Skip to main content

Fault-Tolerant Memory Design and Partitioning Issues in Embryonics

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

  • 779 Accesses

Abstract

In the quest of designing extremely fault-tolerant computing systems drawing inspiration from nature is one avenue worth exploring. Embryonics (embryonic electronics) is a research project that attempts to implement features otherwise available in the world of biology to design robust, massively parallel arrays of processors. This paper elaborates on some of the design approaches undertaken in order to ensure a high level of fault-tolerance as well as on how to partition the array in order to optimally make use of spare resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, P.E. (ed.): Knapsack Problem. Dictionary of Algorithms and Data Structures, U.S. National Institute of Standards and Technology, October 11 (2007)

    Google Scholar 

  2. Blaum, M., Goodman, R., McEliece, R.: The Reliability of Single-Error Protected Computer Memories. IEEE Transactions on Computers 37(1), 114–119 (1988)

    Article  Google Scholar 

  3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  4. Khuri, S., Bäck, T., Heitkötter, J.: The Zero/One Multiple Knapsack Problem and Genetic Algorithms. In: Proc. 1994 ACM Symposium of Applied Computation (1994)

    Google Scholar 

  5. Koren, I., Mani Krishna, C.: Fault Tolerant Systems. Morgan Kaufmann, San Francisco (2007)

    MATH  Google Scholar 

  6. Ku, S., Lee, B.: A set-oriented genetic algorithm and the knapsack problem. In: Proc. Congress on Evolutionary Computation, vol. 1, pp. 650–654 (2001)

    Google Scholar 

  7. Mange, D., Tomassini, M. (eds.): Bio-inspired Computing Machines: Towards Novel Computational Architectures. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland (1998)

    Google Scholar 

  8. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Toward Robust Integrated Circuits: The Embryonics Approach. In: Proc. of the IEEE, April 2000, vol. 88(4), pp. 516–541 (2000)

    Google Scholar 

  9. Mange, D., Stauffer, A., Peparolo, L., Tempesti, G.: A Macroscopic View of Self-Replication. Proceedings of the IEEE 92(12) (December 2004)

    Google Scholar 

  10. Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Artificial Cell Division. Biosystems 76(1-3), 157–167 (2004)

    Article  Google Scholar 

  11. Prodan, L., Mange, D., Tempesti, G.: The Embryonics Project: Specifications of the MUXTREE Field-Programmable Gate Array. Technical Report No. IC/2002/03, School of Computer and Communication Sciences, Logic Systems Laboratory, Swiss Federal Institute of Technology (EPFL), Switzerland (January 2002)

    Google Scholar 

  12. Prodan, L., Udrescu, M., Vladutiu, M.: Survivability of Embryonic Memories: Analysis and Design Principles. In: IEEE NASA/DoD Conference on Evolvable Hardware (EH 2005), Washington DC, USA, June 29 - July 1, pp. 280–289 (2005)

    Google Scholar 

  13. Prodan, L., Udrescu, M., Vladutiu, M.: Multiple-Level Concatenated Coding in Embryonics: A Dependability Analysis. In: GECCO (ACM-SIGEVO), Washigton DC, USA, June 25-29, pp. 941–948. ACM Press, New York (2005)

    Google Scholar 

  14. Prodan, L., Udrescu, M., Boncalo, O., Vladutiu, M.: Design for Dependability in Emerging Technologies. ACM Journal of Emerging Technologies in Computing 3(2) (Article 6) (July 2007)

    Google Scholar 

  15. Rao, T.R.N., Fujiwara, E.: Error-Control Coding for Computer Systems. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  16. Tempesti, G., Mange, D., Stauffer, A.: Self-Replicating and Self-Repairing Multicellular Automata. Artificial Life 4(3), 259–282 (1998)

    Article  Google Scholar 

  17. Tempesti, G., Teuscher, C.: Biology Goes Digital: An array of 5,700 Spartan FPGAs brings the BioWall to life. XCell Journal, Fall, 40–45 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prodan, L., Udrescu, M., Vladutiu, M. (2008). Fault-Tolerant Memory Design and Partitioning Issues in Embryonics. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics