Skip to main content

Meandering of Wing-Tip Vortices Interacting with a Cold Jet in the Extended Wake

  • Conference paper
  • 634 Accesses

Abstract

The spatial development of a vortex wake behind a half wing is simulated up to the extended near field. Results from wind tunnel measurements are used as inflow boundary conditions for an LES of the wake region. An aircraft engine is modeled in the experimental setup, where a cold jet is driven by pressurized air. The engine is mounted in two different positions under the wing model to investigate the influence of the location of the engine jet on the vortex wake. The numerical simulations of the wake are able to predict trajectories and instabilities of the vortex core. A position of the engine towards the root of the wing creates a smaller deflection of the vortex and excites fewer wave modes of the vortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S., Raju, D., Chaturvedi, S., Jha, R.: Modal analysis for a bounded-wave EMP simulator — Part I: effect of test object. IEEE Transactions on Electromagnetic Compatibility 47(1), 171–182 (2005)

    Article  Google Scholar 

  2. Baker, G.R., Barker, S.J., Bofah, K.K., Saffman, P.G.: Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65, 325–336 (1974)

    Article  Google Scholar 

  3. Beninati, M.L., Marshall, J.S.: An experimental study of the effect of free-stream turbulence on a trailing vortex. Experiments in Fluids 38, 244–257 (2005). 10.1007/s00348-004-0904-1ELECTR:2

    Article  Google Scholar 

  4. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  5. Bristol, R.L., Ortega, J.M., Marcus, P.S.: On cooperative instabilities of parallel vortex pairs. J. Fluid Mech. 517, 331–358 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brunet, S., Garnier, F., Sagaut, P.: Crow instability effects on the exhaust plume mixing and condensation. In: Third International Workshop on Vortex Flows and Related Numerical Methods, European Series in Applied and Industrial Mathematics, vol. 7, pp. 69–79 (1999). URL http://www.emath.fr/proc/Vol.7/

  7. Crouch, J.D. Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311–330 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crow, S.C. Stability theory for a pair of trailing vortices. AIAA J. 8, 2172–2179 (1970)

    Article  Google Scholar 

  9. Devenport, W.J. Rife, M.C. Liapis, S.I. Follin, G.J. The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67–106 (1996)

    Article  MathSciNet  Google Scholar 

  10. Fabre, D. Jacquin, L. Stability of a four-vortex aircraft wake model. Phys. Fluids 12(10), 2438–2443 (2000)

    Article  MathSciNet  Google Scholar 

  11. Fabre, D. Jacquin, L. Loof, A. Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319–328 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fares, E., Schröder, W.: Analysis of wakes and wake-jet interaction. In: Notes on Numerical Fluid Mechanics, vol. 84, pp. 57–84 (2003)

    Google Scholar 

  13. Feeny, B.F., Kappagantu, R.: On the physical interpretation of proper orthogonal modes in vibrations. Journal of Sound and Vibration 211(4), 607–616 (1998)

    Article  Google Scholar 

  14. Gago, C.F., Brunet, S., Garnier, F.: Numerical Investigation of Turbulent Mixing in a Jet/Wake Vortex Interaction. AIAA J. 40(2), 276–284 (2002)

    Article  Google Scholar 

  15. Gallaire, F., Chomaz, J.M.: Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223–253 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gerz, T., Holzäpfel, F.: Wing-tip vortices, turbulence, and the distribution of emissions. AIAA J. 37(10), 1270–1276 (1999)

    Article  Google Scholar 

  17. Ghosal, S., Moin, P.: The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118, 24–37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Holzäpfel, F., Gerz, T., Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5, 95–108 (2001)

    Article  MATH  Google Scholar 

  19. Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Wake vortex evolution and decay mechanisms in the atmosphere. In: Proceedings of 3rd ONERA–DLR Aerospace Symposium, p. 10. Paris, France (2001)

    Google Scholar 

  20. Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7, 263–275 (2003)

    Article  MATH  Google Scholar 

  21. Huppertz, G., Klaas, M., Schröder, W.: Engine jet/vortex interaction in the near wake of an airfoil. In: AIAA 36th Fluid Dynamics Conference. San Francisco, CA, U.S.A (2006). AIAA-Paper 2006-3747

    Google Scholar 

  22. Huppertz, G., Schröder, W.: Vortex/engine jet interaction in the near wake of a swept wing. In: 77th Annual Meeting of the GAMM. Berlin, Germany (2006)

    Google Scholar 

  23. Jacquin, L., Fabre, D., Sipp, D., Theofilis, V., Vollmers, H.: Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7, 577–593 (2003)

    Article  Google Scholar 

  24. Jacquin, L., Pantano, C.: On the persistence of trailing vortices. J. Fluid Mech. 471, 159–168 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Labbe, O., Maglaras, E., Garnier, F.: Large-eddy simulation of a turbulent jet and wake vortex interaction. Comput. & Fluids 36(4), 772–785 (2007)

    Article  Google Scholar 

  27. Laporte, F., Corjon, A.: Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12(5), 1016–1031 (2000)

    Article  MathSciNet  Google Scholar 

  28. Laporte, F., Leweke, T.: Elliptic Instability of Counter-Rotating Vortices: Experiment and Direct Numerical Simulation. AIAA J. 40(12), 2483–2494 (2002)

    Article  Google Scholar 

  29. Le Dizès, S., Laporte, F.: Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169–201 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Leweke, T., Williamson, C.H.K.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85–119 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications — Part I: Theory. Journal of Sound Vibration 252, 527–544 (2002)

    Article  MathSciNet  Google Scholar 

  32. Loiseleux, T., Chomaz, J.M., Huerre, P.: The effect of swirl on jets and wakes: Linear instability of the rankine vortex with axial flow. Physics of Fluids 10(5), 1120–1134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lu, G., Lele, S.K.: Inviscid instability of compressible swirling mixing layers. Physics of Fluids 11(2), 450–461 (1999)

    Article  MathSciNet  Google Scholar 

  34. Meinke, M., Schulz, C., Rister, T.: LES of spatially developing jets. In: Computation and Visualization of Three-Dimensional Vortical and Turbulent Flows, Notes on Numerical Fluid Mechanics. Vieweg Verlag (1997)

    Google Scholar 

  35. Meunier, P., Dizes, S.L., Leweke, T.: Physics of vortex merging. C. R. Physique 6, 431–450 (2005). http://dx.doi.org/10.1016/j.crhy.2005.06.003

    Article  Google Scholar 

  36. Meunier, P., Leweke, T.: Three-dimensional instability during vortex merging. Phys. Fluids 13(10), 2747–2750 (2001)

    Article  Google Scholar 

  37. Meunier, P., Leweke, T.: Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 124–159 (2005)

    Article  MathSciNet  Google Scholar 

  38. Miake-Lye, R., Martinez-Sanchez, M., Brown, R.C., Kolb, C.E.: Plume and wake dynamics, mixing, and chemistry behind a high speed civil transport aircraft. J. Aircraft 30(4), 467–479 (1993)

    Article  Google Scholar 

  39. Özger, E., Schell, I., Jacob, D.: On the Structure and Attenuation of an Aircraft Wake. J. Aircraft 38(5), 878–887 (2001)

    Article  Google Scholar 

  40. Paoli, R., Laporte, F., Cuenot, B., Poinsot, T.: Dynamics and mixing in jet/vortex interactions. Phys. Fluids 15(7), 1843–1860 (2003). 10.1063/1.1575232

    Article  MathSciNet  Google Scholar 

  41. Saudreau, M., Moet, H.: Characterization of Extended Near-Field and Crow Instability in the Far-Field of a Realistic Aircraft Wake. In: P. Neittaanmäki, T. Rossi, S. Korotov, E. Onate, J. Periaux, D. Knörzer (eds.) European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 (2004)

    Google Scholar 

  42. Schlichting, H., Truckenbrodt, E.A.: Aerodynamik des Flugzeuges, vol. 2. Springer, Berlin, Heidelberg, New York, Barcelona, Hongkong, London, Mailand, Paris, Singapur, Tokio (2001)

    Google Scholar 

  43. Sipp, D.: Weakly nonlinear saturation of short-wave instabilities in a strained Lamb-Oseen vortex. Phys. Fluids 12(7), 1715–1729 (2000)

    Article  MathSciNet  Google Scholar 

  44. Spalart, P.R.: Airplane trailing vortices. Annual Review of Fluid Mechanics 30(1), 107–138 (1998)

    Article  MathSciNet  Google Scholar 

  45. Stumpf, E.: Untersuchung von 4-Wirbelsystemen zur Minimierung von Wirbelschleppen und ihre Realisierung an Transportflugzeugen. Ph.D. thesis, Aerodyn. Inst., RWTH Aachen (2003)

    Google Scholar 

  46. Stumpf, E., Wild, J., Dafa’Alla, A.A., Meese, E.A.: Numerical simulations of the wake vortex near field of high-lift configurations. In: P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, D. Knörzer (eds.) European Congress on Computational Methods in Applied Sciences an Engineering ECCOMAS 2004. Jyväskylä (2004)

    Google Scholar 

  47. Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluids 2(1), 76–80 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yin, X.Y., Sun, D.J., Wei, M.J., Wu, J.Z.: Absolute and convective instability character of slender viscous vortices. Phys. Fluids 12, 1062–1072 (2000). 10.1063/1.870361

    Article  MathSciNet  Google Scholar 

  49. Zurheide, F., Schröder, W.: Numerical analysis of wing vortices. In: C. Tropea, S. Jakirlic, H. J. Heinemann, R. Henke, H. Hönlinger (eds.) New Results in Numerical and Experimental Fluid Mechanics VI, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96, pp. 17–25. Springer Berlin, Heidelberg, New York (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Resch Sabine Roller Katharina Benkert Martin Galle Wolfgang Bez Hiroaki Kobayashi Toshio Hirayama

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zurheide, F.T., Meinke, M., Schröder, W. (2009). Meandering of Wing-Tip Vortices Interacting with a Cold Jet in the Extended Wake. In: Resch, M., et al. High Performance Computing on Vector Systems 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85869-0_20

Download citation

Publish with us

Policies and ethics