
Analysis and Evaluation of Inductive Programming
Systems in a Higher-Order Framework?

Martin Hofmann, Emanuel Kitzelmann, and Ute Schmid

University of Bamberg, Germany; lastname.surname@uni-bamberg.de

Abstract. In this paper we present a comparison of several inductive program-
ming (IP) systems. IP addresses the problem of learning (recursive) programs
from incomplete specifications, such as input/output examples. First, we intro-
duce conditional higher-order term rewriting as a common framework for induc-
tive program synthesis. Then we characterise the ILP system GOLEM and the
inductive functional system MAGICHASKELLER within this framework. In con-
sequence, we propose the inductive functional system IGOR II as a powerful and
efficient approach to IP. Performance of all systems on a representative set of
sample problems is evaluated and shows the strength of IGOR II.

1 Introduction

Inductive programming (IP) is concerned with the synthesis of declarative (logic, func-
tional, or functional logic) programs from incomplete specifications, such as input/output
(I/O) examples. Depending on the target language, IP systems can be classified as in-
ductive logic programming (ILP), inductive functional programming (IFP) or inductive
functional logic programming (IFLP).

Beginnings of IP research [1] addressed inductive synthesis of functional programs
from small sets of positive I/O examples only. Later on, some ILP systems had their
focus on learning recursive logic programs in contrast to learning classifiers (FFOIL [2],
GOLEM [3], PROGOL [4], DIALOGS-II [5]). Synthesis of functional logic programs is
studied with the system FLIP [6]. Now, induction of functional programs is covered by
the analytical approaches IGOR I [7] and IGOR II [8] and by the search-based approach
ADATE [9] and MAGICHASKELLER [10]. Analytical approaches work example-driven
and are guided by the structure of the given I/O pairs, while search-based approaches
enumerate hypothetical programs and evaluate them against the I/O examples.

At the moment, neither a systematic empirical evaluation of IP systems under a
common framework nor a general vocabulary for describing and comparing the differ-
ent approaches in a systematic way exists. Both are necessary for further progress in
the field exploiting the strengths and tackling the weaknesses of current approaches.

We present conditional combinatory term rewriting as a uniform framework for de-
scribing IP systems and characterise and compare some systems in it. Then, we intro-
duce IGOR II, which realises a synthesis strategy which is more powerful and not less
efficient as the older approaches, and evaluate their performance on a set of example
problems and show the strength of IGOR II. We conclude with some ideas on future
research.
? Research was supported by the German Research Community (DFG), grant SCHM 1239/6-1.

2

2 A Unified Framework for IP

2.1 Conditional Constructor Systems

We sketch term rewriting, conditional constructor systems and an extension to higher-
order rewriting as, e.g., described in [11]. Let Σ be a set of function symbols (a signa-
ture), then we denote the set of all terms over Σ and a set of variables X by TΣ(X) and
the (sub)set of ground (variable free) terms by TΣ . We distinguish function symbols
that denote datatype constructors from those denoting (user-)defined functions. Thus,
Σ = C ∪ F , C ∩ F = ∅ where C contains the constructors and F the defined function
symbols. Induced programs are represented in a functional style as sets of recursive
rewrite rules over a signature Σ, so called constructor (term rewriting) systems (CS).

The lefthand side (lhs) l := F (p1, . . . , pn) of a rewrite rule l → r consists of a de-
fined function symbol F and a pattern pi ∈ TC(X) which is built up from constructors
and variables only. We call terms from TC(X) constructor terms. This allows for pat-
tern matching known from functional languages such as HASKELL. Consequently, all
variables of the righthand side (rhs) must also occur in the lhs, i.e. they must be bound
(by the lhs). If no rule applies to a term the term is in normal form. If we apply a defined
function to ground constructor terms F (i1, . . . , in), we call the ii inputs of F . If such
an application normalises to a ground constructor term o we call o output.

In a conditional constructor system (CCS), each rewrite rule may be augmented
with a condition that must be met to apply the rule. Conditional rules are written: l →
r ⇐ v1 = u1, . . . , vn = un (cf. Fig. 1(1)). So, a condition is an ordered conjunction
of equality constraints vi = ui with vi, ui ∈ TΣ(X). A constraint vi = ui holds if, after
instantiating the lhs and evaluating all vj = uj with j < i, (i) vi and ui evaluate to the
same normal form, or (ii) vi is a pattern that matches ui and binds the variables in vi.

To lift a CCS into the higher-order context and extend it to a (conditional) combi-
natory rewrite system ((C)CRS) [11] we introduce meta-variables XM = X,Y, Z, . . .
which are assumed to be different from any variable in X . Meta-variables occur as
X(t1, . . . , tn) and allow for generalisation over functions with arity n. To preserve the
properties of a CS, we need to introduce an abstraction operator [−]− to bind variables
locally to a context. The term [A]t is called abstraction and the occurences of the vari-
able A in t are bound. For example the recursive rule for the well known function map
would look like map([A]Z(A), cons(B,C)) → cons(Z(B),map([A]Z(A), C)) and
would match a term like map([A]square(A), cons(1, nil)).

2.2 Target Languages in the CCRS Framework

To compare all systems under equal premises, we have to fit the different occurences
of declarative languages into the CCRS framework1. Considering functional target lan-
guages, the underlying concepts are either based on abstract theories, as e. g. equational
theory [6], constructor term rewriting systems [8], or concrete functional languages as
ML [9] or HASKELL[10]. Applying the CCRS framework to IFP or IFLP systems is
straight forward, since they all share the basic principles and functional semantics.

1 Note the subset relationship between that CS, CCS, and CCRS. So, if the higher-order context
is of no matter we use the term CCS, otherwise CCRS.

3

(1) CCRS
multlast([]) -> []
multlast([A]) -> [A]
multlast([A,B|C]) -> [D,D|C]

<= [D|C] = multlast([B|C])

(2) Functional (Haskell)
multlast([]) = []
multlast([A]) = [A]
multlast([A,B|C]) =

let [D|C] = multlast([B|C])
in [D,D|C]

(3) Logic (Prolog)
multlast([], []).
multlast([A], [A]).
multlast([A,B|C],[D,D|C]) :-

multlast([B|C],[D|C]).

Fig. 1. Equivalent programs of multlast (overwriting a list with last element)

In addition to pattern matching and functional operational semantics of CS, CCS
can express constructs such as if-, case-, and let-expressions in a rewriting context.
An if-expression is modelled by a condition v = u (case (i) in Sect. 2.1). A case-
expression is modeled following case (ii), where v ∈ TC(X) and v 6∈ X . If v ∈ X ,
case (ii) models a local variable declaration as in a let-expression. Fig. 1 shows a
CCRS for a HASKELL program containing a let-expression.

In the context of IP, we only consider logic target programs which represent func-
tions, i.e., programs where the output is uniquely determined by the input. Such pro-
grams usually are expressed as “functional” predicates such as multlast in Fig. 1(3).
A functional predicate is a relation r(V1, . . . , Vn), where for any ground “input” val-
ues i1, . . . , in−1 of V1, . . . , Vn−1, there is a single “output” value o for Vn such that
〈i1, . . . , in−1, o〉 belongs to r.The evaluation binds o to Vn using the input parameters
V1, . . . , Vn−1. If a predicate does not have an output variable it is a “boolean” predicate
in the usual sense and evaluates to true or false if all input parameters are bound. Note
that input and output parameters do not have to be variables but may also be constructor
terms (containing variables) as known from PROLOG.

In the context of IP, ILP systems require all variable bindings to be directly or indi-
rectly determined by the bindings of the input variables. A Horn clause h← b1, . . . , bn
is transformed straight forward to a conditional rewrite rule h′ → Vh ⇐ Vb1 =
b′1, . . . , Vbn

= b′n, where h′ and b′i are the predicates h and bi stripped off their out-
put parameters Vh, Vbi ∈ TC(X). For boolean predicates holds Vh, Vbi ∈ {true, false}.
Transforming Horn clauses containing functional predicates into CCSs is a generalisa-
tion of representing Horn clauses as conditional identities as shown in [12].

2.3 IP in the CCRS Framework

Let us now formalise the IP problem in the CCRS setting. Given a CCRS, both, the
set of defined function symbols F and the set of rules R be further partitioned into
disjoint subsets F = FT ∪ FB ∪ FI and R = E+ ∪ E− ∪ BK, respectively. FT are
the function symbols of the functions to be synthesised, also called target functions.
FB are the symbols of predefined functions that can be used for synthesis. These can
either be built in or defined by the user in BK (see below). FI is a pool of function
variables that can be used for defining invented functions on the fly. E+ is the set of
positive examples or evidence and E− the set of negative examples, both containing a
finite number of I/O pairs as unconditional rewrite rules F (t1, . . . , tn)→ r, where F ∈
FT and t1, . . . , tn, r ∈ TC(X). However, the rules in E− are interpreted as inequality

4

constraints. BK is a finite set of rules F (t1, . . . , tn)→ r ⇐ v1 = u1 ∧ . . . ∧ vn = un
defining auxiliary concepts that can be used for synthesising the target function, where
F ∈ FB , ti ∈ TC(X ∪ XM) for i = 1 . . . n, and r, ui, vi ∈ TB(X ∪ XM).

With such a given CCRS, the IP task can be now described as follows: find a finite
set RT of rules F (t1, . . . , tn) → r ⇐ v1 = u1 ∧ . . . ∧ vn = un (or program for
short) where F ∈ F , t1, . . . , tn ∈ TC(X ∪ XM), and r, ui, vi ∈ TΣ(X ∪ XM), such
that it covers all positive examples (RT ∪ BK |= E+, posterior sufficiency or com-
pleteness) and none of the negative examples (RT ∪BK 6|= E−, posterior satisfiability
or consistency). In general, this is done by discriminating between different inputs us-
ing patterns on the lhs or conditions modelling case-expressions and computing the
correct output on the rhs. Constructors, recursive calls, functions from the background
knowledge, local variable declarations, and invented functions can be used for this. An
invented function is hereby a function which symbol occurs only in FI , i. e. is neither a
target function nor defined in BK and is defined by the synthesis system on the fly.

However, there is usually an infinite number of programs satisfying these condi-
tions, e. g. E+ itself, and therefore two further restrictions are imposed: A restriction
on the terms constructed, the so called restriction bias and a restriction on which terms
or rules are chosen, the preference bias.

The restriction bias may allow only a specific subset of the terms defined for ui, vi,
ti, r in a rule F (t1, . . . , tn)→ r ⇐ u1 = v1 ∧ . . . ∧ un = vn. It may restrict nested or
mutual recursion, allow for or prohibit abstraction and meta-variables, i. e. higher-order
context, or demand the rhs to follow a certain program scheme.

The preference bias imposes a partial ordering on terms, lhss, rhss, conditions or
whole programs defined by the CCS framework and the restriction bias. A correct pro-
gram is optimal w. r. t. this ordering and satisfying completeness and consistency.

3 Systems Description in the CCRS Framework

So lets put on the CCRS glasses and have a closer look at the systems. The scope of
this paper allows us only to consider GOLEM, MAGICHASKELLER, and IGOR II as
representatives of ILP, higher-order search-based and analytic approaches. They were
chosen as the most powerfull or most suitable to exemplarily illustrate the strength and
weaknesses of their kind. Where appropriate, we will refer to other systems to stress
differences or similarities.

GOLEM [3] is, as e. g. FOIL/FFOIL, one of the classic ILP systems. It uses a bottom-
up, or example driven approach based on Plotkin’s framework of relative least general
generalisation (rlgg) . This avoids searching a large hypothesis space for consistent
hypothesis as, but rather constructs a unique clause covering a subset of the provided
examples relative to the given background knowledge.
C and FB are unrestricted, but FT is restricted to a singleton set and FI is al-

ways empty (no function invention). E+ and E− are both sets of unconditional rules
F (i1, . . . , in) → o, where ii is the ith input and o the output. E− is very important to
prune the search space. F ∈ FT , ii ∈ C, and o ∈ C ∪ {true, false}. For BK, full
PROLOG syntax, i. e. in CCRS unrestricted conditional rewrite rules are allowed.

5

It’s restriction bias is quite similar to that of FFOIL, however, predicates can now
take constructor terms and not only variables as arguments. Thus, l and vi are proper
functional heads, r ∈ TC(X), and ui ∈ TC(X) ∪ {true, false}. It synthesises in first-
order, so abstraction and meta-variables are not allowed. The preference bias is defined
as the clause covering most of the positive and no negative examples in a lattice over
clauses constructed by computing the rlgg of two examples relative to the background
knowledge. However, such a search space explodes and makes search nearly intractable.

Therefore, to generate a single clause, GOLEM first randomly picks pairs of positive
examples, computes their rlggs and chooses the one with the highest coverage, i.e., with
the greatest number of positive examples covered. By randomly choosing additional
examples and computing the rlgg of the clause and the new examples, the clause is
further generalised. After removing irrelevant literals in a postprocessing step, this is
repeated using the clause with the highest coverage until generalisation does not yield
a higher coverage. To generate further clauses GOLEM uses the sequential covering
approach. It generates one clause that covers some positive and no negative examples,
removes the covered examples from the training set and generates the next clause until
every positive example is covered by some clause.

MAGICHASKELLER [10] is a comparable new search-based synthesiser which gen-
erates HASKELL programs. Exploiting type-constraints, it searches the space of λ-
expressions for the smallest program satisfying the user’s specification. The expressions
are created from user provided functions and data-type constructors via function com-
position, function application, and λ-abstraction (anonymous functions in HASKELL).

Generally, C and FB are unrestricted, so for BK fully-fledged higher-order func-
tions are allowed. It is noteworthy that this has a direct impact on the synthesiseable
functions, since functions in BK immediately define the search space. The system it-
self is not able to detect recursion, but depends on functions to iterate over or through
the defined data types. Therefore to be successful, it needs in addition to the type con-
structors a paramorphism, i. e. a function that decomposes a given data type, probably
applying some function to the primitive part and applying the paramorphism to the rest
(i. e. an extended map-function for lists). Only one target-function can be learnt at a time
and no function invention is possible. So, FT is a singleton set and FI is always empty.
E− is empty, too, but E+ is defined as constraints expressed in a boolean function, so
it is possible to define allowed and prohibited outputs of the target function.

It’s restriction bias, similar to other search-based approaches (cf. ADATE), is de-
termined by the data types and functions defined in its BK library. So only functions
that can be constructed out of these can be synthesised. The system’s preference bias
can be characterised as a breadth-first search over the length of the candidate programs
guided by the type of the target function. Therefore it prefers the smallest program
constructable from the provided functions that satisfies the user’s constraints.

Forecast As far as one can already say, GOLEM, typically for ILP systems, is hampered
by a greedy sequential covering strategy. Consequently, partial rules are never revised
and lead to local optima, and dependencies between rules become lost. Nevertheless, it
is more flexible in discriminating the inputs on the lhss, because it, contrarily to FFOIL,
allows for constructor terms. However, random sampling is too unreliable to balance

6

out the greedy search and assure for an optimal partition of the inputs, especially when
the data structures are more complex or programs with many rules are needed.

MAGICHASKELLER is a promising example of including higher-order features into
IP and how functions like map or filter can be applied effectively, when used advis-
edly, as some kind of program pattern or scheme. Nevertheless, it exhibits the usual
pros and cons common to all search-based approaches: The more extensive the BK
library, the more powerfull the synthesised programs are, the greater is the search space
and the longer are the runs. However, contrarily to GOLEM, it is not mislead by partial
solutions and shows again that only a complete search can be satisfactory for IP.

4 IGOR II

In contrast to GOLEM and MAGICHASKELLER, IGOR II is a system specialised to learn
recursive programs. In order to do this reliably, partitioning of input examples, i.e., the
introduction of patterns and predicates, and the synthesis of expressions computing the
specified outputs, are strictly separated. Partitioning is done systematically and com-
pletely instead of randomly (GOLEM) or by a greedy search (FFOIL). All subsets of
a partition are created in parallel, i.e., IGOR II follows a “simultaneous” covering ap-
proach. Also the search for expressions is complete. A complete search is tractable
even for relative complex programs because construction of hypotheses is data-driven.
IGOR II combines analytical program synthesis with search.

IGOR II induces several dependent target functions in one run, no restrictions apply
to FT , FB and C. Auxiliary functions are invented if needed, but FI is restricted that
the domain of each invented function is equal to the domain of the “calling” function,
in particular it is not possible to introduce accumulator variables by invention of a aux-
iliary function. E− is empty and both E+ and BK are given as unconditional example
equations which may contain variables. In order to achieve confluence it is assured that
the induced lhss for one target function do not overlap, i. e., they can be regarded as set
and imply a unique partition of the inputs. Rhss of induced rules are restricted in that
invented functions cannot be applied at the root. Conditions are restricted to alternative
(i) (Sect. 2.1), i. e., simulation of let-expressions is not possible.

Fewer case distinctions, most specific patterns, and fewer recursive calls or calls
to background functions are preferred. Thus, the initial hypothesis is a single rule per
target function. Initial rules are least general generalisations (lggs) [13] of the example
equations, i.e., patterns are lggs of the example inputs, rhss are lggs of the outputs w.r.t.
the substitutions for the pattern, and conditions are empty. Successor hypotheses have
to be computed, if unbound variables occur in rhss. Three ways of getting successor
hypotheses are applied: (i) Partitioning of the inputs by replacing one pattern by a set of
disjoint more specific patterns or by adding a predicate to the condition. (ii) Replacing
the rhs by a (recursive) call of a defined function, where finding the argument of the
function call is treated as a new induction problem, i.e., a help function is invented. (iii)
Replacing the rhs subterms in which unbound variables occur by a call to new subpro-
grams. In cases (ii) and (iii) help functions are invented. This includes the generation of
I/O-examples from which they are induced. For case (ii) this is done as follows: Func-
tion calls are introduced by matching the currently considered outputs with the outputs

7

Table 1. System specific runtimes on different problems in seconds

la
st

s

la
st

m
em

be
r

od
d/

ev
en

m
ul

tla
st

is
or

t

re
ve

rs
e

w
ea

ve

sh
ift

r

m
ul

t/a
dd

al
lo

dd
s

I/O size
(G/M/I)

3/2/2∨ 4/3/3∨ 4/3/3∨ //3∨ 4/3/3∨ 4/3/3∨ /3/3∨ 4/4/4∨ 4/4/4∨ //4∨ 4/3/3∨

GOLEM 1.062 < 0.000 0.033 — < 0.000 0.714 — 0.049⊥ 0.298 — 0.016⊥

MAGICH. 7.620 0.040 0.540 — 0.230 — 0.100 31.480 3.620 — 2.100
IGOR II 5.695 0.007 0.152 0.019 0.023 0.105 0.103 0.200 0.127 � �

— not tested × stack overflow � time out ⊥ wrong ∨ variabilised

of any defined function. If all current outputs match, then the matched defined function
can be called. The argument of the call must map the currently considered inputs to the
corresponding inputs of the matched defined function. For case (iii), the example inputs
of the new defined function also equal the currently considered inputs. The outputs are
the corresponding subterms of the currently considered outputs. The search ends when
the best hypothesis regarding the preference bias has no unbound variables.

5 Empirical Results

As problems we have chosen some of those occurring in the accordant papers and some
to bring out the specific strengths and weaknesses. They have the usual semantics on
lists: multlast was introduced above, lasts applies last on a list of lists, isort is insertion-
sort, allodds checks for odd numbers, shiftr makes a right-shift and weave alternates
elements from two lists into one. For odd/even and mult/add both functions need to
be learnt at once. The functions in odd/even are mutually recursive, lasts, multlast,
isort, reverse, mult/add, allodds suggest to use function invention, but only reverse is
explicitly only solvable with. lasts, allodds and odd/even split up in more than two rules.

Because GOLEM usually performs better with more examples, whereas MAGIC-
HASKELLER and IGOR II do better with less, each system got as much examples as
necessary up to certain complexity, but then all examples completely, so no specific
cherry-picking was allowed. For synthesising isort all systems had a function to insert
into a sorted list, and the predicate < as background knowledge. The definition of the
background knowledge was extensional (except for MAGICHASKELLER), IGOR II was
allowed to use variables and for GOLEM additionally the accordant negative examples
were provided. MAGICHASKELLER had paramorphic functions to iterate over a data
type in BK. Table 1 shows the runtimes of the different systems on the example prob-
lems and the data type size up to which examples were provided.

Due to GOLEM’s random sampling, the best result of ten runs was chosen. De-
spite its randomisation, it exceeds other ILP and IFLP systems due to its capability of
introducing let-expressions (cf. multlast) where IGOR II needs function invention to
balance this weak-point. So let-constructs can be considered as “poor man’s func-
tion invention” showing to be quite usefull and promise to help pushing the bound-
aries of learnable problems even further. On reverse and allodds MAGICHASKELLER

8

demonstrates the power of higher order functions. Although it does not invent auxiliary
functions, reverse was solved using its paramorphism which provides some kind of ac-
cumulator. The time increase with weave shows the limits of search-based approaches.

6 Conclusions and Further Work

Based on a uniform description of some well-known IP systems and as result of our
empirical evaluation of IP systems on a set of representative sample problems, we could
show that the analytical approach of IGOR II is highly promising. It can induce a large
scope of recursive programs, including mutual recursion and incorporates a straight-
forward technique for function invention. Background knowledge, in form of example
equations, can be included in the inference process in a natural way. As consequence
of IGOR II’s generalisation principle, induced programs are guaranteed to terminate and
to be the least generalisations. Although construction of hypotheses is not restricted by
some greedy heuristics, induction is highly time efficient. Furthermore, it needs only a
small set of positive I/O examples together with the data type specification of the target
function and no further information such as schemes.

The most challenging problem will be to allow function invention for the outmost
function without prior definition of the positions of recursive calls and to include the
introduction of let-expressions and higher-order functions (e. g. map, reduce, filter).

References
1. Biermann, A.W. et al.: Automatic Program Construction Techniques. Free Press, NY (1984)
2. Quinlan, J.R.: Learning first-order definitions of functions. Journal of Artificial Intelligence

Research 5 (1996) 139–161
3. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proceedings of the 1st

Conference on Algorithmic Learning Theory, Ohmsma, Tokyo, Japan (1990) 368–381
4. Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special issue

on Inductive Logic Programming 13(3-4) (1995) 245–286
5. Flener, P.: Inductive logic program synthesis with Dialogs. In Muggleton, S., ed.: Proceed-

ings of the 6th International Workshop on ILP, Stockholm University (1996) 28–51
6. Hernández-Orallo, J., et al.: Inverse narrowing for the induction of functional logic programs.

In Freire-Nistal, et al. , eds.: Joint Conference on Declarative Programming. (1998) 379–392
7. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An explanation

based generalization approach. Journal of Machine Learning Research 7 (2006) 429–454
8. Kitzelmann, E.: Data-driven induction of recursive functions from input/output-examples.

In Kitzelmann, E., Schmid, U., eds.: Proceedings of the ECML/PKDD 2007 Workshop on
Approaches and Applications of Inductive Programming (AAIP’07). (2007) 15–26

9. Olsson, R.J.: Inductive functional programming using incremental program transformation.
Artificial Intelligence 74(1) (1995) 55–83

10. Katayama, S.: Systematic search for λ-expressions. In: Trends in Functional Programming
(2005) 111–126

11. Terese: Term Rewriting Systems. Volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge Univ. Press (2003)

12. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge Univ. Press, UK (1998)
13. Plotkin, G.: A further note on inductive generalization. In: Machine Intelligence. Vol. 6.

Edinburgh Univ. Press (1971)

