Skip to main content

Investigating the Suitability of FPAAs for Evolved Hardware Spiking Neural Networks

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

Abstract

This paper investigates the use of a network of cascaded Field Programmable Analogue Arrays (FPAAs) to implement an evolved, analogue, Spiking Neural Network (SNN) pole balance controller. The SNN hardware platform interfaces to a simulated pole balancing model for evaluation. Performance of the evolved analogue hardware controller is compared to that of a software-based SNN controller. The evolved hardware network displays an improved tolerance to changing environments compared with networks evolved solely in simulation. The paper goes on to discuss the suitability of low density FPAA devices for analogue-centric hardware neural network platforms. It concludes by outlining some possible directions which address the observed limitations of using FPAAs for ANNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hohmann, S., Schemmel, J., Schurmann, F., Meier, K.: Exploring the parameter space of a genetic algorithm for training an analog neural network. In: Langdon, W.B., Cantu-Paz, E., Mathias, K., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 375–382 (2002)

    Google Scholar 

  2. Schemmel, J., Gruebl, A., Meier, K., Mueller, E.: Implementing Synaptic Plasticity in a VLSI Spiking Neural Network Model. In: Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN 2006). IEEE Press, Orlando (2006)

    Google Scholar 

  3. Schemmel, J., Meier, K., Mueller, E.: A new VLSI model of neural microcircuits including spike time dependent plasticity. In: Proceedings of IEEE International Joint Conference on Neural Networks, vol. 3 (2004)

    Google Scholar 

  4. Schemmel, J., Meier, K., Schürmann, F.: A VLSI Implementation of an Analog Neural Network Suited for Genetic Algorithms. In: Proceedings of Evolvable Systems: From Biology to Hardware: 4th International Conference, ICES 2001, Tokyo, Japan, October 3-5 (2001)

    Google Scholar 

  5. Berenson, D., Estevez, N., Lipson, H.: Hardware Evolution of Analog Circuits for In-situ Robotic Fault-Recovery. Evolvable Hardware 2, 12–19

    Google Scholar 

  6. Dong, P., Bilbro, G., Chow, M.: Implementation of Artificial Neural Network for Real Time Applications Using Field Programmable Analog Arrays. In: International Joint Conference on Neural Networks, IJCNN 2006, pp. 1518–1524 (2006)

    Google Scholar 

  7. Terry, M., Marcus, J., Farrell, M., Aggarwal, V., O’Reilly, U.: GRACE: Generative Robust Analog Circuit Exploration. In: 9th European Conference on Genetic Programming, EVO-Workshops, EVOHOT track (2006)

    Google Scholar 

  8. Pasero, E., Perri, M.: Hw-Sw codesign of a flexible neural controller through a FPGA-based neural network programmed in VHDL. In: Proceedings of IEEE International Joint Conference on Neural Networks, vol. 4 (2004)

    Google Scholar 

  9. Pérez-Uribe, A., Sanchez, E.: Structure-Adaptable Neurocontrollers: A Hardware-Friendly Approach. Biological and Artificial Computation: From Neuroscience to Technology, 1251–1259

    Google Scholar 

  10. Kumagai, T., Wada, M., Hashimoto, R., Utsugi, A.: Dynamical control by recurrent neural networks through genetic algorithms. International Journal of Adaptive Control and Signal Processing 13(4), 261–271 (1999)

    Article  MATH  Google Scholar 

  11. Ventresca, M., Ombuki, B.: Search Space Analysis of Recurrent Spiking and Continuous-time Neural Networks. In: International Joint Conference on Neural Networks, IJCNN 2006, pp. 4514–4521(2006)

    Google Scholar 

  12. Maher, J., Mc Ginley, B., Rocke, P., Morgan, F.: Intrinsic Hardware Evolution of Neural Networks in Reconfigurable Analogue and Digital Devices. In: Proceedings of the 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2006), vol. 00, pp. 321–322 (2006)

    Google Scholar 

  13. Rocke, P., Maher, J., Morgan, F.: Platform for Intrinsic Evolution of Analogue Neural Networks. In: Proceedings of the 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig 2005) on Reconfigurable Computing and FPGAs (2005)

    Google Scholar 

  14. Rocke, P., McGinley, B., Morgan, F., Maher, J.: Reconfigurable Hardware Evolution Platform for a Spiking Neural Network Robotics Controller. In: Diniz, P.C., Marques, E., Bertels, K., Fernandes, M.M., Cardoso, J.M.P. (eds.) ARCS 2007. LNCS, vol. 4419, pp. 373–378. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Bellis, S., Mahmood, K., Saha, C., Delaney, K., O’Mathuna, C., Pounds-Cornish, A., de Souza, G., Colley, M., Hagras, H., Clarke, G., et al.: FPGA Implementation of Spiking Neural Networks-an Initial Step towards Building Tangible Collaborative Autonomous Agents. In: Proceedings of 2004 International Conference on Field Programmable Technology, ICFPT, vol. 4, pp. 6–8 (2004)

    Google Scholar 

  16. Field Programmable Analogue Arrays, http://www.anadigm.com

  17. Maass, W.: Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  18. Gerstner, W., Kistler, W.: Spiking neuron models (2002)

    Google Scholar 

  19. Jython, http://www.jython.org/project/index.html

  20. Holland, J.: Adaptation in natural and artificial systems. University of Michigan press (1975)

    Google Scholar 

  21. Plante, J., Shaw, H., Mickens, L., Johnson-Bey, C.: Overview of field programmable analog arrays as enabling technology for evolvable hardware for high reliability systems. In: Proceedings of 2003 NASA/DoD Conference on Evolvable Hardware, pp. 77–78 (2003)

    Google Scholar 

  22. Hereford, J., Pruitt, C.: Robust sensor systems using evolvable hardware. In: Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware, pp. 161–168 (2004)

    Google Scholar 

  23. Amaral, J., Amaral, J., Santini, C., Tanscheit, R., Vellasco, M., Pacheco, M.: Towards evolvable analog artificial neural networks controllers. In: Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware (2004)

    Google Scholar 

  24. Harkin, J., et al.: Novel Interconnect Strategy for Large Scale Implementations of NNs. IEEE Soft Comp. in Indust. App. (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rocke, P., McGinley, B., Maher, J., Morgan, F., Harkin, J. (2008). Investigating the Suitability of FPAAs for Evolved Hardware Spiking Neural Networks. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics