
Towards an Open Negotiation Architecture for

Heterogeneous Agents

Koen V. Hindriks, Catholijn Jonker, and Dmytro Tykhonov

EEMCS, Delft University of Technology, Delft, The Netherlands
{k.v.hindriks, c.m.jonker, d.tykhonov}@tudelft.nl

Abstract. This paper presents the design of an open architecture for
heterogeneous negotiating agents. Both the system level architecture as
well as the architecture for negotiating agents are provided. The main
contribution of this paper is that it derives a precisely specified interface
from these architectures that facilitates an easy integration of hetero-
geneous agents into the overall negotiation framework. The interface is
defined as a set of adapters that allows for various levels of integration
of agents into the system architecture. The functionality provided by the
system architecture depends on the number of adapters that are imple-
mented and used to connect an agent to this architecture, ranging from
functionality to conduct a bilateral negotiation to functionality for com-
puting agent internal performance measures such as the quality of an
opponent model. The architecture is used as the basis of a competitive
testbed which allows us to study various negotiating agents. The design
yields a flexible negotiation framework that facilitates negotiating differ-
ent domains potentially using different protocols whereas no details of
the internal negotiating agent structure are enforced. An application of
the framework is illustrated by integrating two agents from the literature.

1 Introduction

The boost of literature on negotiating agents and strategies of recent years is
in line with the continuous advance of ecommerce applications, such as eBay,
and Marketplace in which negotiations play a role. While the literature focuses
on the development of ever more clever negotiation agents [14, 6, 7, 17, 19, 11],
the actual use of these agents in ecommerce applications is prohibited by two
factors: the inflexibility of the agents and the lack of ecommerce applications
that are open to such agents [13].

By the inflexibility of the agents we refer to the fact that they are incapable
of negotiating with arbitrary agents and incapable of negotiating on arbitrary
subjects. The code created for agents introducing new strategies in the litera-
ture typically has been developed with respect to one or a few specific domains,
and to run against other agents implemented by the same team [14, 7, 17, 19].
This is understandable, since the code is to provide evidence of the excellence
of the strategy. As a consequence, however, these agents cannot participate in a
generic negotiation environment where heterogeneous agents can interact with
each other. Interaction between such agents is not feasible due to several prob-
lems such as the absence of a shared negotiation ontology, and the lack of support



for generic interaction protocols. Open negotiation environments and testbeds
reported so far, such as the Trading Agent Competition [2], propose ontolo-
gies for a specific domain or scenario. The shared negotiation ontology must be
generic to be able to model arbitrary negotiation domains.

Current as well as newly developed negotiating agents are (will be) written by
different teams that should be free to select the technology of their choice to build
such agents. In practice it is not possible to impose a particular coding and design
standard for developing negotiating agents. The applicability of such agents,
however, depends on their ability to interact in order to negotiate. Both the
inflexibility of the current state-of-the-art negotiating agents and the closedness
of existing ecommerce applications warrants the specification of a well-defined
and precisely specified interface that allows such agents to conduct a negotiation.

Previous work on resolving these issues has focused mainly on the specifi-
cation of generic interaction protocols [4, 23]. Our aim has been to design and
implement a negotiation framework that allows existing heterogeneous agents to
negotiate and to analyze the results of such negotiation. The framework should
be able to function as a testbed as well as provide the enabling technology for

integrating heterogeneous agents. To this end, an approach must be developed
that enables the integration of arbitrary agents and algorithms for automated
negotiation into a generic negotiation system architecture. In particular, an open
system architecture for heterogeneous negotiating agents is needed, as well as
a conceptually simple and generic agent architecture, in order to clarify the re-

quirements on an interface to connect arbitrary negotiating agents to an overall
system architecture that supports (bilateral) negotiation. Our choice to intro-
duce an overall system architecture thus is motivated by several considerations:
(i) it can be used to create a principled design of an interface enabling heteroge-
neous negotiating agents to engage in negotiation, (ii) it may be used as a testbed
as well as for defining particular standards used to define a negotiation prob-
lem, and (iii) it precludes the need to specify ad hoc agent-to-agent interfaces.
The architecture and interface developed in this paper provides the basis for an
implementation of a testbed for negotiating agents that includes a set of negoti-
ation problems for benchmarking agents, a library of negotiation strategies, and
analytical tools to evaluate an agent’s performance and their strategies.

The paper is organized as follows. In Section 2 we propose an open archi-
tecture for heterogeneous negotiating agents and present a generic conceptual
design of a negotiating agent architecture. Using this design an interface be-
tween agent and system architecture is specified. In Section 3 the adapters that
are part of the interface are explained. The approach is illustrated by integrat-
ing two negotiating agents introduced in [17] and [19]. In Section 4 experiments
are presented that demonstrate the usefulness of the environment as a testbed.
Related work is discussed in Section 5. Section 6 concludes the paper.

2 Negotiation System and Agent Architecture

We introduce an architecture as a first step to a solution to the integration prob-
lem. The solution is applicable for integration of the existing agents as well as for
the new agents that have not been implemented yet. This architecture has been



implemented and provides the basis of our software negotiation framework. (This
negotiation framework, user manuals, and a number of implemented negotiating
agents can be downloaded from http://mmi.tudelft.nl/negotiation.)

Figure 1 illustrates the proposed architecture. The architecture is based on
the analysis of the tasks of a generic negotiation environment. It represents
a minimal but sufficient framework to enable integration of negotiation agents.
The architecture consists of four main layers introduced below, a human bidding

interface, and a negotiating agent architecture. An interaction layer is required
to define and define the negotiation protocol and enable communication between
agents. An ontology layer is needed to provide the actual functionality needed to
define, specify and store a negotiation domain, the preferences of the negotiating
agents. The architecture can be used for education and training of humans in
negotiations. For that purpose, a graphical user interface layer provides options
to create a negotiation ontology, defines agent preferences, allows human user(s)
to participate in a negotiation, and review performance and benchmark results
of agents that conducted a negotiation. An analytical toolbox is required to use
the system as a research tool and organize tournaments. It provides a variety of
tools to analyze the performance of agents and possibly internal quality measures
related to e.g. the quality of an opponent model.

The overall architecture is introduced here to identify the main integration
points where adapters are needed to connect a negotiating agent to this ar-
chitecture. For the purpose of this paper, the human bidding interface is not
relevant. The agent architecture itself identifies common components of a nego-
tiating agent but is not intended to provide a comprehensive analysis of such
architectures or go beyond the current state of the art [3, 8, 14]. This architecture
may be instantiated with various software agents, which we illustrate below.

2.1 Negotiation System Architecture

Graphical User Interface The graphical user interface enables a user to define the
negotiation game, i.e. the parameters of the negotiation, the subject or domain
of negotiation, and preferences of agents (which also means that the preferences
a human should take into account can be predefined). This interface does not
introduce any integration points that should be part of the interface to integrate
negotiating agents into the negotiation environment.

Negotiation Domain A negotiation domain is a specification of the objectives
and issues to be resolved by means of negotiation. It specifies the structure and
content of bids or offers exchanged, and of any final outcome or agreement (see
also Fig. 4 and 5 below). An outcome determines a specific value for each issue,
or, alternatively, only for a subset of the issues. Objectives allow to define a
tree-like structure with either other objectives again or issues as children, in
line with [22]. Various types of issues are allowed, including discrete enumerated
value sets, integer-valued sets, real-valued sets, as well as a special type of issue
called price issue. Additionally, a specification of a negotiation domain may
introduce constraints on acceptable outcomes. For example, costs associated with
a particular outcome may not exceed the available budget of the agent.



Fig. 1. The Open Negotiation System Architecture

Preference Profile A preference profile specifies the preferences regarding possi-
ble outcomes of an agent. It can be thought of as a function mapping outcomes
of a negotiation domain onto the level of satisfaction an agent associates with
that outcome. The structure of a preference profile for obvious reasons resem-
bles that of a domain specification (see also Fig. 4 and 5 below). The tree-like
structure allows to specify relative priorities of parts of the tree. This allows, for
example, to ensure that all issues relating to travelling combined are weighted
equally as all issues relating to the actual stay at a particular location.

Shared Domain Knowledge In a closed negotiation an agent is not informed
about the preferences of its negotiating partner. In that case an agent can at best
use a reconstruction (using e.g. machine learning techniques) of these preferences
to decide on the negotiation move it should do next. It is typical, however, that
with a domain comes certain public knowledge that is shared and can be used to
obtain a better negotiation outcome. For example, common preferences such as
preferring early delivery over later (though not always the case) may be common
knowledge in a given domain. Such knowledge allows agents to compute the
preferences of their negotiation partner e.g. using the time interval between two
dates. This type of knowledge, labelled shared domain knowledge, is modelled
explicitly as a separate component that can be accessed by all negotiating agents.



Interaction Protocol The interaction layer manages the rules of encounter or
protocol that regulate the agent interaction in a negotiation [18]. Any agent that
wants to participate in such a negotiation protocol must accept and agree to con-
form to these rules. An interaction protocol specifies which negotiation moves
and what information exchange between agents is allowed during a negotiation.
Interaction protocols are implemented in the negotiation environment as a sepa-
rate component to allow the use of a variety of protocols [4]. The current version
of the negotiation environment supports the alternating offer protocol [18], that
allows a generic communication between the agents. The protocol is illustrated
in Figure 2. A protocol can also dictate the exchange of complete package deal
proposals or allow instead the exchange of partial bids. The layer also manages
deadlines, or timeouts that may be set by the environment.

Fig. 2. A sequence diagram of the interaction protocol

The alternating offer protocol is not the only protocol used in the negotiation
research. Therefore, the interaction protocols are implemented in the negotiation
environment in a separate component to allow the use of a variety of protocols
[4]. Implementation of a new interaction protocol in the negotiation environment
is relatively easy task and has no or minimal effect on the agent code.

Analytical Toolbox The analytical toolbox layer of the architecture contains a
set of statistical analysis methods to perform an outcome analysis on negoti-
ation sessions as introduced and discussed in e.g., [10, 22]. Furthermore, the
toolbox contains methods for the analysis of dynamic properties of negotiation
sessions as discussed in e.g., [10]. The methods for both outcome and dynamics
analysis were used to produce a number of performance benchmarks for nego-



tiation behaviour and for the agent components [11]. The analytical toolbox
uses the optimal solutions [21], such as the Pareto efficient frontier, Nash prod-
uct and Kalai-Smorodinsky solution for the negotiation outcome benchmarking.
The benchmarks in the negotiation system can be used to analyze the perfor-
mance of opponent modelling techniques, the efficiency of negotiation strategies,
and the negotiation behaviour of the agent. The result of the analysis can help
researchers to improve their agents. The output of the analytical toolbox is pre-
sented by means of visualization (e.g., see 6).

2.2 Software Agent

The software agent component highlighted by the use of a different colour in
Figure 1 is a generic component that can be instantiated by heterogeneous soft-
ware agents. The components specified as part of a software agent in Figure 1
are part of the conceptual design of such agents but do not need to be actually
present or identifiable as such in any particular software agent. These compo-
nents do not introduce any design requirements for negotiating agents (although
they could be used as such, see also [3]). Instead these components are intro-
duced to identify integration points of agents with the system architecture. Five
of such integration points, also referred to as adapters, have been identified.

The preference model component models the agent’s preferences with respect
to the negotiation outcomes. For example, the agents introduced in [11, 17, 19]
use utility functions to represent preferences. Preferences however can be mod-
eled by other structures, such as ordinal rankings. The negotiation strategy is
the core component of a negotiating agent. This component makes decisions
about the acceptance of an opponent’s offer, ending a negotiation, and sending a
counter-offer, using various tactics to generate such counter-offers [6]. The nego-

tiation history component maintains the negotiation history, i.e. bids exchanged
between agents, and can be used by the negotiation strategy component. It can
also have a history records about earlier negotiations, the outcomes, identities
of the opponents, and even opponent models. In repetitive negotiations with
the same opponents this information can be used to improve negotiation per-
formance of an agent by adapting the negotiation strategy and improving the
opponent model.

In a typical negotiation setup preferences of the negotiating parties are pri-
vate [22]. However, the efficiency of a negotiation strategy can be significantly
improved by using information about opponent preferences [24]. Thus, an im-
portant component of a negotiating agent is an opponent model. Our generic
component consists of three subcomponents: a preference model, a negotiation
strategy, and an update mechanism. The component preference model contains
representations of the preferences of the current and previous negotiating op-
ponents. Typically, since the opponent’s preferences are assumed to be private,
the information stored in the component has a degree of uncertainty. The com-
ponent update mechanism is used to interpret offers received from an opponent
and to update the probability distribution associated with the preferences of an
opponent. The purpose of the component negotiation strategy in the opponent



model is to predict negotiation moves of the opponent. This knowledge can be
used in the negotiation strategy to improve the efficiency of an agent’s own offers
and increase the chance of acceptance of an offer by the opponent. Models of
the opponent’s preferences and strategy are typically learned by the agent from
negotiated agreements and offers exchanged in a negotiation [11, 24, 14].

3 Interface and Adapters

To integrate heterogeneous negotiating agents in a single negotiation framework,
their implementation has to be aligned with respect to the identified integration
points of Figure 1. Alignment by redesign of an agent typically requires sig-
nificant programming efforts and may cause back-compatibility problems. The
number of adapters between agent to be developed in an ad hoc enviroment is
quadratic in the number of agents: every pair of heterogeneous agents requires
two adapters, one at each side. Wrapping agents and connecting them to a com-
mon framework requires only one adapter per agent, a number that is linear in
the number of agents to be integrated. To minimize programming effort we pro-
pose a set of adapters or wrappers which need to be implemented once for each
agent, and use software design patterns to develop these adapters [16]. From the
five integration points identified, 3 must be implemented to be able to negoti-
ate with another agent, including a negotiation domain adapter, a preference
profile adapter and an interaction protocol adapter. Implementing the shared
domain knowledge and agent introspection adapter provide additional function-
ality useful for more realistic negotiations, as well as for benchmarking agent
performance.

In order to evaluate the effectiveness of our framework for integrating het-
erogeneous negotiating agents, we have integrated two existing agents from the
literature, the QO Agent from [17] and the agent based on fuzzy modelling tech-
niques [19] labelled FBM here. The integration of the agent should have no or
minimal consequences for the performance of the agent. In order to validate that
the integration did not affect the performance the integrated agent was evaluated
and compared with the original implementation using the negotiation problems
provided with that implementation. The results obtained did not show that the
performance of the agents was significantly affected. Below we present the de-
tails and guidelines for implementing the adapters. Due to space limitations we
cannot provide all details but only provide some specific findings regarding the
integration of the QO agent.

Interaction Protocol Adapter The negotiation framework provides a skele-
ton Java class, called Negotiating Agent, to facilitate the implementation of
a custom-made negotiating agent (see Figure 3). This class implements basic
functionality of the agent such as the agent initialization, and the loading of a
negotiation domain and preference profile, etc.

One of the most important tasks of this class is to ensure that a custom-
made agent will comply with the negotiation protocol. The NegotiatingAgent
class declares several methods that must be implemented in an agent. These



Fig. 3. A UML specification of the interaction protocol adapter

methods are called by the system architecture during a negotiation to inform an
agent about its opponent’s last action and to allow the agent to respond.

To integrate an existing agent in the negotiation framework we have used
the Object Adapter design pattern. Figure 3 shows the adopted design pattern
for the negotiating agent. In line with the pattern definition a Custom Agent
Adapter class is added that is inherited from the Negotiating Agent class The
receiveMessage() and chooseAction() methods of the adapter use the translation
routines of the negotiation domain adapter.

Key to the successful integration of an existing agent is understanding the
original code to a sufficient degree to understand the main information flows and
interaction patterns. The main problem is the significant amount of time that is
needed to analyze agent code to gain this insight. In particular, it is important to
identify the agent’s methods (a) that evaluate and interpret opponent bids and
(b) that decide on the agent’s next action. Moreover, differences in a protocol
used by one agent from that of another require choices to be made as to what
protocol to use in the negotiation framework. As an example, the protocol used
by the original QO Agent is different from the alternating offers protocol and
we chose to use the alternating offers protocol in our experiments.

Negotiation Domain and Shared Domain Knowledge Adapters This
adapter must be able to interpret the information about the domain such as the
number of issues, type of the issues and the values of the issues. Figure 4 shows
a class diagram of the negotiation domain implementation of our negotiation
framework. The Negotiation Domain class is a composition of a set of issues
represented by the super class Issue. All classes for the specific issue types inherit
from the Issue super class. Issues can be grouped into a hierarchical structure
using the Objective class. As we explained earlier, our system provides four
different types of issues: discrete, real, integer, and price issue (see the left part
of the Figure 4 for the corresponding classes). Issues and corresponding values
are bounded in the Bid class. An object of the Bid class represents one of the
possible outcomes of a negotiation domain. The system implements a number of
consistency checks to ensure that a bid is valid given the domain specification.



Fig. 4. Class diagram of the negotiation domain (left) and preference profile (right)

The adapter is implemented by two routines that translate the domain model
provided by the negotiation system into the internal representation of the agent
and vice versa. These routines are used to load a negotiation domain into the
agent, interpret an incoming proposal from an opponent and generate negotiation
moves.

A negotiation domain is represented by using a particular negotiation on-
tology. The negotiation ontology we use is specified in terms of XML files [1],
which is widely-accepted file format for information exchange. Specific tags in
the XML file correspond to each of the various Java classes used to store a ne-
gotiation domain. For example, the Objective class is represented with the tag
labelled “objective” in the XML file that contains a negotiation domain speci-
fication (see the left part of the Figure 5). This tag can nest child tags such as
other objectves and issues to represent the hierarchy as explained above. The
type attribute of the issue tag specifies the type of the issue, such as discrete,
real, integer. Discrete issues are defined by the item tags. An item tag defines
a possible value of the issue in the value attribute. Intervals for the real and
integer issues are defined using the lowerbound and upperbound of the range

tag. The shared domain knowledge is also encoded in the negotiation domain
XML file. The semantics of the domain knowledge must be interpreted by the
agent itself, but is in fact supplied by means of the Negotiation Domain class
which defines an XML document object model (DOM) [1].

Obviously, the routines to be developed mapping the ontology of the negotia-
tion framework onto that of the negotiating agent and vice versa need to take the
expressivity of the resepective ontologies into account. Only those parts of the
ontologies can be mapped on each other that express the same meaning. There-



fore the implementation of the negotiation domain adapter requires a careful
analysis of the negotiation ontology of the original agent implementation first.
Using this analysis the functions that translate negotiation concepts from the
ontology used by the agent and the ontology used by the system architecture (see
Fig. 5) have to be implemented. This procedure rather straightforwardly could
be applied to the QO agent, which uses issues that can take discrete values, and
uses plain text files to store a negotiation domain. Since discrete issues are one
type of issue allowed by the negotiation system it is easy to define the required
adapter methods.The method the QO agent needs to read a negotiation domain
from an XML file (the format used by the system architecture) was wrapped up
in a negotiation domain adapter.

Fig. 5. XML specification of a negotiation domain (left) and preference profile (right)

Preference Profile Adapter This adapter must be able to interpret the pref-
erences of the agent as specified in Figure 4. The current implementation of the
negotiation system operates with a preference structure based on utility func-
tions. Other preferences modeling techniques, such as an ordinal ranking of the
outcomes can be implemented by inheriting from the Preference Profile class.
The utility space class in the negotiation system calculates the utility of an out-
come as a weighted sum of the evaluations values of the individual issues, i.e. it
implements linearly additive utility functions. The same type of utility functions
are used by the QO Agent.

The preference profile, as the negotiation domain, can be saved as an XML
file (see Figure 5). The structure of a preference profile XML file is similar



to and extends the negotiation domain XML file with information about issue
evaluators and their associated weights (priorities). The type of the evaluator is
specified using the type attribute of the objective and issue tags. For example,
for a discrete issue utility values are specified in the evaluation attribute of the
item tag that represents the value of that issue. Consistency of a preference
profile given a corresponding domain is checked automatically when it is loaded
from the XML file by the negotiation system.

The procedure for implementing the preference model adapter is similar to
that of implementing the negotiation domain adapter. As before, the represen-
tation of the agent’s preferences in the original implementation need to be an-
alyzed. In addition, one should verify whether the structure of the utility space
and evaluation functions of the negotiation framework can be used to model
the structure of the preferences in the original implementation. Since these as-
pects match for the QO agent the adapter could be implemented without much
problems.

Agent introspection adapter The negotiation system architecture can be
used as a testbed and research tool because it provides a number of benchmarks
and tools to analyze negotiation performance [11]. To facilitate such analysis, an
introspector is provided by the negotiation system. Negotiating agents can notify
this introspector about a variety of events, such as an update of the opponent
model, the selection of a next negotiation move, etc. The introspector must be
allowed access to some of the internal structures of an agent such as its preference
profile, its opponent model, and its negotiation history to be able to fully perform
its function. This access is required to compute e.g. metric distances between an
opponent preference model constructed by the agent and the actual preferences
of the opponent.

We use the Observer pattern which is an event-driven design pattern to
implement the introspector functionality. An agent needs to register with the
introspector that plays the role of Observer. Components of the agent then
need to notify the introspector when a corresponding event appears, which are
subsequently logged and analyzed to obtain benchmarks.

Dedicated code must be written to be able to have the introspector compute
some relevant performance measuresfor a particular agent. For example, for an
agent that tries to learn the opponent’s preferences measures related to the qual-
ity of learning as proposed in [12] can be computed. In order to do so, it is most
important to locate those places in the agent code that can be used effectively
for notifying the introspector to (re-)calculate the performance measures.

Lessons Learned The expressive power of the ontologies available for the spec-
ification of the negotiation domain and preference profiles were sufficient to ex-
press all possible options to define a domain and profile for both the QO agent as
well as the FBM agent. The preference profiles of both agents are implemented
as utility functions and the evaluation functions used by the agents to evaluate
the values of the issues were also already present in our system architecture. The



implementation of the adapter for the interaction layer, however, was more com-
plicated than expected. The main reason is that the interaction protocol used
by the original QO agent extends the alternating offers protocol since it allows
additional types of messages to be exchanged between agents, such as threats.
Moreover the localization of the core functions of the agent needed by the in-
teraction protocol adapter determined most of the integration efforts. Ideally,
therefore, an existing agent is integrated in close cooperation with its original
developer. This is not an issue, however, if agent are implemented from scratch.

4 Experiments

One of the purposes of the proposed architecture is to allow for integration of
heterogeneous agent and to facilitate comparison of their negotiation effectively
as a testbed, and can be used to perform experiments with various negotiation
domains, preference profiles and negotiating agents. The framework thus con-
tributes to automated negotiating agents research by providing a tool that is
able to provide new insights about such agents.

A tournament is a typical experimental setup for negotiating agents [10]
that allows to measure success of an agent compared to the performance of the
other. In addition, it is a useful tool to study the influence of various factors
on the negotiation performance [12]. The analytical toolbox of the framework
can generate a tournament setup given a set of agents, negotiation domains and
preference profiles.

A small and simple negotiation problem, called “Party“ [12], is used to an-
alyze the performance of the QO agent within our negotiation framework. This
domain has been created for negotiation experiments with humans, which also
explains its rather limited size, including only 5 discrete issues with 5 possible
values each (totaling to 3,125 possible outcomes). All of the issues are unpre-
dictable [12], i.e. there is no shared domain knowledge. The preference profiles
for the experiment were selected randomly from a set of 30 profiles created by
human participants in a previously performed experiment. Since the QO agent

needs 3 profiles as possible models of the opponent’s preferences to be able to
learn that profile, it was provided with the real profile of its opponent and two
additional profiles that were randomly selected from all profiles.

In the experimental setup the QO agent negotiated against the Bayesian
agent introduced in [11]. The Bayesian agent uses a learning algorithm using
a Bayesian learning technique to build a model of the opponent’s preferences.
The techniques learns the necessary probabilities over a set of hypotheses about
the evaluations and weights of the issues. Structural assumptions about the
evaluation functions and weights are made to decrease the number of parameters
to be learned and to simplify the learning task. Only one experiment was run
for each combination of agents due to deterministic nature of the negotiation
strategies of both agents.

Figure 6 presents the results of the negotiation experiment. The charts show
the space of all possible negotiation outcomes. The axis represent the utilities
of the outcomes with respect to the utility functions of the negotiating agents.



The charts show the negotiation paths of the agents marked by arrows with the
names of the agents.

Fig. 6. Negotiation dynamics for the Party domain

The Bayesian agent starts with an offer that has maximum utility. It tries
to learn the opponent preferences from the offers it receives and uses this model
when it makes a concession towards the opponent. As a result, it stays close to
the Pareto Efficient frontier. The QO agent in this domain has more difficulty
to propose efficient offers. This is a result of limitation of the opponent model of

the agent. The QO agent accepts an offer of the Bayesian agent as soon as such
an offer has a utility level for the QO agent that is higher then utility of the QO

agent ’s own offer.

The other agent integrated into our negotiation system is the FBM agent
introduced in [19]. The FBM agent was tested in a setup where it has to negotiate
against the Bayesian agent about a single issue defined on real values ranging
from 10 to 30. The original FBM agent is designed for negotiations where agents
can exchange fuzzy proposals. The implementation of the FBM agent we used
is able to negotiate about one-issue negotiations but can be extended for multi-
issue negotiations. The agent adopts time dependent negotiation tactics from [6]
and, thus, always makes concessions towards opponent. The offers are defined
using two values: the peak value and the stretch of the offer. The preference
profiles of the agents used were in complete opposition: the FBM agent wants
to minize the value of the issues and the Bayesian agent tries of maximize it. In
the experiments we performed, the β parameter that defines whether an agent
makes bigger concessions in the beginning of the negotiation (Conceder) or at
the end (Boulware) was varied, see Table 1.

In a single issue negotiation all negotiation outcomes are Pareto effient. The
most important aspect of the negotiation strategy in a single issue negotiation
is how fast one conceeds to the opponent. As a result, for β > 1 the FBM agent
implements a Conceder tactic and the FBM agent undeperforms with respect
to the Bayesian agent that makes linear concessions in this case because no
moves towards the Pareto frontier are possible. When the FBM agent employs a



Table 1. Utility values of the FBM and Bayesian agents

Agents
Utility

β=0.02 β=0.1 β=0.5 β=1 β=2 β=10 β=50

FBM Agent 0.898 0.897 0.734 0.585 0.449 0.193 0.060

Bayesian Agent 0.102 0.103 0.266 0.415 0.551 0.807 0.940

Boulware tactic (β < 1) the Bayesian agent starts conceeding significantly and
the result is a much lower utility for the Bayesian agent.

5 Related Work

There is a large body of related work available. Due to lack of space we cannot
provide a complete overview but discuss specific approaches and examples of
negotiation frameworks that allow us to clearly position our own work.

Generic frameworks for negotiation A range of quite different negotiation frame-
works exist in the literature, including frameworks for (i) automated negotiating
agents as well as (ii) negotiation support systems that provide electronic sup-
port for human negotiations. Within the first class a distinction can be made
between argumentation-based systems, e.g. [8, 20], and heuristic-utility based
systems, e.g. [10, 14, 17, 19]. The framework introduced and implemented be-
longs to the heuristic-utility based class of systems, though in principle it should
be possible to use the framework for argumentation-based negotiation as well.
Negotiation Support Systems (NSS) refer to systems that assist the process of
human communication in negotiation, see, for example, [5, 15]. For example, in
the Althena project (www.althenasoft.org) users can build content models, but
the system does not support by means of predefined structures, repositories of
content models, interaction support, or the selection of bidding strategies. Sim-
ilarly, our framework, through a graphical user interface, allows users to create
preference profiles, but significant extensions are needed in order to provide sim-
ilar negotiation support useful for humans.

Architectures for negotiating agents The main focus in the literature on negoti-
ating agent architectures, e.g. [3, 8, 14], is on the descriptive, structural and be-
havioural specification but not on the design of and requirements associated with
interfaces. The system and agent architecture presented here are used specifically
to obtain these interface requirements.

Negotiation ontologies Our work is related to work on negotiation ontologies to
the extent that we need to define a language that can be used by heteregeneous
agents to exchange offers. The language that we have used, based XML schemas,
has been expressive enough to be able to integrate the QO agent and FBM agent.
Our efforts to set up a negotiation ontology for the architecture proposed thus
are motivated primarily by experience gained in practice. Related work about
ontologies such as [4, 23] focus more on protocol than domain ontologies, and can
be viewed as complementary. In future work our framework will be extended to
handle negotiation ontologies for protocols as well.



Testbeds and Trading Competitions There is a variety of testbeds and trading
competitions, but most are based on auction models instead of bilateral ne-
gotiation. In contrast, the framework introduced here provides a testbed that
can be used to evaluate the behavior and performance of automated negotiat-
ing agents in bilateral negotiation. Moreover, most of the available testbeds are
based on a specific domain, whereas we believe that there is a need for multi-
issue bargaining testbeds which facilitate negotiation about various domains. A
system somewhat similar to ours is the Neg-o-Net system [9]. Neg-o-Net is a
generic agent-based computational simulation model for conducting multi-agent
negotiations concerning resource and environmental management decisions, and
includes a number of negotiation algorithms as well as agent models. However,
the system is developed specifically to investigate environmental management.

6 Conclusion and Future Work

In this paper we have defined a clear interface for integrating bilateral nego-
tiating agents into a (competitive) testbed. We have shown our approach is a
viable and realistic one by demonstrating the actual integration of two negotiat-
ing software agents according to the “recipe” discussed in the paper. Some initial
experimental results were provided to illustrate that by using the proposed en-
vironment we were able to easily obtain some new results and gain new insights
on the current state of the art in the area of automated negotiation.

The negotiation environment described and developed based on the princi-
ples and specifications introduced here implements an open system architecture
for such agents. The interface and adapters to connect agents to the negotia-
tion environment have been clearly specified which enable an easy integration
of heterogeneous negotiating agents. The actual use of this environment in, for
example, ecommerce applications based on bilateral negotiation, however, is still
significantly beyond its current main function as a testbed environment. Future
research should pave the way to such applications, which would involve among
others providing agents with the capability to propose a domain of negotiation,
and to define the rules of the negotiation game (i.e., protocol selection). Addi-
tional research on ontologies for negotiation are required to make this feasible; for
example, we cannot currently forumulate associated constraints on the domain
of negotiation that must be satisfied for an agreement to be acceptable. More
technically, components for web integration as well as extensions of adapters
need to be developed, e.g., in order to handle more generic ontologies.

Acknowledgements

We would like to thank Raz Lin and Zaynab Raeesy for providing us with the
code of their negotiating agents.

References

1. Extensible markup language (xml). http://www.w3.org/XML.



2. The trading agent competition. http://www.sics.se/tac.
3. R. Ashri, I. Rahwan, and M. Luck. Architectures for negotiating agents. In The

3rd Int./Central And Eastern European Conf. on Multi-Agent Systems, 2003.
4. C. Bartolini, C. Preist, and N. Jennings. A generic software framework for auto-

mated negotiation. Technical report, HP Labs, 2002.
5. E. Bellucci and J. Zeleznikow. A comparative study of negotiation support systems.

In Proceedings of HICSS, 1998.
6. P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision functions for au-

tonomous agents. Int. Journal of Robotics and Autonomous Systems, 24(3-4):159–
182, 1998.

7. P. Faratin, C. Sierra, and N. R. Jennings. Using similarity criteria to make nego-
tiation trade-offs. Journal of Artificial Intelligence, 142(2):205–237, 2003.

8. M. M. Geipel and G. Weiss. A generic framework for argumentation-based nego-
tiation. In Cooperative Information Agents XI, volume 4676 of Lecture Notes in
Computer Science, pages 209–223. Springer, 2007.

9. D. Hales. Neg-o-net - a negotiation simulation test-bed. Technical Report CPM-
03-109, CPM, April 2002. Published as part of the FIRMA workpackage 3 report.

10. K. Hindriks, C. M. Jonker, and D. Tykhonov. Negotiation dynamics: Analysis,
concession tactics, and outcomes. In Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology, pages 427–433, 2007.

11. K. Hindriks and D. Tykhonov. Opponent modelling in automated multi-issue
negotiation using bayesian learning. In Proceedings of the AAMAS 2008, 2008.

12. K. Hindriks and D. Tykhonov. Towards a quality assessment method for learning
preference profiles in negotiation. In Proceedings of the AMEC 2008, 2008.

13. N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Journal of Autonomous Agents and Multi-Agent Systems, 1998.

14. C. M. Jonker, V. Robu, and J. Treur. An agent architecture for multi-attribute ne-
gotiation using incomplete preference information. Journal of Autonomous Agents
and Multi-Agent Systems, 15(2):221–252, 2007.

15. G. E. Kersten and H. Lai. Negotiation support and e-negotiation systems: An
overview. Group Decision and Negotiation, 16(6):553–586, 2007.

16. C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Anal-
ysis and Design and Iterative Development. Prentice Hall PTR, 3 edition, 2004.

17. R. Lin, S. Kraus, J. Wilkenfeld, and J. Barry. Negotiating with bounded rational
agents in environments with incomplete information using an automated agent.
Artificial Intelligence Journal, 172(6-7):823–851, 2008.

18. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
19. Z. Raeesy, J. Brzostwoski, and R. Kowalczyk. Towards a fuzzy-based model for

human-like multi-agent negotiation. In Proc. of the IEEE/WIC/ACM Int. Conf.
on Intelligent Agent Technology, pages 515–519, 2007.

20. I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. So-
nenberg. Argumentation-based negotiation. The Knowledge Engineering Review,
18(4):343–375, 2004.

21. H. Raiffa. The Art and Science of Negotiation. Harvard University Press, 1982.
22. H. Raiffa, J. Richardson, and D. Metcalfe. Negotiation Analysis: The Science and

Art of Collaborative Decision Making. Harvard University Press, 2003.
23. V. Tamma, S. Phelps, I. Dickinson, and M. Wooldridge. Ontologies for support-

ing negotiation in e-commerce. Engineering Applications of Artificial Intelligence,
18(2):223–236, 2005.

24. D. Zeng and K. Sycara. Bayesian learning in negotiation. International Journal of
Human Computer Systems, 48:125–141, 1998.


