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Abstract. In this work we study linear secret sharing schemes for s-t
connectivity in directed graphs. In such schemes the parties are edges of a
complete directed graph, and a set of parties (i.e., edges) can reconstruct
the secret if it contains a path from node s to node t. We prove that
in every linear secret sharing scheme realizing the st-con function on
a directed graph with n edges the total size of the shares is Q(n1'5).
This should be contrasted with s-t connectivity in undirected graphs,
where there is a scheme with total share size n. Our result is actually
a lower bound on the size monotone span programs for st-con, where
a monotone span program is a linear-algebraic model of computation
equivalent to linear secret sharing schemes. Our results imply the best
known separation between the power of monotone and non-monotone
span programs. Finally, our results imply the same lower bounds for
matching.

1 Introduction

Secret sharing schemes, introduced by [11, 35, 26], are a method in which a dealer
holding a secret can distribute shares to parties in a network such that only pre-
defined authorized sets of parties can reconstruct the secret from their shares.
These schemes, whose original motivation was secure storage, have found nu-
merous applications as a building box in complex cryptographic schemes, e.g.,
Byzantine agreement [32], secure multiparty computations [8, 16,17], threshold
cryptography [20], access control [30], and attribute based encryption [25]. In
most applications it is important that the scheme is linear, that is, the shares
are a linear combination of the secret and some random elements. Linear secret
sharing schemes are equivalent to monotone span programs, a computational
model introduced by Karchmer and Wigderson [28].

In this work we study linear secret sharing schemes for a natural function: the
parties are edges of a complete directed graph, and a set of parties (i.e., edges)
is authorized if it contains a path from node s to node t. We prove that in every
linear secret sharing scheme realizing the st-con function on a directed graph
with n edges the total size of the shares is 2(n'-?). Studying linear secret shar-
ing for this function has both a cryptographic motivation and a computational
complexity motivation. We first discuss the cryptographic motivation. Benaloh



and Rudich [10] (see also [4,28]) showed that there exists a simple and very effi-
cient linear secret sharing scheme for the analogous function where the graph is
undirected. This scheme was used in [30] to design a protocol for reliable access
control. The obvious open problem is if this scheme can be generalized to deal
with directed graphs. The computational complexity motivation is separating the
power of monotone and non-monotone span programs. Our results imply that
over infinite fields and large finite fields non-monotone span programs are more
efficient than monotone span programs by a multiplicative factor of 2(n%?).
This is the best separation known to-date.

1.1 Previous Results

In this section we will give a short background on secret sharing schemes, lin-
ear secret sharing schemes, monotone span programs, and the equivalence of
the latter two notions. Finally, we will discuss some known results on the s-t
connectivity function.

Secret-sharing schemes were first introduced by Blakley [11] and Shamir [35]
for the threshold case, that is, for the case where the subsets that can reconstruct
the secret are all the sets whose cardinality is at least a certain threshold. Secret-
sharing schemes for general access structures were introduced by Ito, Saito, and
Nishizeki [26]. More efficient schemes were presented in, e.g., [9, 36, 14, 28, 37, 22].
Even with the more efficient schemes, the size of the shares for general access
structures with n parties is £2°(")| where the secret is an (-bit string. Lower
bounds for secret sharing schemes were proved in [29,9,15,13,21,18,19, 12, 31].
The best lower bound was proved by Csirmaz [18], proving that, for every n,
there is an access structure with n parties such that sharing an £-bit secrets
requires shares of length 2(¢n/logn). Still there is an exponential gap between
the lower-bounds and the upper-bounds.

Span programs and monotone span programs, introduced by Karchmer and
Wigderson [28], are linear-algebraic models of computation. More specifically,
a monotone span program is presented as a matrix over some field, with rows
labeled by variables. The span program accepts an input if the rows whose
variables are satisfied by the input span a fixed nonzero vector. The size of a
span program is its number of rows. A detailed definition is given in Section 2.
Lower bounds for monotone span programs have been studied in several papers.
Beimel, Gél, and Paterson [6] provided a technique for proving lower bounds for
monotone span programs and proved a lower bound of O(n?®) for a function
with n variables. Babai, Gél, and Wigderson [2], using the technique of [6],
proved the first super-polynomial lower bound — they prove an n‘?(logn/loglogn)
lower bound for the size of monotone span programs for the clique problem.
G4l [23] gave a characterization of span program size and improved the lower
bound for the clique function to n?(1°8™) Proving exponential lower bounds for
an explicit function is an open problem (it is known that such lower bound holds
for most functions [34]). G4l and Pudlék [24] have shown limitations of current
techniques for proving lower bounds for monotone span programs. Beimel and
Weinreb [7] showed a separating of the power of monotone span programs over



different fields, for example, they showed that there are functions that have
small monotone span program over the field GF(2), however, they require super
polynomial monotone span programs over fields whose characteristic is not 2.

In most applications of secret sharing schemes it is important that the scheme
is linear, that is, the shares are a linear combination of the secret and some
random elements. Linearity implies that if we sum shares distributed for two
secrets, then we get shares of the sum of the secrets. This property is useful,
for example, when designing secure multi-party protocols [8,16,17]. Karchmer
and Wigderson [28] showed that monotone span programs imply linear secret
sharing schemes (this result was implicitly proved also by Brickell [14]). More
precisely, if there is a monotone span of size s computing a function f over a
field F then there is a secret sharing scheme realizing f such that the domain
of secrets is F and the total number of bits of the shares is slog|F|. In fact,
monotone span programs and linear secret sharing schemes are equivalent [3].
Thus, proving lower bounds for monotone span programs implies the same lower
bounds for linear secret sharing schemes.

In this work we prove lower bounds for the st-con function. This function is
widely studied in complexity both for directed and undirected graphs. For ex-
ample, st-con in directed graphs is NL-complete, while Reingold [33] has proved
that st-con in undirected graphs is in deterministic log-space. Another exam-
ple where undirected st-con is easier than directed st-con was given by Ajtai
and Fagin [1]; they showed that while undirected st-con is definable in monadic
second order logic, the directed case is not. We continue this line of research
by proving that for monotone span programs undirected st-con is easier than
directed st-con, although the gap we can prove is much smaller.

The circuit complexity of st-con has been studied as well. The directed (and
undirected) st-con function has a polynomial-size monotone circuit of depth
O(logn); this circuit has unbounded fan-in. This implies a monotone formula for
st-con of size n©(°8™) and, using the construction of Benaloh and Leichter [9],
there is a secret sharing scheme realizing the st-con function in which the size of
the shares is n?(1°8™), Karchmer and Wigderson [27] have proved that for mono-
tone formulae this is optimal — every monotone formula computing undirected

(and, hence, directed) st-con function has size nf{(°8"),

1.2 Owur Results

In this work we prove that a monotone span program computing the st-con
function on a directed graph with n edges has size 2(n!®). We supply two proofs
of this lower bound. The first proof uses the characterization of span program
size given by G4l [23]; this proof only holds for finite fields. The second proof
uses the condition of Beimel, Gal, and Paterson [6]; this proof holds for every
field. As monotone span program are equivalent to linear secret sharing schemes,
our result implies that in every linear secret sharing scheme realizing the st-con
function in directed graphs, the total size of the shares is £2(n'-®).

Our lower bound has a few additional implications. First, it shows that, for
monotone span programs and linear secret sharing, undirected st-con is easier



than directed st-con. This is true since there is a monotone span program real-
izing undirected st-con whose size is n [10, 28] (see Example 1 below).

Furthermore, our lower bound supplies the best known separation between
the power of monotone and non-monotone span programs. Beimel and G4l [5]
proved that over infinite fields and large finite fields the directed st-con function
on graphs with n edges has a non-monotone span program of size O(n). Thus,
our result shows a separation of multiplicative factor of £2(n%?) between mono-
tone and non monotone span programs for directed st-con. Separations between
monotone and non-monotone models of computation is an important question
in complexity, e.g., the exponential separation between the power of monotone
and non-monotone circuits [38]. Separations between the power of monotone and
non-monotone span programs is interesting since monotone span programs can
be exponentially more powerful than monotone circuits [2].

Finally, our result implies the same lower bound for matching and bipartite
matching. This follows from the projection reduction from directed st-con to
bipartite matching. Babai, G4l, and Wigderson [2] constructed a non-monotone
span program, over large enough fields, for matching whose size is n (where n is
the number of edges in the graph). Thus, the same separation between monotone
and non-monotone span programs holds for matching.

1.3 Organization

In Section 2 we define monotone span programs. In Section 3 we give our first
proof of the lower bound and in Section 4 we give our second proof of the lower
bound.

2 Preliminaries

2.1 Monotone Span Programs

We start with the definition of monotone span programs. As discussed above,
monotone span programs are equivalent to linear secret sharing schemes; we use
monotone span programs to prove lower bounds on linear secret sharing schemes.

Definition 1 (Monotone Span Program [28]). A monotone span program
over a field F is a triplet M = (M, p,v), where M is a matriz over F, v is a
nonzero row vector called the target vector (it has the same number of coordinates
as the number of columns in M ), and p is a labeling of the rows of M by variables
from {x1,..., 2.} (every row is labeled by one variables, and the same variable
can label many rows).

A monotone span program accepts or rejects an input by the following crite-
rion. For every input u € {0,1}" define the sub-matriz M, of M consisting of
those rows whose labels are satisfied by the assignment u. The monotone span
program M accepts u if and only if v € span(M,,), i.e., some linear combination
of the rows of M., gives the target vector v. A monotone span program computes



a Boolean function f if it accepts exactly those inputs u where f(u) = 1. The
size of]/\/[\ is the number of rows in M .3

Monotone span programs compute only monotone functions, and every mono-
tone Boolean function can be computed by a monotone span program. The size

of the smallest monotone span program over F that computes f is denoted by
mSPr(f).

Ezxzample 1. Consider the undirected-st-con function, whose input is an undi-
rected graph with two designated nodes s and ¢ and its output is 1 iff the graph
contains a path from s to t. Formally, we consider the following function: The
input is an undirected graph with m + 2 nodes; the variables of the function
are the n = (m; 2) possible edges. Karchmer and Wigderson [28] construct a
monotone span program of size n for this function, that is, each edge labels ex-
actly one row in the program (a linear secret sharing scheme equivalent to this
program was previously shown in [10]).

We next describe this span program. Assume the nodes of the input graph
are zg,...,2m+1, where zg = s and z,,41 = t. The program has m + 2 columns
and n rows. For every edge (z;, 2;), where ¢ < j, there is a row in the program:;
in this row all entries in the row are zero, except for the ith entry which is 1
and the jth entry which is —1. The target vector is the same as the row labeled
by (s,t), that is, (1,0,...,0,—1). It can be proven that over every field F, this
program computes the undirected-st-con function.

2.2 The st-con Function

In the rest of the paper we will refer to the st-con function in directed graphs as
st-con. Formally, we consider the following function: The input is a directed graph
with m + 2 nodes. The graph contains two designated nodes s,t. The variables
are the n = m(m + 1) possible edges in the graph. The function outputs 1 iff
there is a directed path from node s to node ¢t. Our main results are summarized
below.

Theorem 1. For every field F
mSPg(st-con) = 2(n'5).

Theorem 2. For every finite field F and every linear secret sharing scheme over
F realizing st-con the total number of bits in the shares is

2(n*® log |F|).

3 The choice of the fixed nonzero vector v does not affect the size of the span program.
It is always possible to replace v by another nonzero vector v’ via a change of basis
without changing the function computed and the size of the span program. Most
often v is chosen to be the 1 vector (with all entries equal 1).



3 First Proof

3.1 Proof outline

We use the following theorem of G4l [23] to prove our lower bound.

Theorem 3 ([23]). Let f : {0,1}" — {0,1} be a monotone function. Let U
denote the set of maxterms of f, and V denote the set minterms of f, and let
U' C UV CV. If there exists a monotone span program of size s computing
f over a field F, then there exist matrices F, ..., F,, each matriz has |U’| rows
and |V'| columns (each row of the matriz is labeled by a w € U’ and each column
is labeled by a v € V') such that

1. 3" | F; =1 (that is, the sum of the matrices over F is the all-one matriz).
2. The non-zero entries in F; are only in rows labeled by a v € U’ such that
u; = 0 and in columns labeled by a v € V' such that v; = 1.

3. Z?Zl rankp(F;) < s.

In this section, we prove the result for GF(2), but the proof easily generalizes
to other finite fields. The skeleton of the proof is as follows. We appropriately
choose subsets U’, V'’ of the maxterms and minterms of st-con. We show that for
any matrices F1, ..., F, satisfying (1) and (2) in Theorem 3, there exist “many”
(£2(n)) matrices F,, such that a large fraction (£2(1)) of the entries of F, are
zero entries. Also, every F, has some “singleton” 1 entries at fixed positions,
which are “well-spread” over the matrix. We then prove that every matrix F,
with “many” zero entries has rank 2(n%?), this proof uses the partial knowledge
on the distribution of singletons, and the large number of zeros. By Theorem 3,
this implies that the size of every monotone span program computing st-con over
GF(2) has at least 2(n%®-n) = 2(n'%) rows.

3.2 Details

To apply Theorem 3 we need to understand the minterms and maxterms of
st-con. Every minterm of st-con is a simple directed paths from s to t. Every
maxterm can be specified by a partition S UT of V with s € S,t € T where
the edges in S x T are excluded and all other edges are included in the maxterm
(that is, the maxterm contains all edges in S x S, T x T, and T x S).

Defining U',V': Let w = m/d, where d is some constant to be fixed later.* We ar-
range the nodes of the graph in layers Lo, L1, ..., Lg41, where Ly = {s}, Lgy1 =
{t}, and all other layers contain w nodes. We consider the restriction st-con’
of the st-con function to directed graphs that contain only edges directed from
layer L; to layer L;11. Note that the number of edges in the restricted function
st-con’ is a constant fraction of the number of edges in the function st-con, so
every lower bound for st-con’ implies the same lower bound for st-con (up to a
constant factor). We define the subsets U’, V' as follows. Let V' be all the s-t

4 As we see later, d = 4 will do.



paths, that is, paths s,v1,...,vg,t, where v; € L;. Let U’ be the set of all s-¢
cuts where 1/2 of the nodes in each layer L;, where 1 < i < d, are in S (and
the other half is in 7). Additionally, {s} UL; C S and {t} ULy C T. Note that

V' = wh and [U'] = (4,) "

Assume there is a monotone span program over IF computing st-con’ and let
Fi,...,F, be the matrices guaranteed by Theorem 3. For an edge e = (z,y),
let R, denote the restriction of F, to rows labeled by a cut u € U’ such that
ue. = 0 (that is, the maxterm does not contain the edge (z,y)) and to columns

labeled by a path v € V' such that v, = 1 (that is, the path contains the edge

(z,v)). Note that R, has w2 = |V'|/w? columns and 0.25(7;?2)(1_2 = |U'|/4
rows (as we consider cuts such that z € S and y € T).° By (2) in Theorem 3,
rankp(R.) = rankg(F.). We say that R, covers (u,v) if ue = 0 and v, = 1.
Denote the set of edges e such that R, covers (u,v) by S(u,v).

We start with a few simple observations. Obseration 1 and Obseration 2

follow directly from (1) and (2) in Theorem 3 and the definition of the R.’s.

Observation 1. If |S(u,v)| = 1, then F.(u,v) = Re(u,v) = 1 for the edge e €
S(u,v). We refer to such entries (u,v) as “singletons”.

Observation 2. If |S(u,v)| is even, then R.(u,v) = 0 for some e € S(u,v).

Su
L1 L2 L3 L4

Ty

Fig. 1. An illustration of a path and a cut for which |S(u,v)| is even. The vertices in
S. are black and the vertices in T, are white. The edges in S(u,v) are the edge between
L1 and L2 and the edge between L3 and Ly4.

Lemma 1. Let ¢ = 1/4. For d = 4 there are at least c|U’'||V’| pairs (u,v) such
that |S(u,v)| is even.”

® For an edge e = (s,z) or e = (z,t), the matrix F. = 0 (by the definition of the
maxterms). We, therefore, ignore such matrices).

6 This is true if z € Lj for 2 < j < d—1; the number of rows for x € L1 or € Lq—1
is 0.5(,,)" % = |U"]/2.

" For d = 5, the constant ¢ is 0.5 and for any sufficiently large d, this constant ap-
proaches 1/2.



Proof. From the definition of U’, V', and (2) in Theorem 3, it follows that S(u, v)
is precisely the set of edges in v that belong to S, x T; (where the partition
Sy U T, specifies the maxterm w). Fix some cut u € U’. For a path v the size of
S(u,v) is even if the path has an even number of edges going from S, to T,,. For
d = 4 this is true if the vertex in Lo is in T, and the vertex in Lj is in 5, that
is, the edges in S(u,v) are the edge between L; and Lo and the edge between
L3 and Ly. See Fig. 3.2 for a description. Since half of the vertices of Ly are in
T, and half of the vertices of Lg are in S,,, for a quarter of the paths v € V'] the
size of S(u,v) is even. O

‘We now move to our two main lemmas.

Lemma 2. There exist at least cw? edges e such that R, contains at least a g

fraction of zeros, where c is the constant from Lemma 1.

Proof. We construct a set of edges as required, proceeding in iterations. By
Lemma 1, for all (u,v) the set

B = {(u,v) : |S(u,v)| is even}

must satisfy Re(u,v) = 0 for some edge e € S(u,v). That is, we need to “cover”
the set B by edges in this sense, where e covers (u,v) € B if R.(u,v) = 0.
Denote by B; the set of entries uncovered at the beginning of iteration i.
In particular, By = B. By Lemma 1, |B;| = ¢|U’||V’| for some constant ¢. We
start an iteration i if | B;| > ¢|U’||V’|/2. Since there are at most w?(d —1) —i <

u'l|v’|/2
w?d edges to choose from, at least one of them should cover at least cll#

uncovered entries (by the pigeon hole principle). We pick any of those e’s and
add it to the list. Note that the rectangle R, has at most |U’|/2-|V’|/w? entries®,
thus a fraction of at least ¢/d of the entries of R, are 0. Each selected edge e
covers at most |U’||V’|/2w? uncovered entries (the number of entries in R.).
Since we halt only when at least ¢|U’||V’|/2 pairs in B have been covered, at
least cw? iterations are needed. O

To complete the proof, it remains to show that every rectangle R. with
“many” zeros, as in Lemma 2, has high degree.

Lemma 3. Let R., for e = (x,y), be a rectangle with a fraction of at least ¢/d
zero entries. Then rankgr(2)(Re) = 2(n°?).

Proof. In the following proof we restrict our attention only to the rows and
columns of R.. First note that a fraction of at least ¢/2d of the rows contain at
a fraction of at least ¢/2d zero entries (otherwise the fraction of zero entries in
R, is less than ¢/2d- 14 (1 —¢/2d) - ¢/2d < ¢/d). Thus, the number of rows with
at least c|V’|/(2w?d) zero entries is at least ¢|U’|/(8d). We will show that these
rows contain many distinct rows, which will imply that R, has rank £2(n°?).

& This is the number of entries if € L1, otherwise this number is |U’|/4 - |V'|/w?.



Fix any row ug of R, with at least c|V’|/(2w?d) zero entries. We show that
the row ug can only appear in R, a small number of times (labeled by different
u’s ). Let M be the set of columns in which this row has zero entries; the size of
M is at least ¢|V'|/(4d). Let e = (x,y), where = belongs to layer L; for some j
and y € Lj41.

We first prove that M contains a subset M’ of paths of size € - w for some
sufficiently small constant € (to be fixed later) such that every two paths in M’
have no nodes in common except for x, y, s, t. Similarly to the proof of Lemma 2,
we construct this set iteratively. In the first iteration, we add to M’ some arbi-
trary path in M. We continue adding paths until there are ew paths. In iteration
1+ 1, we have added ¢ paths to M’. We prove that another path can be added
so that all the paths in M’ satisfy the invariant of being disjoint up to including
s, x,y,t. Any path using one of the w — i unused nodes in every layer L;, where
k # j,j 4+ 1, can be used here. The number of all columns of R, with this prop-
erty is at least (w —4)972 > (w(1 — €))?~2, thus the number of columns in R,
violating this property is at most

w2 (w(1—€))?"2 = wI 21— (1—€)42) ~ v 2e(d—2) = [V'|e(d—2) < |V'|ed.

(for a sufficiently small constant €). Taking ¢ < ¢/(4d?), there are at least
c|V'|/(4d) — |V'|ed > 1 paths in M satisfying this property.
Having proved M’ = {vl, ey v€|M|} as above exists, we consider the set of
rows
B'={u:e¢wuand |S(u,v)| >1 for every v € M'}.

Notice that for every u ¢ B’, where e ¢ u, there exists a v € M’ such that
|S(u,v)] = 1, thus, by Obseration 1, R.(u,v) = 1, however, R.(up,v) = 0
since v € M (where M is the set of columns with zero entries in the row wyg).
Thus, B’ is the set of rows in R, that can be equal to the row ug. Recall that
e = (z,y) € S(u,v) for every row u of R. and every column v of R, (by the
definition of R.). Thus, S(u,v) > 1 if the cut u does not contain at least one
edge on the path v in addition to the edge (x,y).

We next show that B’ is of negligible size. We do this by calculating the prob-
ability that a cut chosen with uniform distribution is B’. We choose a random
cut u = (S,T) by first choosing for each node in v; if its in .S or in T, then the
nodes corresponding to vo, and so on, where the inclusion in S or T is selected
at random according to the proportion of the remaining colors for that layer
(conditioned on the choices for the previous v;’s). The cut u forms a singleton
with a given v;, selected in iterations ¢, if the node in v; from Ly, for 5/ < j are in
S, and the rest of the nodes in v; are in T'. This happens with probability at least
(1/2 — €)972 = 1 — f. Thus, with probability at most f the cut u does not form
a singleton with a given v;. Note f is some constant. Therefore, |S(u,v)| > 1 for
every v € M’ with probability at most

flM/| — fe'w — 2—9(11}).

This implies that the size of B’ is at most 2~(*)|U’| /2.



Since there are at least ¢|U’|/(4d) rows with a fraction of at least ¢/(2d)
zeros, and each such row can appear at most 2-%(*)|U’|/2 in R,, the number of
distinct rows in R, is at least

c|U'|/(4d)

I VAT 90(w)
276(w)|U/|/2

This implies that rankgp(e) (Fe) = rankgp2) (Re) = log(2¢(®)) = 0(w) = 6(n®").
O

By Lemma 2 and Lemma 3, there are £2(n) matrices F, such that
rankgr(2) (Fe) = 0(n%?).

Thus, by Theorem 3, every monotone span program computing st-con has size
2(nt5).

4 Second Proof

In this proof we use a technique of [6] to prove lower bounds for monotone span
programs. They prove that if the set of minterms of f contains a “big” set of
self-avoiding minterms as defined below, then for every field F the size of every
monotone span program over F computing f is “big”.

Definition 2 (Self-Avoiding Minterms). Let f be a monotone Boolean func-
tion and V be the set of all of its minterms. Let V! C V be a subset of the
mianterms of f. We say that V' is self avoiding for f, if every v € V' contains
a set C(v) C v, called the core of v, such that the following three conditions are
satisfied.

1. ]Cw)] = 2.

2. The set C(v) uniquely determines v in V'. That is, no other minterm in V'
contains C(v).

3. For any subset Y C C(v) , the set

Sy=|J 4y

AeV', ANY #0
does not contain any minterm in V.

Note that (3) requires that Sy contains no minterm from f, not just none from
V.

Theorem 4. Let f be a monotone Boolean function, and let V' be a self-avoiding
subset of minterms for f. Then for every field F,

mSPg(f) > |V'| .



As in the first proof, we consider a graph with m+2 nodes, and let w = m/4.
We arrange the nodes of the graph in layers Lo, L1, ..., Ly, where Lo = {s}, L5 =
{t}, and all other layers contain w nodes. We denote the nodes in layer L;, where
1 <j <4bywvji,...,vj, We consider the restriction st-con’ of the st-con
function to directed graphs that contain only edges directed from layer L; to
layer L;1. We prove that every monotone span program for st-con’ has size
2(w?) = 2(n'®). The proof is by exhibiting a self-avoiding set of minterms as
defined in Definition 2.

The self-avoiding set for st-con’. For every a,b,c € {1,...,w} there is a path
Py p.c in the set:
S, Ul,av UQ,b» 1]3,C; v4,a» t.

That is, the indices of the nodes from L; and L, are equal. The core C(Pyp.c)
is {(v1,4,v2,); (U3,¢,V4,4) }- Clearly, the core determines the path P, .

We have to show that for every Y C C(P) the set Sy does not contain a
path from s to ¢. If |[Y| = 1 then Sy does not contain an edge from one layer.
E.g.,if Y = {(v1,4,v2,)} then Sy does not contain any edges going from V; to
Va.

We next consider the somewhat more complex case when |Y| = 2. In this
case Sy is composed of the following edges:

. (8,v1,q) from the first level.

. (v1,q,v2) for every b’ # b from the second level.

. (vop,v3,) for every ¢, and (vapr,v3 ) for every b’ from the third level.
. (v3,er,v4,4) for every ¢ # ¢ from the fourth level.

. (v4,q4,t) from the fifth level.

Tk W N~

Assume Sy contains a path from s to ¢. Since vy ; does not have any incoming
edges then the path has to pass through v, ; for some b’ # b. Thus it must pass
through v3 .. But v . has no outgoing edges in Sy, contradiction.

To conclude, we have proved that st-con’ has a self-avoiding set of size w
O(n'®) and Theorem 4 implies our main result — Theorem 1.

3:
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