Skip to main content

Hierarchical Modeling of Combustion Processes

  • Conference paper
High Performance Computing on Vector Systems 2008

Abstract

Combustion processes are governed by a strong coupling of chemical kinetics, molecular transport processes and flow. Mathematical modeling is complicated by the existence of scaling problems (time-, velocity- and length scales). In order to allow a reliable numerical simulation of practical combustion systems, models have to be devised which do not neglect or over-simplify the underlying physical and chemical processes. In this paper hierarchical modeling concepts are presented which allow the development of realistic and reliable modeling tools based on information from detailed simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aouina, Y., Gutheil, E., Maas, U., Riedel, U., Warnatz J.: Mathematical Modeling of Droplet Heating, Vaporization, and Ignition Including Detailed Chemistry. Comb. Sci. Tech. 173, 91–114 (2001)

    Article  Google Scholar 

  2. Bauer, J., Bykov, V., Maas, U.: Implementation of ILDMs based on a representation in generalized coordinates. In: P. Wesseling, E. Onate, J. Periaux (eds.) Proc. European Conference on Computational Fluid Dynamics, Egmond aan Zee (2006)

    Google Scholar 

  3. Baum, M.: Direct Numerical Simulation — A tool to study turbulent reacting flows. Annual Reviews of Computational Physics, D. Staufer (ed.), vol. 5, World Scientific Publishing Company (1997)

    Google Scholar 

  4. Bird, R., Stewart, W., Lightfoot, E.: Transport Phenomena, Wiley Interscience, New York (1960)

    Google Scholar 

  5. Blasenbrey, T., Schmidt, D., Maas, U.: Automatically Simplified Chemical Kinetics and Molecular Transport and its Application in Premixed and Non-Premixed Laminar Flame Calculations. Proc. Comb. Inst. 28, 505–511 (1995)

    Google Scholar 

  6. Bykov, V., Maas, U.: Extension of the ILDM method to the domain of slow chemistry. Proc. Comb. Inst. 31(1), 465–472 (2007)

    Article  Google Scholar 

  7. Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifold. Comb. Theory and Modell. 11(6), 839–862 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Stårner, S., Masri, A.R.: Further Study of Spray Combustion in a Simple Turbulent Jet Flow. In: Proc. 15th Australasian Fluid Mechanics Conference, Sydney (2004)

    Google Scholar 

  9. Cho, S., Yetter, R., Dryer, F.: A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction. J. Comput. Phys. 102, 160–179 (1992)

    Article  MATH  Google Scholar 

  10. Dopazo, C., O’Brien, E.: An approach to the autoignition of a turbulent mixture. Acta Astronaut 1, 1239–1266 (1974)

    Article  MATH  Google Scholar 

  11. Ern, A., Giovangigli, V.: Multicomponent Transport Algorithms, Lecture Notes in Physics, Springer, Berlin Heidelberg New York (1994)

    MATH  Google Scholar 

  12. Haworth, D., Pope, S.B.: A generalized Langevin model for turbulent flows. Physics of Fluids 29, 387–405 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hirschfelder, J., Curtiss, C.: Theory of Propagation of Flames. Part I: General Equations. In: Proc. 3rd Symposium (International) on Combustion, Williams and Wilkins, Baltimore (1949)

    Google Scholar 

  14. Hirschfelder, J., Curtiss, C.: Molecular Theory of Gases and Liquids. John Wiley & Sons Inc., New York (1964)

    Google Scholar 

  15. Juneja, A., Pope, S.B.: A DNS study of turbulent mixing of two passive scalars. Physics of Fluids 8, 2161–2184 (1996)

    Article  MATH  Google Scholar 

  16. Libby, P., Williams, F.: Turbulent Reacting Flows. Academic Press, New York (1994)

    MATH  Google Scholar 

  17. Maas, U.: Coupling of Chemical Reaction with Flow and Molecular Transport. Applications of Mathematics 3, 249–266 (1995)

    MathSciNet  Google Scholar 

  18. Maas, U.: Efficient Numerical Calculation of Intrinsic Low-Dimensional Manifolds in Composition Space. Computing and Visualization in Science 1(2), 69–81 (1997)

    Article  Google Scholar 

  19. Maas, U.: Mathematical Modeling of the Coupling of Chemical Kinetics With Flow and Molecular Transport. Scientific Computing in Chemical Engineering II, Springer (1999)

    Google Scholar 

  20. Maas, U., Pope, S.B.: Implementation of Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds. Proc. Comb. Inst. 24, 103–112 (1992)

    Google Scholar 

  21. Maas, U., Pope, S.B.: Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space. Comb. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  22. Maas, U., Pope, S.B.: Laminar Flame Calculations using Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds. Proc. Comb. Inst. 25, 1349–1356 (1994)

    Google Scholar 

  23. Maas, U., Thévenin, D.: Correlation Analysis of Direct Numerical Simulation Data of Turbulent Non-Premixed Flames. Proc. Comb. Inst. 27, 1183–1189 (1998)

    Google Scholar 

  24. Merci, B., Naud, B.D., Roekaerts, D., Maas, U.: Joint Scalar versus Joint Velocity-Scalar PDF Simulations of Bluff-Body Stabilised Flames with REDIM. Flow, Turbulence and Combustion, in print (2008)

    Google Scholar 

  25. Nafe, J., Maas, U.: A General Algorithm for Improving ILDMs. Comb. Theory and Modell. 6(4), 697–709 (2002)

    Article  Google Scholar 

  26. Peters, N.: Turbulent Combustion. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  27. Poinsot, T., Candel, S., Trouve, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1996)

    Article  Google Scholar 

  28. Poinsot, T., Haworth, D., Bruneaux, G.: A law of the wall model for turbulent premixed combustion. Comb. Flame 95, 118–133 (1993)

    Article  Google Scholar 

  29. Rybakov, A., Maas, U.: In preparation (2008)

    Google Scholar 

  30. Stauch, R., Maas, U.: The auto-ignition of single n-heptane/iso-octane droplets. Int. J. Heat and Mass Transfer 50, 3047–3053 (2007)

    Article  MATH  Google Scholar 

  31. Stauch, R., Maas, U.: The ignition of methanol droplets in a laminar convective environment. Comb. Flame 153, 45–57 (2008)

    Google Scholar 

  32. Taylor, G.: Diffusion by continuous movement. Proc. Lond. Math. Soc. 20, 196–212 (1921)

    Article  Google Scholar 

  33. Tsai, W., Schmidt, D., Maas, U.: Direct Numerical Simulations of Spark Ignition of H2/Air-Mixture in a Turbulent Flow. In: E. Krause, W. Jäger (eds.) Proc. High Performance Computing in Science and Engineering 2000, Springer-Verlag Berlin Heidelberg, 433–441 (2001)

    Google Scholar 

  34. Warnatz, J.: Resolution of Gas Phase and Surface Chemistry into Elementary Reactions. Proc. Comb. Inst. 24, 553–579 (1993)

    Google Scholar 

  35. Warnatz, J., Maas, U., Dibble, R.: Combustion. 4 edn., Springer-Verlag, Berlin Heidelberg (2004)

    Google Scholar 

  36. Zhu, M., Bray, K.N.C., Rumberg, O., Rogg, B.: PDF Transport Equations for Two-Phase Reactive Flows and Sprays. Comb. Flame 122, 327–338 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Resch Sabine Roller Katharina Benkert Martin Galle Wolfgang Bez Hiroaki Kobayashi Toshio Hirayama

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maas, U., Bykov, V., Rybakov, A., Stauch, R. (2009). Hierarchical Modeling of Combustion Processes. In: Resch, M., et al. High Performance Computing on Vector Systems 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85869-0_11

Download citation

Publish with us

Policies and ethics