Abstract
This paper proposes the hardware implementation of a novel evolutionary algorithm inspired by protein/substrate binding exploited in artificial immune networks. The immune network inspired evolutionary algorithm has been developed in direct response to an application in clinical neurology, the diagnosis of Parkinson’s Disease, but is now being considered for other more demanding applications where real-time processing of data is required. The inspiration for the algorithm and its proposed implementation in hardware is presented. The effectiveness of the approach is shown by results obtained from a software implementation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)
de Castro, L.N., Von Zuben, F.J.: aiNet: An Artificial Immune Network for Data Analysis in Data Mining, pp. 231–259. Idea Group Publishing, USA (2001)
Neal, M.: Meta-stable Memory in an Artificial Immune Network. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 168–180. Springer, Heidelberg (2003)
Cutello, V., Nicosia, G.: The Clonal Selection Principle for in silico and in vitro Computing Recent Developments. In: de Castro, L.N., von Zuben, F.J. (eds.) Biologically Inspired Computing. Idea Group Publishing (2004)
Garrett, S.M.: Parameter-Free Clonal Selection. In: CEC 2004. Congress on Evolutionary Computation, vol. 1, pp. 1052–1058 (2004)
Forrest, S., Perelson, A.S., Allen, L., Cherukuri, L.: Self-nonself Discrimination in a Computer. In: IEEE Symposium on Research in Security and Privacy. IEEE Computer Society Press, Los Alamitos (1994)
Stibor, T., Timmis, J., Eckert, C.: A Comparative Study of Real-Valued Negative Selection to Statistical Anomaly Detection Techniques. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 262–275. Springer, Heidelberg (2005)
Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol (Inst. Pasteur.) 125C, 373–389 (1974)
Farmer, J.D.N., Packard, H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica D 22, 187–204 (1986)
Perelson, A.S.: Immune network theory. Immunological Review 110, 5–36 (1989)
Playfer, J.R.: Parkinson’s disease. Postgrad Med. J 73(859), 257–264 (1997)
Smith, S.L., Gaughan, P., Halliday, D., et al.: Diagnosis of Parkinson’s Disease using Evolutionary Algorithms. Genetic Programming and Evolvable Machines 8(4), 433–447 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Smith, S.L., Greensted, A., Timmis, J. (2008). Hardware Acceleration of an Immune Network Inspired Evolutionary Algorithm for Medical Diagnosis. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-85857-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85856-0
Online ISBN: 978-3-540-85857-7
eBook Packages: Computer ScienceComputer Science (R0)