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Abstract. Data mining algorithms are often embedded in more com-
plex systems, serving as the provider of data for internal decision making
within these systems. In this paper we address an interesting problem
of using data mining techniques for database query optimization. We
introduce the concept of conditional cardinality patterns and design an
algorithm to compute the required values for a given database schema.
However applicable to any database system, our solution is best suited
for data warehouse environments due to the special characteristics of
both database schemata being used and queries being asked. We ver-
ify our proposal experimentally by running our algorithm against the
state-of-the-art database query optimizer. The results of conducted ex-
periments show that our algorithm outperforms traditional cost-based
query optimizer with respect to the accuracy of cardinality estimation
for a wide range of queries.

1 Introduction

Knowledge discovery is traditionally defined as a non-trivial process of of finding
valid, novel, useful, and ultimately understandable patterns and regularities in
very large data volumes, whereas data mining is considered a crucial step in the
knowledge discovery process, consisting of the application of a given algorithm
to a given dataset in order to obtain the initial set of patterns [6]. In this paper
we show how data mining can be exploited to enhance the query optimization
process. For this purpose we embed a data mining algorithm into the query
optimizer of the relational database management system. Somehow contrary to
traditional data mining, where domain experts are usually required to assess the
quality of discovered patterns or to fine-tune algorithm parameters, embedded
data mining solutions do not allow external intervention into the process. There-
fore, we make the following assumptions regarding presented solution. Firstly,
the data being fed into the algorithm must be cleaned and of high quality as no
iteration between data mining phase and data pre-processing phase are possible.



The results of embedded data mining algorithm must be represented in the form
that allows automatic validation and verification, because all results are being
instantly consumed by subsequent process steps and no human validation or ver-
ification of patterns is possible. Finally, data mining algorithms being embedded
outside of knowledge discovery process must not require sophisticated configu-
ration and parametrization, ideally, these should be either zero-conf algorithms
or auto-conf algorithms.

In this paper we present a way to embed a data mining algorithm into the
query optimization process in order to enhance the quality of estimates made
by the optimizer. We analyze the schema and discover potential join conditions
between database tables based on referential constraints. For all tables that can
be meaningfully joined, we compute conditional cardinalities. Our method works
best in the data warehouse environment. In the case of queries asked against a
snowflake schema or star schema, our ability to accurately predict cardinalities
of attributes for a fixed set of other attribute values (i.e., a set of dimension
attribute values) in the presence of many joins and selection criteria helps to
discover better query execution plans. The original contribution of the paper
is the following. We develop a simple knowledge pattern, called the conditional
cardinality. We design an algorithm that identifies suitable pairs of attributes
that should be included in conditional cardinality computation. The identifica-
tion of these pairs of attributes is performed by mining the database dictionary.
Finally, we show how the discovered conditional cardinality counts can be used
to better estimate the query result size. We verify our proposal experimentally
using the state-of-the-art database query optimizer from Oracle 10g RDBMS to
prove the validity and efficacy of the approach.

The paper is organized as follows. In Section 2 we briefly discuss related work.
Section 3 introduces the concept of conditional cardinality count. We present
our algorithm for computing conditional cardinalities in Section 4 and we report
on the results of the experimental evaluation of our proposal in Section 5. We
conclude this paper in Section 6 with a brief summary and a future work agenda.

2 Related Work

There are numerous works on both query optimization and data mining, but,
surprisingly, few works have been published on using data mining techniques to
enhance query optimization process [1, 9]. Most research focused on enhancing
existing statistics, usually by the means of detailed histograms. An interest-
ing idea appeared in [8], that consisted in using approximate histograms that
could be incrementally refreshed to reflect the updates to the underlying data.
Specialized histograms for different application domains, have been proposed,
including data warehouses. For instance, in [3] the concept of using query re-
sults for multidimensional histogram maintenance is raised. The dynamic aspect
of histograms is addressed in [5] where the authors develop an algorithm for
incremental maintenance of the histogram.



Another research domain that influenced our work concerned using com-
plex statistics in query optimization. The use of Bayesian Networks in query
optimization is postulated in [7]. The need to reject the attribute value indepen-
dence assumption is advocated in [10]. Finally, the idea of using query expression
statistics for query optimization has been proposed in [2] and a framework for
automatic statistics management was presented in [11].

Concepts presented in this paper are similar to the concepts introduced in
[4], where the estimation of the aggregated view cardinality is performed using
k-dependencies. The main difference is that k-dependencies represent a-priori in-
formation derived from the application domain, whereas conditional cardinality
patterns are computed automatically from the data.

3 Conditional Cardinality

In this section we formally introduce the concept of conditional cardinality pat-
terns. Let R,S denote database relations, and let A ∈ R, B ∈ S be attributes
A, B of relations R,S, respectively. Let val(R.A) be the number of distinct
values of the attribute A in relation R. Traditionally, the selectivity factor for
an attribute A is defined as sel(R.A) = 1

val(R.A) . Let n denote the number of

tuples resulting from joining relations R and S on some equality join condi-
tion, presumably, using a foreign key constraint. We are interested in finding
the number of distinct values of the attribute B in R ./ S for a fixed value of
the attribute A. Let {a1, a2, . . . , am} be the values of the attribute A, and let
card(B |ai ) = |{t ∈ R ./ S : R.A = ai}| denote the number of distinct values of
the attribute B in R ./ S where A = ai.

The conditional cardinality of the attribute B ∈ S conditioned on the at-
tribute A ∈ R is the averaged number of distinct values of the attribute B

appearing in the result of the join R ./ S for a fixed value of A and is given by

card(B|A) =
1

m

m
∑

i=1

card(B|ai)

Using conditional cardinality allows for more accurate estimation of the car-
dinality of a query. Having computed card(B|A) we can estimate the size of the
result of a query Q of the form SELECT * FROM R JOIN S WHERE R.A = ’a’

AND S.B = ’b’ to be

card(Q) =
sel(R.A) ∗ n

card(B|A)
or , equally, card(Q) =

sel(S.B) ∗ n

card(A|B)

Note that we do not consider the quality of the estimation of n, the cardi-
nality of R ./ S and we do not require a specific type of join (e.g., a natural
join or an outer join). Computing all conditional cardinalities between any pair
of attributes from the schema is obviously unfeasible and computationally pro-
hibitively expensive. We compute compute conditional cardinalities only for pairs
of joinable attributes, i.e., pairs of attributes from tables that can be joined by



one-to-one, one-to-many, or many-to-many relationship. We refer to such con-
ditional cardinalities as conditional cardinality patterns. We are well aware that
using a grandiose term pattern to describe such a simple measure may spur crit-
icism and may seem unmerited. We use this term purposefully to stress the fact
that these varying counts are fundamental in the entire cardinality estimation
procedure.

4 Algorithm for estimating query result size

In this section we present an algorithm for estimating the number of tuples re-
turned by an SQL query using conditional cardinality patterns. Our algorithm
works under the following three assumptions. Firstly, the database is in either
star or snowflake schema. Secondly, only equality conditions are allowed to ap-
pear in the query, both for joining tables and for issuing selection criteria. Lastly,
queries consist of JOIN and WHERE clauses only, with no subqueries, in-line views,
set containment operators, range operators, and such. Below we present the out-
line of the algorithm. These assumptions reflect the current state of our research,
but we expect to relax them as more research is conducted and formulas for ar-
bitrary selection conditions are determined.

4.1 Algorithm steps

1. Split attributes from the WHERE clause into two element ordered sets Si =
(A, B). In each pair (A, B) the attributes must come from different tables,
which are dimensions of the same fact table. If, during set creation, this
condition can not be ensured, then the left-over attributes should be placed
in singleton sets.

2. Let n be the number of all fact tables used in join clause of query. All n fact
tables should be ordered in the way that ensures that the i-th fact table will
be in one-to-many relationship with (i+1)-th fact table, for i = 1, . . . , n.

3. For each pair of joinable tables, calculate the join cardinality N . In order
to do so, select pairs of attributes from the i-th fact table and one of its
dimensions. If it is the first execution of step 3. and step 6. was not executed
yet, then N should be equal to the join cardinality of tables from which the
attributes come from. Otherwise, if step 6. was executed, N should be equal
to the value returned in step 6.

4. Let A ∈ R. Ci is an attribute such that: Ci ∈ Sj , Sj 6= R, where R and Sj are
dimensions of the same fact table and Ci belongs to the pair of attributes,
which were analyzed in the previous iteration of the algorithm. Let k be the
number of such attributes. Then, the selectivity of the attribute A is given
by

max

{

sel(A),
1

card(A|C1)
,

1

card(A|C2)
, ...,

1

card(A|Ck)

}



5. calculate the cardinality of the result of the query as

L =
N ∗ sel(A)

card(B|A)

If the set of attributes has only one element, then L should be computed as
L = N ∗ sel(A)

6. If there are other pairs of attributes that have not been evaluated for the
i-th fact table then go to step 3. Perform computation for the next pair of
attributes, with the exception that N should be set to the value returned in
step 6.

7. If there exist fact tables that have not been analyzed, then let S be a di-
mensional table joining current i-th fact table with the (i+1)-th fact table.
Let us use the following notation. Let n denote the number of tuples in the
table S, let m denote the number of tuples in the (i+1)-th fact table. For
current value of L, computed in step 6. do: L = L∗m

n
and go to step 2.

Computed value L is the estimation of the number of tuples returned by the
query.

4.2 Preprocessing

Analyzing database schema is the first step in the preprocessing procedure. The
discovery of relationships between user tables is based on data dictionary view.
The view contains information about all user table names, constrain names and
their types. Because we are looking for tables that are joined by one-to-many
or many-to-many relationships, we only consider tables with primary key and
foreign key constraints. Data dictionary is looked up in search of the list of tables
that remain in a one-to-many or a many-to-many relationship. Cardinality of the
result of join operation on two tables is one of the start parameters in estimation
algorithm. To avoid computing this value each time the algorithm analyzes a
pair of attributes drawn from these tables, we count the cardinality of the join
operation and store this value together with table relationship information.

4.3 Gathering statistics

Estimation algorithm is based on statistical information about data stored in
the database. Conditional cardinality patterns are an extension of traditional
statistics gathered in database dictionary. The estimation process makes an im-
plicit assumption that values of all attributes have constant distribution. This
assumption is seldom true. Disjunctive attribute values distort estimation pro-
cess, so we have decided to identify such values and process them in a special
way. Let ci = |{r ∈ R : r.A = ai}| denote the number of tuples in the relation
R, for which the attribute A has value ai, and let p denote the threshold above
which an attribute value is considered disjunctive. Let c̄ = 1

m

∑

i ci be the av-
erage number of tuples for one distinct value of the attribute A, and let σc be
the standard deviation of c computed over all possible values of the attribute



A. For each A ∈ R and for each value ai of A we compute the z-score of c. If
z-score falls outside of the range 〈−p, p〉, then we consider the value ai of the
attribute A as disjunctive. The choice of p is arbitrary and should be guided by
the Chebyshev’s inequality which states that ”no more than 1

k2 of the values
are more than k standard deviations from the mean”. The user should set the
value of p accordingly to the desired sensitivity to atypical attribute values. For
all attributes we collect information about the number of its distinct values. We
also gather information about minimum, maximum and average value of each
numerical attribute.

4.4 Conditional cardinality

Condition cardinality is computed for each ordered pair of attributes (A, B).
Pair generation process must ensure that both attributes belong to different
relations which remain in one-to-many or many-to-many relationship. Relation
pairs and correct attributes can be chosen based on information gathered during
preprocessing procedure. By creating a cartesian product of attributes, one can
easily find all possible pairs of attributes of the two relations. Because pairs are
ordered and (A, B) 6= (B, A), so for each pair we must also create its mirror
pair, by inverting attribute positions in the pair. Finally, for each pair we check
if the first attribute in the pair has any disjunctive value. If so, then this pair
is cloned and saved with annotation about which disjunctive value it applies
to. Otherwise the pair is saved without any annotation. Condition cardinality is
computed accordingly to its definition from Section 3 for each pair of attributes.
If a pair has an annotation about disjunctive value of its first attribute, then
condition cardinality is computed as the number of distinct values of second
attribute in a joined result relation, where the first attribute is equal to the
annotated value.

4.5 Query generator

Query generator is a simple tool, prepared specially for the experiment. Queries
created by the generator consist of three clauses: a SELECT, JOIN and WHERE

clauses. The complexity of the last two clauses is controlled by input parameters.
From all available tables one table is randomly chosen and it is inserted into the
query’s JOIN clause. If this table is a fact table, then all its dimensions are also
inserted in the JOIN clause. Next, we choose some other fact table that can be
joined with current one (fact tables are in a many-to-many relationship) and
repeat the insertion procedure. If the next fact table does not exist or the JOIN

clause is long enough, then we assume that generation of the JOIN clause is
finished. For each table in the JOIN clause we select all attributes that meet
our requirements. To satisfy each condition type cardinality, some attributes
are taken randomly from this set, and put in the query’s WHERE clause in an
appropriate form. Finally, the SELECT clause consists of one random attribute
form each table in the query’s JOIN clause.



5 Experiments

The first goal of the experiment was to prove the existence of correlation between
the estimated and the real number of tuples. The second goal of the experiment
was the comparison of the accuracy gained by using conditional cardinality pat-
terns with the accuracy of the leading commercial solution. As our testbed we
have chosen Oracle 10g database management system. All experiments were
conducted on a PC with openSUSE 10.2 GNU/Linux and Oracle 10g Enterprise
Edition 10.2 database. All queries were generated on top of the default Sales
History (SH) data warehouse schema pre-installed in the database. Because of
time and technical constraints, the size of the default SH schema was reduced. All
tuples from SALES table were grouped by customer id, and only groups count-
ing between 4 and 70 tuples were retained. Next, we have reduced sizes of all
dimension tables by deleting tuples missing from SALES table. Statistics of the
original and reduced SH schema are presented in Table 1.

table size before reducing size after reducing

COUNTRIES 23 18

CUSTOMERS 55500 1808

PRODUCTS 72 72

CHANNELS 5 4

TIMES 1826 1431

PROMOTIONS 503 4

SALES 918843 75922

COSTS 82112 81425
Table 1. Statistics of the SH schema

During the experiment 130 different queries were generated, 44 among them
returned at least one tuple and 86 returned no tuples. Query generator allowed
only for equality conditions in generated queries. Equality conditions are very
selective, therefore, the number of conditions allowed in the WHERE clause was
set to 10% of all attributes that could have been used in the clause. On aver-
age, this setting resulted in WHERE clauses of 6 conditions (not including table
join conditions). To ensure optimal conditions for Oracle optimizer all possible
statistics were gathered for schema SH. For the estimation algorithm, detail infor-
mation about table attributes was gathered, as described above, and conditional
cardinality for all possible pairs of attributes was computed.

For each query we compute three values: the true number of tuples returned
by the query (denoted real), the estimated number of tuples using condition
cardinality patterns (denoted cond.card), and the number of tuples estimated
by the Oracle optimizer (denoted oracle). Estimations vary from 0 to over 15
000 000. To present results in a more readable form, queries were divided into
bins, depending on the their true cardinality. The first bin contains queries that
return no rows, the second bin contains queries returning up to 100 rows, the



third bin contains queries returning up to 1000 rows, and so on. For each bin
data aggregation was performed in the following way: evaluated values were
scaled relatively to the biggest value from the bin. This dominating value was
assumed to represent 100%, and the remaining two values were calculated as the
percentage of the biggest value. The results depicted in Figure 1 are averaged
over all queries.

Fig. 1. Precision of cardinality estimates

Based on data received from the test, the Pearson correlation coefficient has
been computed between true (random variable X) and estimated (random vari-
able Y ) number of returned tuples. The correlation coefficient is rXY = 0.978. To
prove that the correlation is statistically significant, a t-test has been performed
with the null hypothesis H0 of rXY being insignificant. For the confidence range
of 99% the critical value is t0 = 2.6148, whereas the t statistics yields

t =
rXY

1 − r2
XY

∗
√

n − 2 = 52.75

Because t > t0, we reject the null hypothesis and we embrace the opposite
hypothesis of the correlation coefficient being significant.

In our experiment many queries return no rows. To assure that a large frac-
tion of random variable X values being 0 does not bias the test, we have repeated
it for only non-zero values of the variable X . This time the Pearson correlation
coefficient was r′XY = 0.982 and the t-statistics as t′ = 33.91, so the null hy-
pothesis could have been rejected with confidence level of 99%.

Figure 2 presents mistakes committed by estimations. Based on results from
Figure 1, each mistake was calculated as the absolute difference between true
query cardinality and the respective estimation. To compare the quality of esti-
mates generated by condition cardinality patterns and the Oracle optimizer let
us use the following notation. Let x denote the true number of tuples returned
by the query, let y denote the number of tuples estimated by using condition car-
dinality patterns, and let z denote the number of tuples estimated by the Oracle



Fig. 2. Comparison of estimate differences

optimizer. In addition, let ∆ be the measurement of estimation quality defined
as follows: ∆xy = |x − y| and ∆xz = |x − z|. All estimates tend to minimize
the difference ∆, therefore, for each comparison we find the winner as follows: if
∆xy < ∆xz then condition cardinality estimation wins, otherwise if ∆xz < ∆xy,
then the Oracle optimizer wins, otherwise if ∆xy = ∆xz, then we announce the
tie. Table 2 summarizes the comparison of the condition cardinality estimation
with the Oracle optimizer estimation as the number of wins, losses, and ties.

returned rows ∆xy < ∆xz ∆xz < ∆xy total

x = 0 72 14 86

x 6= 0 29 15 44

total 101 29 130
Table 2. Comparison of condition cardinality with the Oracle optimizer

We can conclude that for 78% of queries condition cardinality estimates are
better than the Oracle optimizer. On the downside, we have noticed that when
conditional cardinality method miscalculates the cardinality of the query result,
usually, the committed error is much larger than the error made by the Oracle
query optimizer. We attribute this to the way conditional cardinality is prop-
agated through conditions in the query. When a mistake is made early in the
estimation process, this mistake is amplified by subsequent estimations for the
remaining selectors, which results in rather a formidable error.

6 Conclusions

In this paper we have used data mining for the query optimization process. We
have developed a simple knowledge model, conditional cardinality patterns, and



we have designed an algorithm for identifying promising pairs of attributes. We
have used discovered patterns to improve the accuracy of cardinality estimation
for typical data warehouse queries. Our experiments were conducted against the
state-of-the-art query optimizer from Oracle 10g database management system.
The results of conducted experiments show clear advantage of using conditional
cardinality patterns in the data warehouse query optimization process. This
paper reports on the results of the preliminary research conducted in the field.
In the future we intend to extend the framework to handle aggregation queries.
We also plan to further utilize database dictionary to mine patterns that might
be useful for other database related tasks, such as database maintenance, storage
optimization or user management.
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