown

that any regular language outside of U Pol (C om) has linear deterministic

complexity and any regular language outside of MpPol(Com) has linear Modp

counting complexity. So with respect to regular languages, U pcc = pcc =
U Pol(Com) and ModpPcc = MpPol(Com). Similarly we conjecture that with

respect to regular languages N pcc= Pol(Com).

Conjecture 4.9. If L Ç ~* is a regular language that is not in Pol(Com),

61 CHAPTER 4. Communication Complexity of Regular Languages

then N 1(L) = f!(n). Thus we have

{

0(1)

N 1(L) = 8(1ogn)

e(n) .

if and only if LE Cam;

if and only if LE Pol(Com) but not in Cam;

otherwise.

As mentioned in Chapter 2, the gap between deterministic and non

deterministic communication complexity of a function can be exponentially

large. However, it has been shown that the deterministic communication

complexity of a function f is bounded above by the product cN°(f)N1(!)

for a constant c (Theorem 2.9), and that this bound is optimal. The above

conjecture, together with the result of [TT03] implies the following much

tighter relation for regular languages.

Corollary 4.10 (to Conjecture 4.9). If L is a regular language then

D(L) = max{N1(L), N°(L)}.

For any variety V, we have that Pol(V) n co - Pol(V) = U Pol(V)

([Pin97]). This implies that N 1(L) = O(logn) and N°(L) = O(logn) iff

D (L) = 0 (log n), proving a special case of the ab ove corollary.

An important question that arises in this context is the following. What

does it mean to be outside of Pol(Com)? In order to prove a linear lower

bound for the regular languages outside of Pol(Com), we need a convenient

algebraic description for the syntactic monoids of these languages since (ig

noring the exceptions) lower bound arguments rely on these algebraic prop

erties. One such description exists based on a result of [PW95] that describes

the ordered monoid variety corresponding to Pol(Com). Before stating this

description, we fix sorne notation.

If M is a monoid, we write M = (G, R) to indicate that M has the

presentation (G, R) where Gis the generating set and Ris the set of relations.

For instance, a cyclic group of order n has the presentation ({x}, xn = 1)

4.2. Complexity Bounds for Regular Languages and Monoids 62

and the dihedral group of arder 2n has the presentation ({x, y}, xn = 1, y2 =
1, xyx = y). For any w E G*, we denote by ev al (w) the element of M that

w corresponds to. Observe that the transformation monoid corresponding to

an automaton has a presentation in which the generating set consists of the

letters of the alphabet. The relations depend on the particular automaton

and can be determined by analyzing the state transition function each ward

indu ces.

Lemma 4.11. Suppose Lis not in Pol(Com) and M = (G, R) is the syntac

tic ordered monoid of L with exponent w. Th en there exist/3 u, v E G* such

th at

(i) for any monoid M' E Corn and any morphism cjJ: M ~M', we have

cjJ(eval(u)) = cjJ(eval(v)) and cjJ(eval(u)) = cjJ(eval(u2)),

Although we cannat yet prove the conjecture, we can still show linear

lower bounds for certain classes of regular languages outside of Pol(Com).

Our first lower bound captures regular languages that come very close to the

description given in the previoùs lemma.

A ward w is a shuffle of n words w1, ... , Wn if

with k ~ 0 and wi,lwi,2 ... wi,k = Wi is a partition of wi into subwords for

1 ::; i ::; n.

Lemma 4.12. If M = (G, R) and u, v E G* is such that

(ii) v is a shuffie of w1 and w2,

63 CHAPTER 4. Communication Complexity of Regular Languages

(iii) eval(u) is an idempotent,

(iv) eval(uvu) i eval(u),

then N 1(M) = O(n).

Observe that the conditions of this lemma imply the conditions of Lemma

4.11: since eval(u) is idempotent, for any monoid M' E Corn and any

morphism rjJ : M ---+ M', we have rjJ(eva!(u)) = r/J(eva!(u2
)) and sin ce v is

a shuffie of w1 and w2 we have rjJ(ev al (u)) = rjJ(ev al (v)). Also, sin ce eval (u)

is idempotent, eval(uw) = eval(u), and in this case eval(uvu) i eval(u) is

equivalent to eval(uwvuw) i eval(uw).

Proof of Lemma 4.12. Weshowthat PDISJ ::;r (M,I) wherel = (eval(u)).

Since v is a shuffie of w1 and w2 , there exists k 2: 0 such that

The reduction is essentially linear and is given by the following matrix when

k = 3. The transformation easily generalizes to any k.

WI E E E E w2,1 E w2,2 E W2,3

WI,I w2,1 W1,2 w2,2 WI,3 w2,3 E E E E

Xi Yi corresponding word

0 0 WI w2,1 w2,2w2,3 = u

0 1 W1 w2,1 w2,2w2,3 = u

1 0 WI,IWI,2WI,3W2,1W2,2W2,3 = U

1 1 WI,IW2,IWI,2W2,2WI,3W2, 3 =V

After x and y have been transformed into words, Alice prepends her word

with u and appends it with lui many E's, where lui denotes the length of

the word u. Bob prepends his word with lui many E's and appends it

with u. Let a(x) be the word Alice has and let b(y) be the word Bob

4.2. Complexity Bounds for Regular Languages and Monoids 64

a

a,b

Figure 4.1: The minimal automaton recognizing the language whose syntactic

ordered mono id is BAt.

has after these transformations. Observe that if P DISJ(x, y) = 0, then

there exists i such that Xi = Yi = 1. By the transformation, this means

that a(x)Ib(x)Ia(x)2b(x)2 ... a(x) 8 b(x)8 is of the form u ... uvu ... u and since

eval(u) is idempotent, eval(a(x)Ib(x)Ia(x)2b(x)2. .. a(x) 8 b(x)s) = eval(uvu) i.
eval(u). On the other hand if PDISJ(x,y) = 1, then by the transformation,

a(x)Ib(x)Ia(x)2b(x)2 ... a(x) 8 b(x)8 is of the form u ... u and so

eval(a(x)Ib(x)Ia(x)2b(x)2 ... a(x) 8 b(x) 8) = eval(u).

0

The above result gives us a corollary about the monoid BAt which is

defined to be the syntactic ordered monoid of the regular language recognized

by the automaton in Figure 4.1. The unordered syntactic monoid of the same

language is denoted by BA2 and is kqown as the Brandt monoid (see [Pin97]).

Corollary 4.13. N 1(BAt) = O(n).

Proof. It is easy to verify by looking at the transformation monoid of the

automaton that BAt= ({a,b},aa = bb,aab = aa,baa = aa,aaa = a,aba =

65 CHAPTER 4. Communication Complexity of Regular Languages

a, bab = b). The only thing we need to know about the arder relation is that

eval(aa) is greater than any other element. This can be derived from the

definition of the syntactic ordered monoid (Subsection 3.2.2) since for any

w1 and w2, w1aaw2 is not in L. So w1aaw2 E L =====* w 1xw2 E L trivially

holds for any ward x. Let u = ab and v = ba. These u and v satisfy the four

conditions of the previous lemma. The last condition is satisfied because

eval(uvu) = eval(abbaab) = eval(aa) and eval(ab) 1: eval(aa). Therefore

N 1(BAt) = D(n). D

Denote by u- the syntactic ordered monoid of the regular language (aU

b)*aa(a U b)*, and denote by U the unordered syntactic Iilonoid. Also let

u+ be the syntactic ordered monoid of the complement of (aU b)*aa(q, U b)*.

Observe that N 1(U-) = O(logn) since all we need to dois check if there are

two consecutive a's. By an argument similar to the one for Corollary 4.13,

one can show that N 1(U+) = D(n).

Our next linear lower bound result is for non-commutative groups.

Lemma 4.14. If Mis a non-commutative group then N 1(M) = D(n).

Proof. Since M is non-commutative, there exists a, b E M such that the

commutator [a, b] = a-1b-1ab 1: 1. This means that [a, b] has arder q > 1..

Let m E M be such that there is no m' E M with m' 1: m and m' :=::; m.

Denote by I the arder ideal that just contains m. There is a reduction from

IPq to (M,I). The reduction is essentially local. Alice and Bob will apply

the transformation given by the following matrix.

1 1 1 1
a-I b-l a b

r-..
4.2. Complexity Bounds for Regular Languages and Monoids 66

Xi Yi corresponding word

0 0 1

0 1 b-1b = 1

1 0 a-1a = 1

1 1 a-1b-1ab ·

After, Alice will append m to her transformed input and Bob will append 1

to his. Observe that the product of the monoid elements evaluates tom if

and only if 2:1:-:;i::;n XiYi = 0 mod q i.e. the product is ::; m if and only if.

2:1:-:;i::;n XiYi = 0 mod q. 0

To obtain our last linear lower bound result, we need the following fact.

Proposition 4.15. Any stable order defined on a group G must be the trivial

order (equality).

Proof. Suppose the daim is false. So there exists a, b E G such that a #- b

and a::; b. This implies 1 ::; a-1b =: g. If 1::; g then g::; g2
, g2

::; g3 and so

on. Therefore we have 1 ::; g ::; g2
::; • • • ::; gk = 1. This can only be true if

1 = g, i.e. a =b. 0

We say that M is a Tq monoid if there exists idempotents e, f E M such

that (ef)qe = e but (efYe #- e when q does not divide r.

Lemma 4.1~. If M is a Tq monoid for q > 1 then N1(M) = D(n).

Proof. Observe that {e, efe, (ef) 2e, ... , (ef)q-1e} forms a subgroup with iden

tity e because since e is idempotent, we have (ef)ie · (ef)ie = (e!)i+ie.

Therefore any order on M must induce an equality order on this set. Let

I = (e). We show I Pq :Sr (M, I) via the following local reduction.

e(ef)q (ef)qe

.e fe

67 CHAPTER 4. Communication Complexity of Regular Languages

Xi Yi corresponding word

0 0 e(ef)q(ef)qe = e

0 1 e(ef)q fe= e

1 0 e(ef)qe = e

1 1 efe

Observe that the product of the monoid elements evaluates to

which is equal to e if and only if I Pq (x, y) = 1. 0

Combining our linear lower bound results together with Lemma 4.4, we

can conclude the following.

Theo rem 4.17. If M is a Tq monoid for q > 1 or is divided by one. of BAt,

u+ or a'non-commutative group, then N 1(M) = O(n).

We underline the relevance of the above result by stating a theorem which

we borrow from [TT05].

Theorem 4.18. If M is such that D(M) # O(logn) then M is either a Tq

monoid for some q > 1 oris divided by one of BA2 , U or a non-commutative

group.

The three linear lower bound results imply the following result, which

gives us three sufficient conditions for not being in Pol(Com).

Theorem 4.19. Let L be a regular language with syntactic ordered monoid

M = (G, R). If one of the following holds, then L is not in Pol(Com).

1. There exists u, v E G* such that u = w1w2, v is a shuffie of w1 and w2,

eval(u) is an idempotent and eval(uvu) i eval(u).

2. M is divided by a non-commutative group.

4.2. Complexity Bounds for Regular Languages and Monoids 68

3. M is a Tq monoid for q > 1.

In particular, if M(L) is a Tq monoid oris divided by one of BAt, u+ or

a non-commutative group, then Lis not in Pol(Com).

• 1

1
•

Chapter 5

Conclusion

The focus of this thesis has been the non-deterministic communication com

plexity of regular languages. Regular languages are, in sorne sense, the sim

plest languages with respect to the usual time/space complexity framework,

but in the communication complexity model, they require a non-trivial study

as there are complete regular languages for every level of the communication

complexity polynomial hierarchy. This fact can be derived from the results in

[Bar86] and [BT87]. In [TT03], a complete characterization of the communi

cation complexity of regular languages was established in the deterministic,

simultaneous, probabilistic, simultaneous probabilistic and Modp-counting

models. In order to get a similar algebraic characterization for the non

deterministic model, one needs the notion of ordered monoids, a more general

theory than the one used in [TT03], to be able to deal with classes of lan

guages that are not closed under complementation. This thesis presents the

fundamentals of communication complexity, monoid theory as well as ordered

monoid theory and obtains bounds on the non-deterministic communication

complexity of regular languages.

Our results constitute the first steps towards a complete classification for

the non-deterministic communication complexity of regular languages. We

69

t
1 ,
t

70

know exactly which regular languages have constant non-deterministic com

munication complexity. We know that there is a considerable complexity gap

between those languages having constant non-deterministic complexity and

the rest of the regular languages since if a regular language does not have

constant complexity than it has O(log n) complexity. We also ob tain three

linear lower bound results and the importance of these results are highlighted

by Theorem 4.18. These results also provide us with several sufficient condi

tions for not being in the variety Pol(Com), which is a result very interesting

from an algebraic automata theory point of view. This result also exemplifies

how computational complexity can be used to make progress in semigroup

theory.

Our ultimate objective is to get a complete characterization of the non

deterministic communication complexity of regular languages. We conjecture

that regular languages in Pol(Com) are the only languages that have O(logn)

complexity and any other regular language must have O(n) complexity. The

linear lower bound argument presents a real challenge. A natural next step

to take is to explicitly find a regular language that is not in Pol(Com) for

which our current linear lower bound arguments do not apply and try to

either prove a linear lower bound for this specifie language or show that it

requires O(n€) complexity for a constant E < 1 (which would disprove our

conjecture). A linear lower bound argument for this language is likely to

apply to sorne other languages outside of Pol(Com), if not all. The regular

language recognized by the automaton in Figure 5.1 is an example of a regular

· language that is outside of Pol(Com) and for which we cannat get a linear

lower bound nor a sublinear upper bound. We call this language L 5 • In the

Appendix, we prove that L 5 is not in Pol(Com) and various other facts about

Ls.

An interesting property of L5 is that it belongs to Pol(Nil2) where Nil2

denotes the variety of languages that correspond to the variety of nilpotent

r'··

71 CHAPTER 5. Conclusion

a, b

b b

a

a

Figuie 5.1: An automaton recognizing a language L5 outside of Pol(Com).

groups of class 2. Nilpotent groups of class 2 are usually considered as "al

most" commutative groups. In sorne sense, this says that even though L5 is

not in Pol(Com), it is very "close" toit.

We propose several intuitive reasons of why proving a linear lower bound

for this regular language can be challenging (assuming that the linear lower

bound is indeed true). We also suggest possible approaches to overcome

the difficulties. All of these tie with the importance of the problem we are

studying from a communication complexity point of view as well as from a

semigroup theory point of view.

First of all, from Chapter 2 we know that the best lower bound technique

we have for non-determinism is the rectangle size method. Inherent in this

method is the requirement to. find the best possible distribution. Needless

to say, this can be qui te hard. And even if the best distribution was known,

bounding the size of any 1-monochromatic rectangle can be a non-trivial

task. Putting these two things together, the rectangle size method does not

seem to considerably simplify our task of bounding the size of the optimum

covering of the 1-inputs.

72

Consider the set S of all functions having 0(n) non-deterministic com

munication complexity. Define an equivalence relation on these functions:

f =gif there is a rectangular reduction of length O(n) from f to gand from

g to f. We can turn S / = into a partially ordered set (poset) by defining

the order [!] < [g] if there is a rectangular reduction of length O(n) from

f to g. It certainly would not be surprising if there were regular languages

appearing in the lower .levels of a chain in this poset and this would suggest

that obtaining a lower bound for these languages can be difficult.

If the above is indeed true, then what can be clone about this? A natural·

step would be to find funétions that are at the same level or below the regular

language at hand, and try to get a reduction that would prove the language

has linear non-deterministic complexity. This raises our interest in promise

functions.

Let f be a boolean function with the domain {0, l}n x {0, l}n. A promise

functiori P f is a function that has a domain D that is a strict subset of f's

domain and is such that for any (x, y) ED, Pf(x,y) = f(x,y). An example

of a promise function is the PROMISE-DISJOINTNESS function, PDISJ.

Promise functions are interesting because through a promise, we can define

functions that reside in the lower levels of a chain. This in return can make a

reduction possible from the promise function to the regular language of inter

est. For instance, PD I S J is a promise function which lies below DIS J and

I Pq (Example 2.5). Of course an important point when defining a promise

function is that we need the promise function to have 0(n) complexity. In

sorne sense, through the promise, we would like to eliminate the easy in

stances and keep the instances that make the function hard. At first, there

might be no reason to believe that obtaining a linear lower bound for the

promise function is any easier than obtaining a lower bound for the regular

language. Nevertheless, the purpose of this line of attack is the following.

By putting a promise on a well-known, well-studied function (that makes a

73 CHAPTER 5. Conclusion

reduction possible), we may be able to utilize (or improve) the various tech

niques and ideas developed for the analysis of the original function to prove

a lower bound on the promise function.

Now we define a promise function, PROMISE-INNER-PRODUCT (PI P2),

such that there is a reduction from this function to L5 (see Appendix). PI P2

is the same function as I P2 but has a restriction on the (x, y) for whiçh

I P2(x, y)·= O. We only allow the 0-inputs which satisfy the following two

conditions:

It remains an open problem to prove a linear lower bound, or a sublinear

upper bound on PIP2 •

The fact is that little is known about promise functions. One promise

function we know of is PDISJ. As a consequence of the celebrated work of

Razborov ([Raz92]), which shows that the distributional communication com

plexity of the DISJOINTNESS function is O(n), we know that N 1(PDISJ) =

O(n) as well. Given the description of regular languages outside of Pol(Com)

(Lemma 4.11), PD I S J is one of the first functions one tries to get a red uc

tion from, where the reduction is as in the proof of Lemma 4.12. This hope

is hurt by the fact that such a reduction does not exist from PD I S J to L5

(see Appendix).

We believe that more attention should be given to promise functions since

the study of these functions is likely to force us to develop new techniques

in communication complexity and give us more insight in this area. Further

more, given the connection of communication complexity with many other

areas in computer science, promise functions are bound to have useful appli

cations. For instance, in a very recent work of Gal and Gopalan ([GG07]),

74

communication complexity bounds for a promise function is used to prove

bounds on streaming algorithms.

We have looked at our question from a communication complexity per

spective. Now we look at it from a semigroup theory perspective; The key to

making progress on our question can be finding a more convenient description

of what it means to beoutside of Pol(Com). The description that we have

(Lemma 4.11) actually applies to Pol(V) for any variety V, and it is based on

a complicated result of [PW95] that makes use of a deep combinatorial result

of semigroup theory ([Sim89J,[Sim90J,[Sim92]). Since we are only interested

in Pol(Com) where Cam is a relatively simple variety, it may be possible

to obtain a more useful description that allows us to show communication

complexity bounds.

We conclude that, in any case, the resolution of our question will probably

lead to advances in either communication complexity or semigroup theory, if

not both.

Appendix A

. Facts About Ls

b

a

a

In this appendix, we prove sorne of the facts about the regular language

L 5 that we mentioned in Chapter 5. We start with the fact that L5 is not

in Pol(Com). For this, we need a result that describes the ordered monoid

variety corresponding to Pol(Com). This description involves the Mal'cev

product and topological issues which we choose to avoid for simplicity. The

interested reader can find the necessary information about these in [Pin97].

Here we will state a restricted version of this result which suffices for our

needs.

Lemma A.l. Let L be a language in Pol(Com) and let M = (G, R) be the

75

/~

76

syntactic ordered monoid of L with exponent w. Then for any u, v E G* with

the property that any monoid M' E Corn and any morphism </J : M ---+ M'

satisfies both </J(eval(u)) = </J(eval(v)) and </J(eval(u)) = </J(eval(u2
)), we must

have ev al (uw vuw) ::; ev al (uw).

Proposition A.2. L5 is not in Pol(Com).

Proof. Consider the transformation monoid of L5 , which is the syntactic

monoid. Let u = abab and v= bbaa. Observe that eval(u) is an idempotent

and this u and v satisfy the condition in the lemma. We show ev al (uvu) i
eval(u). Observe that eval(uvu) = eval(v) so we want to show eval(v) i
eval(u). If the opposite was true, then by the definition of the syntactic

ordered monoid (Subsection 3.2.2), we must have for any w1 and w2, w1uw2 E

L ~ w1vw2 EL. In particular, for w1 = E and w2 = aa, we would have

uaa E L ~ vaa E L. It is true that uaa E L but vaa tf:. L. 0

Now we show that the PROMISE-INNER-PRODUCT function that we

defined in Chapter 5 reduces to L5 .

Proposition A.3. PI P2 ::; L5

Proof. The reduction is linear and is given by the following matrix.

a E E b a b E E

a b E a b a E b

Xi Yi corresponding word state transition

0 0 a bab 1 ---+ 1; 2 ---+ 5, 3 ---+ 3, 4 ---+ 5, 5 ---+ 5

0 1 abaaab 1 ---+ 1, 2 ---+ 5, 3 ---+ 5, 4---+ 5, 5 ---+ 5

1 0 abbb 1 ---+ 5, 2 ---+ 5, 3 ---+ 3, 4 ---+ 5, 5 ---+ 5

1 1 ababab 1 ---+ 3, 2 ---+ 5, 3 ---+ 1, 4 ---+ 5, 5 -+ 5

After this transformation is applied, Alice appends her word with b and Bob

appends his word with E. N ow if PI P2 (x, y) = 1 th en the transformed word

77 CHAPTER A. Facts About L 5

must end up at state 5. This is because, from state 1, we either enter state

5 and stay there forever, or we go to state 3 when Xi =Yi = 1. If we were in

state 3 already, Xi = Yi = 1 takes us back to state 1. PI P2 (x, y) = 1 implies

that there are an odd number of indices for which Xi = Yi = 1. So after the

linear transformation, assuming we do not end up in state 5, we would end

up in state 3. The b appended at the end of the transformed word would

ensure that we end up in state 5. If PIP2 (x,y) = 0, then we do not want to

end up at state 5. Observe that the promise ensures we never enter state 5

and sin ce there are even number of indices for which Xi = Yi = 1, we must

end up at state 1. The b appended at the end of the word just takes us from

state 1 to 2. D

Observe that we can restrict the 1-inputs of PI P2 the same way we re

stricted the 0-inputs and the reduction would trivially work for this case as

well. Putting a promise on both the 0-inputs and the 1-inputs may help

analyzing the complexity of P 1 P2 •

Proposition A.4. There is no local reduction from P 1J I S J to L 5 such that

the reduction is of the form

Xi Yi corresponding ward

0 0 uw

0 1 uw

1 0 uw

1 1 v

where u and v satisfy the conditions of Lemma 4.11.

Proof. {Sketch). Since uw is an idempotent, it must induce astate transition

function in which either

1. k ~ k, j ~ j and other states are sent to 5, or

2. k ~ k and other states are sent to 5, or

78

3. every state is sent to 5.

Observe that it cannat be the case that uw is a partial identity on more than

two states. If uw satisfi.es condition 2, then we cannat have eval(uwvuw) i
eval(uw). Suppose this is the case. Then there exists w 1, w2 such that

w1uww2 E L and w1uwvuww2 f:. L. Since the latter is true, it must be the

case that w1 takes state 1 to k and w2 must take k to a state other than 5.

These w1 and w2 do not s.atisfy w1uww2 E L, so we geta contradiction. This

shows we cannat have condition 2. Similarly, one can show that uw cannat

satisfy condition 3, which leaves us with condition 1. This means uw is either

(abab)k or (baba)k for sorne k >O. We assume it is (abab)k. The argument

for (baba)k is very similar.

Given uw = (abab)k, and the fact that we want to satisfy eval(uwvuw) i
ev al (uw), one can show that the state transition function induced by v must

be one of the following.

1. 1 -+ 3 and any other state is sent to 5.

2. 3 -+ 1 and any other state is sent to 5.

3. 1 -+ 3 and 3 -+ 1 and any other state is sent to 5.

Suppose v satisfies condition 1.

Case 1: v = (ab)2t-l for t > O. Consider the matrix representation of the local

reduction. In this matrix A, we count the parity of the a's in two ways and

get a contradiction. First we count it by looking at the rows. The first row

must produce the word uw = (abab)k and the second row must produce the

word v= (ab) 2t-l soin total we have odd number of a's. Now we count the

parity of a's by looking at AI,tA2,2A1,3A2,4 ... and A2,tAt,2A2,3At,4···· Both

of these must produce the word (abab)k so in total we must have an even

number of a's.

Case 2: v = (ab) 2tbb ... for t ~ O. Let c be the column where we find the

second b in the second row. Give value 1 to entries of A which are a and give

79 CHAPTER A. Facts About L5

value -1 to entries of b. Other entries (the E's) get value O. In terms of these

values we have
c

and
c

LA1,i E {0,1}.
i=l

Adding the two sums, we geta negative value. Now we count the same total

in a different orcier. Assuming c is even we have

c/2 c/2

L A1,2i-1 + L A2,2i E {0, 1}
i=l i=l

and
c/2 c/2

L A1,2i + LA2,2i-1 E {0, 1 }.
i=l i=l

The total is positive. This is a contradiction.

Case 3: v= (ab) 2t- 1a(aa) 2tb ... fort >O. Similar argument as above.

Same ideas show that v cannat satisfy neither conditions 2 nor 3. 0

Bibliography

[Bar86] D. A. Barrington. Bounded-width polynomial-size branching pro

grams recognize exactly those languages in NCl. In STOC '86:

Proceedings of the eighteenth annual A CM symposium on Theory

of computing, pages 1-5, New York, NY, USA, 1986. ACM Press.

[BFS86] L. Ba bai, P. Frankl, and J. Simon. Complexity classes in commu

nication complexity theory (preliminary version). In FOCS '86:

· Proceedings of the 27th Annual IEEE Symposium on Fouridations

of Computer Science, pages 337-347, 1986.

[BNS92] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseu

dorandom generators for logspace, and time-space trade-offs. J.

Comput. Syst. Sei., 45(2):204-232, 1992.

[BPS07] P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for lovasz

schrijver systems and beyond follow from multiparty communica

tion complexity. SIAM Journal on Computing, 37(3):845-869, 2007.

[BT87] D. Barrington and D. Thérien. Finite monoids and the fine structure

of NCl. In STOC '87: Proceedings of the nineteenth annual ACM

conference on Theory of computing, pages 101-109, New York, NY,

USA, 1987. ACM Press.

80

/-,

81 BIBLIOGRAPHY

[CFL83] A. K. Chandra; M. L. Furst, and R. J. Lipton. Multi-party pro

tocols. In STOC '83: Proceedings of the fifteenth annual ACM

symposium on Theory of computing, pages 94-99, New York, NY,

USA, 1983. ACM Press.

[Eil74] S. Eilenberg. Automata, Languages, and Machines. Academie

Press, Inc., Orlando, FL, USA, 1974.

[Fur87] M. Furer. The power of randomness for communication complexity.

In STOC '87: Proceedings of the nineteenth annual A CM conference

on Theory of computing, pages 178-181, New York, NY, USA, 1987.

ACM Press.

[GG07] A. Gal and P. Gopalan. Lower bounds on streaming algorithms

for approximating the length of the longest increasing subsequence.

In FOCS '07: Proceedings of the 48th Annual IEEE Symposium

on Foundations of Computer Science, pages 294-304, Washington,

DC, USA, 2007. IEEE Computer Society.

[Gro92] V. Grolmusz. Separating the communication complexities of MOD

rn and MOD p circuits. In IEEE Symposium on Foundations of

Computer Science, pages 278-287, 1992.

[Gro98] V. Grolmusz. Circuits and multi-party protocols. Computational

Complexity, 7(1):1-18, 1998.

[HG91] J. Hâ.stad and M. Goldmann. On the power of small-depth threshold

circuits. Computational Complexity, 1:113-129, 1991.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cam

bridge University Press, 1997.

[MP71] R. McNaughton and S. Papert. Couriter-free Automata. MIT Press,

Cambridge, MA, USA, 1971.

BIBLIOGRAPHY 82

[New91] I. Newman. Private vs. common random bits in communication

complexity. !nf. Process. Lett., 39(2):67-71, 1991.

[Nis93] N. Nisan. The communication complexity of threshold gates, 1993.

[Pin86] J.-É. Pin. Varieties of formal languages. North Oxford, London

Plenum, New-York, 1986. (Traduction de Variétés de langages

formels).

[Pin95] J.-É. Pin. A variety theorem without complementation. Russian

Mathematics (Izvestija vuzov.Matematika}, 39:80-90, l995.

[Pin97] J.-É. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa,

editors, Handl:Jook of forma/languages, volume 1, chapter 10, pages

679-746. Springer, 1997.

[PW95] J .-É. Pin and P. Weil. Polynomial closure and unambiguous prod

uct. In ICALP '95: Proceedings of the 22nd International Collo

quium on A utomata, Languages and Programming, pages 348-359,

London, UK, 1995. Springer-Verlag.

(PW96] J.-É. Pin and P. Weil. A Reiterman theorem for pseudovarieties of

finite first-order structures. Algebra Universalis, 35:577-595, 1996.

[Raz92] A. A. Razborov. ÛJJ. the distributional GQmplexity of disjointness.

Theor. Comput. Sei., 106(2):385-390, 1992.

[Raz04] R. Raz. Circuit complexity and communication complexity. vol

ume 10 of JAS/Park City Mathematical Series, pages 159-197.

American Mathematical Society, 2004.

[RM97] R. Raz and P. McKenzie. Separation of the monotone NC hier

archy. In FOCS '97: Proceedings of the 38th Annual Symposium

83 BIBLIOGRAPHY

on Foundations of Computer Science, pages 234-243, Washington,

DC, USA, 1997. IEEE Computer Society.

[Sch65] M. P. Schützenberger. On finite monoids having only trivial sub

groups. Information and Control, 8(2):190-194, 1965.

[Sim75] 1. Simon. Piecewise testable events. In Proceedings of the 2nd

GI Conference on Automata Theory and Format Languages, pages

214-222, London, UK, 1975. Springer-Verlag.

[Sim89] 1. Simon, Properties of factorization forests. In Proceedings of the

LITP Spring School on Theoretical Computer Science on Format

properties of finite automata and applications, pages 65-72, New

York, NY, USA, 1989. Springer-Verlag New York, Inc.

· [Sim90] 1. Simon. Factorization forests of finite height. Theor. Comput.

Sei., 72(1):65-94, 1990.

[Sim92] 1. Simori. A short proof of the factorization forest theorem. ln

M. Nivat and A. Podelski, editors, Tree Automata and Languages,

. pages 433-438. North-Rolland, Amsterdam, 1992.

[TT03] P. Tesson and D. Thérien. Complete classifications for the commu

nication complexity of regular languages. In Theoretical Aspects of

Computer Science, 2003.

[TT04] P. Tesson and D. Thérien. Monoids and computations. Interna

tional Journal of Algebra and Computation, 14:801-816, 2004.

[TT05] Pascal Tesson and Denis Thérien. Complete classifications for the

communication complexity of regùlar languages. Theory Comput.

Syst., 38(2):135-159, 2005.

BIBLIOGRAPHY 84

[Yan91] M. Yannakakis. Expressing combinatorial optimization problems

by linear programs. Journal of Computer and System Sciences,

43(3):441-466, December 1991.

[Yao79] A. C.-C. Yao. Sorne complexity questions related to distributive

computing (preliminary report). In STOC '79: Proceedings of the

eleventh annual ACM symposium on Theory of computing, pages

209--213, New York, NY, USA, 1979. ACM Press.

Index

boolean algebra, 42

communication complexity

deterministic, 11

distributional, 27

multiparty, 27

non-deterministic, 21

of a language, 53

of a monoid, 52

randomized, 26

complete, 30

disjoint cover method, 15

DISJOINTNESS, 18

division

monoids, 37

ordered monoids, 47

EQUALITY, 11

exponent, 41

fooling set, 18

fooling set method, 18

homogeneous set, 35

idempotent, 41

85

identities, 40

INNER-PRODUCT, 30

input matrix, 12

LESS-THAN, 19

monochromatic cover, 21

monochromatic disjoint cover, 15

monochromatic rectangle, 12

monoid, 33

morphism

between monoids, 33

between ordered monoids, 45

nuclear congruence, 34

order ideal, 46

ordered monoid, 45

polynomial closure, 59

positive boolean algebra, 49

PROMISE-DISJOINTNESS, 25

PROMISE-INNER-PRODUCT, 73

protocol, 10

protocol partitioning tree, 13

rectangle, 12

,----,, INDEX 86

rectangle size method, 17

rectangular reduction, 29, 56

semigroup, 33

shuffie, 62

syntactic congruence, 36

syntactic monoid, 36

syntactic morphism, 36

syntactic ordered monoid, 4 7

transformation monoid, 35

ultimately defined

ordered monoids, 48

unordered monoids, 41

variety

of monoids, 39

of ordered monoids, 48

of regular languages, 42

positive, 49

J

