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Abstract. The automatic analysis of real-life, long-term behavior and dynamics of individu-
als and groups from mobile sensor data constitutes an emerging and challenging domain. We
present a framework to classify people’s daily routines (defined by day type, and by group af-
filiation type) from real-life data collected with mobile phones, which include physical location
information (derived from cell tower connectivity), and social context (given by person proximity
information derived from Bluetooth). We propose and compare single- and multi-modal routine
representations at multiple time scales, each capable of highlighting different features from the
data, to determine which best characterized the underlying structure of the daily routines. Using
a massive data set of 87000+ hours spanning four months of the life of 30 university students, we
show that the integration of location and social context and the use of multiple time-scales used
in our method is effective, producing accuracies of over 80% for the two daily routine classification
tasks investigated, with significant performance differences with respect to the single-modal cues.
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1 Introduction

Human activity modeling from large-scale sensor data is an emerging domain relevant to many appli-
cations, such as determining the behaviour and habits of individuals and the structure and dynamics
of organizations [1, 3, 12]. This could be useful for social science research and self-awareness tools.
Given the massive amount of data captured by ubiquitous sensors over long periods of time and involv-
ing many people, fundamental questions to address through automatic analysis include: Do people
follow similar routines? Do certain people not follow other’s routines? Are routines useful in group
discovery?

Recent research has attempted to analyze complex, real-life activities from indoor sensors such
as cameras, microphones, proximity, or motion sensors [6, 12, 10, 8]. The limitations with indoor
spaces are that the sensors are often fixed and only those activities that occur in the (local) physical
space covered by the sensors can be recognized. Other recent approaches use wearable devices carried
by people, which collect various types of evidence of their activities, including motion in dynamic
environments [7] and audio in face-to-face conversations [1, 13]. However, these wearable devices are
not always practical for multiple users over long periods of time. In this paper, we study human
routines from sensors that have become an integral part of our daily lives, mobile phones. The
functionality of this ubiquitous infrastructure of mobile devices is dramatically increasing [2, 3], not
requiring users to modify their daily behavior for data collection.

We define routines to be temporal regularities in people’s lives. A routine often involves patterns of
locations (e.g. being at work or at home, or going from work to home) and human interactions (e.g. as
reflected by proximity information) over time, possibly over different time scales. Automatic routine
classification and discovery are in general challenging tasks as people’s locations and interactions
often vary from day to day and from individual to individual, and data from sensors can frequently
be incomplete or noisy.

The problems addressed in this work are as follows: given a day in someone’s life, measured solely
in terms of the noisy location and proximity information obtainable from a mobile phone, would this
day more closely resemble a weekend or a weekday? If the person analyzed was a student, would a
day in her life reveal potential group affiliations? More concretely, looking at the visualizations of
location and proximity days in Figure 1, does a given day (a row in each of the visualizations) more
closely resemble a weekend or a weekday? And do the day’s routines appear more like an engineering
or a business student’s typical rituals? Answering such questions is difficult as users often work on
weekends and the similarity in routines over days is often high. We would like to know how well we
can automate these tasks. Using real-life data from the Reality Mining dataset [3], involving a large
group of people over thousands of hours of activity, our work provides answers to these questions.
This domain of research has been reviewed as a very promising technology [11].

The first contribution of this work is the novel investigation of a set of discriminant representa-
tions of location (measured from cell tower connection information) and proximity (measured from
Bluetooth information) within a supervised learning framework. We investigated various representa-
tions characterizing proximity and location features in a day, such as multiple time-scales, proximity
identity, quantity of proximate people, and representations with and without time considerations, to
determine which best represented the underlying structure of the daily routines. The second contribu-
tion is the investigation of location-driven and proximity-driven day-type classification from a single
day in the life of a user. The third contribution is the investigation of location-driven and proximity-
driven group-type classification from single users’ days. The fourth contribution is the comparison of
single-modal versus multi-modal (i.e. multiple information sources) representations for location and
proximity data for the two activity recognition tasks at hand.

Overall, we found that integrating information at multiple time-scales is useful, that fusing prox-
imity and location information is beneficial compared with individual cues, and that the targeted
daily routines (day-type and student-type) can be recognized with good accuracy (80.3% and 89.6%,
respectively) even though the sensor data is partly incomplete.

There are many difficulties inherent to the activity recognition tasks at hand, complicating the
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already challenging dataset we used. Issues with mobile phone sensor data include poor indoor recep-
tion, incorrect data entries (due to the phone being left behind) and Bluetooth errors, to name a few.
Further, proximity data is not always available, leaving many days without any information. Besides
difficulties with the dataset itself, other challenges include the facts that students do not follow strict
schedules, for example, they work on weekends regularly complicating the day type classification and
that students might work or take classes in different buildings or offices, share offices or other spaces
infrequently, etc and none of this is known a priori. Further, the dataset contains various types of
students (undergraduate, graduate), which may follow different routines.

The paper is organized as follows. Section 2 presents the data set and highlights its inherent
challenges. Section 3 describes our approach. Experiments and results are discussed in Section 4.
Conclusions are given in Section 5.

2 Sensing Activity with Mobile Phones

The most widely deployed and used mobile computing device today is the mobile phone [9]. Current
mobile phones can capture data related to the daily routines of large numbers of people over a large
period of time. More specifically, their locations, such as being at work or home, can be captured
from cell tower connections. Interactions can be captured by Bluetooth, which detects other Blue-
tooth devices within a small radius. Phone call and SMS activities can further be recorded. Phone
application usage can be saved including the camera, calendar, games, and web browser usage [3].
Finally, content, including photos and video, can also be collected [2]. From the potential options, in
this paper we examine both location and Bluetooth data.

Recent work has been done using coarse-grained Global System for Mobile communications (GSM)
data from mobile phones to recognize high-level properties of user mobility (walking versus driving),
as well as daily step count for a very small number (3) of users over the course of one month [9]. Both
coarse and fine-grained location systems have been used to perform location-driven activity inference
[9, 5]. In work by Eagle and Pentland [4], which is the closest to ours, student type affiliations are
determined by clustering location information aggregated over a period of nine months. All of the
works described used location-driven activity inference. In this work, we investigate the student-type
task considering proximity-driven inference, in addition to location-driven inference. Further, we in-
vestigate an additional task of day type classification. In addition, we evaluate several representations
for the dataset, inferring class types from single days of data, as opposed to aggregated intervals of
data.

There are many challenges and sources of noise inherent in mobile phone data. They can be
forgotten, turned off, or out of battery. There are also issues with cell tower connections such as poor
indoor reception and fluctuating connections. Bluetooth errors include detection between certain types
of walls, recording people who are not physically proximate. There is also a small probability Bluetooth
will not discover other proximate devices [3]. Further, ground truth collection is a difficult task
especially over long periods of time. Users labeling is often incomplete, unclear and often unavailable,
sometimes due to privacy concerns. All these issues lead to noisy, partly incomplete and partly
inaccurate data with very little ground truth to rely on.

We use the Reality Mining dataset [3], collected by N. Eagle at MIT. The activities of 100 subjects
were recorded by Nokia 6600 smart phones over the 2004-2005 academic year. This comprises over 800
000 hours of data on human activity; if we take into account the location, proximity, and phone call
information, this corresponds to over 2 million hours of collected data. This dataset has been built
respecting the privacy concerns of individuals in the study. The subjects in the study are students
and staff of MIT that live in a large geographical area covered by over 32000 cell towers. They work
in offices with computers that have Bluetooth devices which can sense in a 5-10m radius [3]. The
public location information available for all subjects in the study includes the cell tower ID, as well as
the date and duration of connection. All of the subjects labeled the cell tower ID’s which correspond
to their homes. We obtained a list of MIT work cell towers which correspond to the Media Lab and
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the Sloan Business school. The Bluetooth proximity data collected contains the IDs of two proximate
devices as well as the date and duration of interaction. The list of work cell tower IDs obtained from
MIT was incomplete as many students never connected to any of the cell towers in this list and thus
were never considered to be at work. To resolve this issue, additional work labels were inferred from
being in proximity to each person’s computer; we did not consider being in proximity to one’s laptop
as being at work due to the mobile nature of the device. We assign a location label of HOME(H),
WORK(W), or OTHER(O) to the 32000 cell towers. Towers which are not labeled as H or W are
categorized as O. We have a fourth location label, NO RECEPTION(N), when there is no tower
connection recorded for a person for a given time (eg. no battery, phone off or no reception).

3 Classifying Daily Routines

We address two classification tasks for daily routines: weekday vs. weekend routines, and engineering
student-like vs. business student-like routines. In both cases, the input data is one day of location
and/or proximity information.

3.1 Data Representation

The goal is to represent a day using location and proximity information that is discriminant to daily
pattern classification. A day can be represented at multiple time scales, and people’s routines usually
follow block-type schedules. In this paper, we quantify location and proximity information at two levels
(one fine-grain at 30 minutes and one coarse-grain at 3-4 hours). These two time scales provide a simple
model of time management that is appropriate, in our opinion, to characterize many people’s lives.
For location data, keeping in mind the H, W, O, N labels, in addition to time considerations, useful
information may be contained in the quantity of these locations present in a day, or the dynamics in
which they occur (for example, work often follows home). Further, for proximity data, sources of useful
data include the identity of the person with whom a user was proximate, the number of proximate
people (quantity of proximity disregarding the user’s identities), as well as time considerations. These
features motivated the various location-driven and proximity-driven representations presented next.

3.1.1 Location Representation

L, Fine-Grain Location. For the fine-grain location representation, visualized in Figure 1 and 2 a), a
day is divided into 30 minute non-overlapping time intervals, resulting in 48 blocks per day. We
assign a location label of W, H, O, or N to each 30 minute block. For classification purposes,
this 48 element vector was transformed to binary format. Note that over a 30 minute interval,
typically several cell tower connections are made, often with continuous fluctuations between a
few. To address this source of noise we select the cell tower with the maximum connection time
over each 30 minute interval.

Ly Bag of Location Transitions. This representation was built from the fine-grain location represen-
tation considering 8 coarse-grain timeslots in a day. A location word contains 3 consecutive
location labels presented for the fine-grain representation corresponding to 1.5 hour intervals
followed by one of the 8 timeslots in which it occurred. Thus a location word has 4 components,
3 location labels followed by a timeslot. We take overlapping 1.5 hour sets of labels to make a
location word, so that if we had a pattern HHHOW in timeslot 1, we would have the following
location words: HHH1, HHO1, and HOW1. The bag of location transitions is the histogram of
the present location words in the day.

L. Coarse-Grain Location. For this representation, visualized in Figure 2 b), a day is also divided into
8 coarse timeslots. For each timeslot, there is a binary element representing the four location
labels (H, W, O, N). If one of these labels was present within the given timeslot, it is counted as
one, if this location was not present, it is counted as zero. This is a simplification of the bag of
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Figure 1: a) Visualization of location patterns using the fine-grain location representation, L,, for 2
users over 121 days. Each row in the graph represents a day in the life of the individual. The labels
H, W, O, N represent home, work, other, and no reception respectively. The day is divided into 48
fine-grain (30 minute) timeslots, each with a location label. The user on the left has a rich set of
routines visible in the location patterns, whereas the user on the right is mostly incomplete due to
lack of celltower labels. b) The proximity representation, P, is visualized for a user. Only proximity
with users in the group are considered. Each row in the graph represents a day in the life of the user.
The day is divided into 8 timeslots, each with 3 elements indicating the quantity of proximate users
for that timeslot. For this user, most proximity activity occurs later in the day for most days.

location transitions, in which the dimensionality was reduced to be comparable to some of the
proximity representations described in the next subsection.

Ly Two-Feature Location. This representation is the simplest, in which the number of 30-minute H
and W labels are counted without taking into account when exactly they occur in a day.

3.1.2 Proximity Representation

P, UserID Prozimity. The userID proximity representation is also illustrated in Figure 2 ¢). There
are 31 binary components for a given day, reflecting the 30 people considered in this study (see
Section 4.1), and the last component for the case when no one is in proximity. If the person was
in proximity with one of the 30 individuals, the value for that component will be one; for days
when the person is not in proximity with anyone, the last component will be one. Thus, we only
consider proximity within the set of 30 people. We do not consider a person to be in proximity
with oneself.

P, Coarse-Grain Proximity. The coarse-grain proximity representation, visualized in Figure 1 b),
contains again the same 8 timeslots in a day. In this description of proximity, the identities of
people are disregarded and only the quantity of proximate people for a timeslot is considered.
In the first timeslot, the first element is one if 1 to 2 people are in proximity, the second if 3
to 4 people are, and the last if 5 or more people are in proximity. The resulting representation
contains 8 timeslots, each with 3 elements. This idea of binary quantization is repeated over
the 8 timeslots giving a quantification of interaction within the total set of people over different
times in the day.

P, One-Feature Proximity. This is the simplest representation for proximity. We count the number
of proximate people for a person within a day, and use this value.
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3.1.3 Combined Representation

For the combined representation, we concatenate one of the location representations with one of
the proximity representations. In this paper, we only consider cases with comparable location and
proximity dimensionality. Feature extraction techniques (e.g. PCA) could have been applied on the
joint representations but were not explored here.

3.2 Classification

The classification was performed using a support vector machine (SVM) with a Gaussian kernel. For
both daily routine classification tasks (days as weekends or weekdays, or days as belonging to business
students or engineering students), the training strategy was leave-one-user-out, specifically testing on
all the days for one unseen person while training on the data for all other people (note: proximity
features are by definition relational involving pairs of people); we tested on each of the people and
averaged the results. We optimized the kernel parameter on one data split for a randomly chosen
person.

4 Experiments and Results

4.1 Data set

From the Reality Mining data set, we experimented with 30 people and 121 consecutive days, resulting
in approximately 3600 data points. Our choice was guided by the goal of analyzing people and days
for which data was reasonably available. The exact dates in the experiment were August 26, 2004 to
December 24, 2004. The people selected had the most number of days with at least one W or H label.
We removed days which were entirely N (no reception) labels since these had no useful information,
which resulted in approximately 2800 data points. To select the interval of 121 days, we found the
time interval with the most number of useful days (i.e., days with W, H, or O labels) over all 30 people.
The resulting subset is still massive, amounting to over 87 000 hours, or about 10 years of data, and
remains quite challenging in terms of noise, incompleteness, and complexity. This is illustrated in
Figure 2 where it might be very difficult for a human to differentiate days as weekends/weekdays, or
whether the day corresponds to a business student or engineering student.

For the student-type daily routine classification task, a subset of 23 of these 30 people were con-
sidered based on their student type labels. There were 6 business school students, and 17 engineering
students. The engineering students covered a broader scope, including both undergraduate and grad-
uate levels.

4.2 Weekday/Weekend Routine Classification

The weekend /weekday classification results are presented in Table 1 and reveal the difficulty of the
task solely based on location or proximity information. In each table, the classification accuracy
averaged over all people is presented first, and the average accuracy for each class is presented later.
Generally, weekdays are more easily identified with location as input, and weekends are characterised
better by proximity data. We can understand this by identifying weekdays with WORK cell towers,
and weekends by not being in proximity with colleagues. However, in this dataset, students appearing
to be in W locations on weekends complicate the classification task, resulting in at best 44.1% weekend
classification accuracy by the bag of location transitions (L), which performs overall better than the
others, also having the highest dimensionality. The coarse-grain approach L. (fused bag of location
words) performs slightly worse for weekends with a significantly smaller dimension. The fine-grain
location representation, L, performs the worst for WE, the best for WD, and slightly better than the
two-feature location case. All methods perform better than a ‘naive’ guess that assumes all days are
weekdays, which results in 5/7 = 71.4% accuracy.
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Figure 2: a) Fine-grain location representation, L,, visualized over the entire set of days and users in
the study. The x axis corresponds to the 48 half hour time intervals in a day. The y axis corresponds
to a given day of a user in the dataset. b) Coarse-grain location representation, L., visualized over
all days and users. ¢) UserID proximity, P,, displayed over all users and days.
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Table 1: Weekend (WE) and Weekday (WD) daily routine classification accuracy. The top table
shows the difficulty in determining weekends based on location information alone. Proximity data is
more deterministic of weekend routines. Classification obtained by combining location and proximity
results in the best performance. Significance values are shown for the most significant results.

Location Accuracy (%) Proximity Accuracy (%)

Method ‘ Overall WE WD || Method ‘ Overall WE WD
L, 742 193 953 P, 74.3 707 758
Ly 76.8 44.1  89.1 P, 72 542 787
L, 76  36.6 90.8 P, 746 679 771
Lg 75.7 30 93.1

Combined Accuracy (%)
Method ‘ Overall Eng Bus

(La.P.) 76.9 47.35 88.1
(Le,Py) 80.3 658 858
(Le,Py) 79 534  89.3
(Lo, P,) 765  60.2 828

Proximity information alone is useful in characterizing weekends, but does not perform as well
as location data for identifying weekdays. There are many weekdays with little group interaction,
resulting in higher confusion with weekdays. The userID proximity and one-feature cases (P, and P.)
reveal about 2% difference between their weekend and weekday performances, overall resulting in the
highest performance of approximately 74%.

The lower panel in Table 1 shows the improvement in classification with the combination of prox-
imity and location data. Note that in all cases the overall performance of the joint representations
improved over that of the singleton case. We achieved over 80% accuracy with the combined represen-
tation (L., P,) trading-off 2-3% weekday accuracy for improved weekend classification. In Figure 3,
we visualize the days for which the proximity-alone data (columns 33-56) was misclassified, however
when we added the location data (columns 1-32), the resulting 56-component vectors were correctly
classified. In both figures, the first 32 columns visualize the location representation L. and the last
24 columns illustrate the proximity representation P,, so each row displays a day of the combination
(L¢, Pp). Figure 3a) are weekends which performed incorrectly for proximity-alone data due to the
abundance of proximity interactions, which are not typical of weekends. In contrast, Figure 3b) shows
weekdays which were mistaken for weekends due to the sparsity in interactions, not typical of week-
days. The addition of the location information in both cases resulted in correct classification, thus
illustrating cases for which the combination of information improved classification performance.

The performance difference between the best location only method (L;) and the best combined
method (L., P,) is statistically significant at the 1% level. The same is true for the performance
difference between the best proximity only method (P.) and the best combined method (L., P,).

4.3 Business/Engineering Student Routine Classification

Effectively classifying daily routines as belonging to business students or engineering students based
on proximity-only observations was representation-dependent. Proximity representation P., the one-
feature case, was inadequate in differentiating between student types, suggesting that the overall
quantity of proximity within each group is on average the same. If the business students had much
more proximity within the total set of people, or vice versa, we could expect the one-feature case to
have higher accuracy. The coarse-grain proximity representation Py, improved the accuracy of business
student classification, however, the userID proximity representation proved to be the best, with almost
99% accuracy in engineering student classification and 61% for business students. The knowledge of
identity from proximity is the key for discriminating student disciplines.
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Figure 3: Advantages of the joint location-proximity representation (L., P,). Visualization of a)
weekends and b) weekdays for which the proximity-only data was misclassified, but for which the
location-only data and the combined proximity-location data were correctly classified. The sparsity
of the weekday proximity-only data (columns 33-56 in b)), resulted in incorrect classification since
sparsity in interaction is typical weekend behavior. However, when we added the location informa-
tion, the resulting combined representation was correctly classified. The opposite phenomena can be
observed in plot a), for which weekends have abundant proximity data, typical of weekday behavior.
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Table 2: Engineering (Eng) vs. Business (Bus) student daily routine classification results. Proximity
within the specific group is most representative of student type, especially when student identity is
retained. The joint location and proximity data improves classification performance for the (L., P,)
combination. However, the other combinations generally perform as well as the singleton cases.
Significance values are shown for the most relevent results.

Location Accuracy (%) Proximity Accuracy (%)

Method ‘ Overall Eng Bus || Method ‘ Overall Eng Bus
L, 66.8  90.4 0 P, 89.1 98.9 61.2
Ly 74.54  94.3 19 P, 78.1 96 28.1
L. 745 948 17.1 P. 50.2  95.3 0
Ly 74.8 99.6 4.5

Combined Accuracy (%)
Method ‘ Overall Eng Bus

(La.P.) 733 97.6 45
(Le,Py) 89.6 99 62.9
(Le,Py) 78.76 934 374
(La,Py) 845 95 547

Location knowledge was inadequate in student type determination for the most part. This is
likely due to the simplified representation used where the 32 000 cell tower IDs have been reduced
to four location classes. It is expected that a representation more precisely identifying the location
of a student would perform better. However, the representation used here is useful in understanding
whether student types differ in the amount of time spent at school, home, or out and about. The
two-feature location case, Lg4, having low accuracy, indicates that the amount of time spent at school
and home is not indicative of student type. The most effective characteristics in differentiating, which
can be observed by the highest performance with the bag of location transitions representation, might
be patterns of “going to work” in a timeslot, or “coming home” in a timeslot, or other similar routines
which are captured by this representation.

The performance difference between the best location only method (L;) and the best combined
method (L., P,) is statistically significant at the 1% level. The performance difference between the
best proximity only method (P, ) and the best combined method (L., P,) is not statistically significant.

5 Conclusion

We presented a method to classify daily life routines from massive, complex data collected with mobile
phones. Using over 87 000 hours of data, we achieved over 80% accuracy in identifying whether a given
day more closely resembles a weekend or weekday. This is not an easy task as students spend many
weekends in work locations and have many weekdays with few group interactions. We showed that the
integration of location and proximity data performed significantly better than the single observation
sources, and that using representations that consider multiple time scales was beneficial. We further
succeeded in identifying whether a user is an engineering or business student with over 89% accuracy
based on a single day pattern of activity. The identity of individuals, measured by proximity, was
key in this case, which confirms that social context is very helpful to identify people’s routines. We
plan to further exploit this concept for other daily routines relevant for the analysis of mobile social
networks.

Acknowledgments This research has been supported by the Swiss National Science Foundation
through the MULTT project. We thank Nathan Eagle (MIT) for sharing the data and helping with
various aspects of the collection structure.



IDIAP-RR 07-62 11

References

[1] Choudhury, T., Pentland, A.: Sensing and Modeling Human Networks using the Sociometer. In:
Proceedings of ISWC, (2003).

[2] Davis, M., House, N.V., Towle, J., King, S., Ahern, S., Burgener, C., Perkel, D., Finn, M.,
Viswanathan, V., Rothenberg, M.: MMM2: Mobile media metadata for media sharing. In: Pro-
ceedings of ACM CHI, Portland (2005).

[3] Eagle, N., Pentland, A.: Reality mining: Sensing complex social systems. Personal and Ubiquitous
Computing 10(4), 255-268 (2006).

[4] Eagle, N., Pentland, A.: Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and
Sociobiology (in submission), (2007).

[5] Hariharan, R., Krumm, J., Horvitz, E.: Web-Enhanced GPS. In Proc. of the International Work-
shop on Location and Context Awareness (LoCA), (2005).

[6] McCowan, 1., Gatica-Perez, D., Bengio, S., Lathoud, G.: Automatic Analysis of Multimodal Group
Actions in Meetings. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)
27(3), 305-317 (2005).

[7] Munguia Tapia, E., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.:
Real-time recognition of physical activities and their intensities using wireless accelerometers and
a heart monitor. In: Proc. Int. Symp. on Wearable Comp., Boston (2007).

[8] Oliver, N., Horvitz, E., Garg, A.: Layered Representations for Learning and Inferring Office
Activity from Multiple Sensory Channels. In: Proceedings of Int. Conf. on Multimodal Interfaces
(ICMI), Pittsburgh, PA. (2002).

[9] Sohn, T., Varshavsky, A., LaMarca, A., Chen, M., Choudhury, T., Smith, I., Consolvo, S., High-
tower, J., Griswold, W.G., Lara, E.: Mobility Detection Using Everyday GSM Traces. In: Pro-
ceedings of Ubicomp 4206, 212-224 (2006).

[10] Stiefelhagen, R., Bernardin, K., Ekenel, H.K., McDonough, J., Nickel, K., Voit, M., Woelfel, M.:
Audio-Visual Perception of a Lecturer in a Smart Seminar Room. Signal Processing - Special Issue
on Multimodal Interfaces Vol. 86 (12), Elsevier, (2006).

[11] Technology Review,
http://www.technologyreview.com/specialreports/specialreport.aspx?id=25

[12] Wren, C., Ivanov, Y., Kaur, I., Leigh, D., Westhues, J.: SocialMotion: Measuring the Hidden
Social Life of a Building. Third International Symposium on Location- and Context-Awareness
4718, 85-102, 2007.

[13] Wyatt, D., Choudhury, T., Kautz, H.: Capturing Spontaneous Conversation and Social Dynam-
ics: A Privacy-Sensitive Data Collection Effort. In: Proceedings of International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Honolulu (2007).



