Skip to main content

A Cellular Structure for Online Routing of Digital Spiking Neuron Axons and Dendrites on FPGAs

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

Abstract

As a step towards creating evolutionary developmental neural networks on FPGAs, a bio-inspired cellular structure suitable for online routing of axons and dendrites on FPGAs based on a new digital spiking neuron model (introduced previously by the authors) is proposed here. This structure is designed to allow changing the routing of the dendrites and axons and formation/elimination of synapses on the fly by dynamic partial reconfiguration of the LUTs. The feasibility and techniques for implementing this structure on a Xilinx Virtex-5 FPGA are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hausser, M., Mel, B.: Dendrites: bug or feature? Current Opinion in Neurobiology 13(3), 372–383 (2003)

    Article  Google Scholar 

  2. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  3. Maass, W.: On the Computational Power of Noisy Spiking Neurons. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 211–217. The MIT Press, Cambridge (1996)

    Google Scholar 

  4. Maass, W.: Noisy Spiking Neurons with Temporal Coding have more Computational Power than Sigmoidal Neurons. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 211. The MIT Press, Cambridge (1997)

    Google Scholar 

  5. Maass, W., Natschlager, Markram: Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations. NEURCOMP: Neural Computation 14, 2531–2560 (2002)

    Article  MATH  Google Scholar 

  6. Hampton, A.N., Adami, C.: Evolution of Robust Developmental Neural Networks. In: Artificial Life, I.X. (ed.) Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems (2004)

    Google Scholar 

  7. Roggen, D., Federici, D., Floreano, D.: Evolutionary morphogenesis for multi-cellular systems. Genetic Programming and Evolvable Machines 8(1), 61–96 (2007)

    Article  Google Scholar 

  8. Federici, D.: A regenerating spiking neural network. Neural Networks 18(5-6), 746–754 (2005)

    Article  Google Scholar 

  9. Gordon, T., Bentley, P.: Evolving hardware. In: Handbook of Nature-Inspired And Innovative Computing, pp. 387–432. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Chklovskii, D.B., Mel, B.W., Svoboda, K.: Cortical rewiring and information storage. In: Nature, October 2004, vol. 431(7010), pp. 782–788 (2004)

    Google Scholar 

  11. Chklovskii, D.B., Schikorski, T., Stevens, C.F.: Wiring Optimization in Cortical Circuits. Neuron. 34(3), 341–347 (2002)

    Article  Google Scholar 

  12. Chklovskii, D.B.: Synaptic Connectivity and Neuronal Morphology: Two Sides of the Same Coin. Neuron. 43(5), 609–617 (2004)

    Google Scholar 

  13. Upegui, A., Pena-Reyes, C.A., Sanchez, E.: An FPGA platform for on-line topology exploration of spiking neural networks. Microprocessors and Microsystems 29(5), 211–223 (2005)

    Article  Google Scholar 

  14. Shayani, H., Bentley, P.J., Tyrrell, A.M.: Hardware Implementation of a Bio-plausible Neuron Model for Evolution and Growth of Spiking Neural Networks on FPGA. In: Third NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2008 (2008)

    Google Scholar 

  15. Chua, L., Yang, L.: Cellular neural networks: theory. IEEE Transactions on Circuits and Systems 35(10), 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chua, L., Roska, T.: Cellular Neural Networks and Visual Computing: Foundation and Applications. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  17. Rodriguez-Andina, J., Moure, M., Valdes, M.: Features, Design Tools, and Application Domains of FPGAs. IEEE Transactions On Industrial Electronics 54(4), 1810 (2007)

    Article  Google Scholar 

  18. Thompson, A.: An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics. In: Higuchi, T., Iwata, M., Weixin, L. (eds.) ICES 1996. LNCS, vol. 1259, pp. 390–405. Springer, Heidelberg (1997)

    Google Scholar 

  19. Upegui, A., Sanchez, E.: Evolving Hardware with Self-reconfigurable Connectivity in Xilinx FPGAs. In: First NASA/ESA Conference on Adaptive Hardware and Systems. AHS 2006, pp. 153–162 (2006)

    Google Scholar 

  20. Gers, F., de Garis, H., Korkin, M.: CoDi-1Bit: A simplified cellular automata based neuron model. Artificial Evolution 1363, 315–333 (1998)

    Article  Google Scholar 

  21. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience). MIT Press, Cambridge (2007)

    Google Scholar 

  22. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  23. Laming, P., Syková, E.: Glial Cells: Their Role in Behaviour. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  24. Pfrieger, F.W.: Role of glia in synapse development. Current Opinion in Neurobiology 12(5), 486–490 (October 2002)

    Google Scholar 

  25. Xilinx: Difference-Based Partial Reconfiguration (February 2007)

    Google Scholar 

  26. Xilinx: Virtex-5 User Guide (February 2008)

    Google Scholar 

  27. Sedcole, P., Blodget, B., Becker, T., Anderson, J., Lysaght, P.: Modular dynamic reconfiguration in Virtex FPGAs. IEE Proceedings of Computers and Digital Techniques 153(3), 157–164 (2006)

    Article  Google Scholar 

  28. Upegui, A., Sanchez, E.: Evolving Hardware by Dynamically Reconfiguring Xilinx FPGAs. Evolvable Systems: From Biology to Hardware 3637, 56–65 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shayani, H., Bentley, P., Tyrrell, A.M. (2008). A Cellular Structure for Online Routing of Digital Spiking Neuron Axons and Dendrites on FPGAs. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics