Skip to main content

Comparison of Point Sets and Sequences for Quasi-Monte Carlo and for Random Number Generation

(Invited Paper)

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5203))

Abstract

Algorithmic random number generators require recurring sequences with very long periods and good multivariate uniformity properties. Point sets and sequences for quasi-Monte Carlo numerical integration need similar multivariate uniformity properties as well. It then comes as no surprise that both types of applications share common (or similar) construction methods. However, there are some differences in both the measures of uniformity and the construction methods used in practice. We briefly survey these methods and explain some of the reasons for the differences.

This work was supported NSERC-Canada Grant Number ODGP0110050 and by a Canada Research Chair to the author.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1998)

    Google Scholar 

  2. L’Ecuyer, P.: Uniform random number generation. Annals of Operations Research 53, 77–120 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. L’Ecuyer, P.: Uniform random number generation. In: Henderson, S.G., Nelson, B.L. (eds.) Simulation. Handbooks in Operations Research and Management Science, ch.3, pp. 55–81. Elsevier, Amsterdam (2006)

    Google Scholar 

  4. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  5. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, New York (2000)

    Google Scholar 

  6. L’Ecuyer, P., Buist, E.: Simulation in Java with SSJ. In: Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proceedings of the 2005 Winter Simulation Conference, pp. 611–620. IEEE Press, Pistacaway (2005)

    Chapter  Google Scholar 

  7. L’Ecuyer, P.: Pseudorandom number generators. In: Platen, E., Jaeckel, P. (eds.) imulation Methods in Financial Engineering. Encyclopedia of Quantitative Finance, Wiley, Chichester (forthcoming, 2008)

    Google Scholar 

  8. Deng, L.Y.: Efficient and portable multiple recursive generators of large order. ACM Transactions on Modeling and Computer Simulation 15(1), 1–13 (2005)

    Article  Google Scholar 

  9. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Transactions on Mathematical Software, Article 22 33(4) (2007)

    Google Scholar 

  10. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based on linear recurrences modulo 2. ACM Transactions on Mathematical Software 32(1), 1–16 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Mathematics of Computation 67, 299–322 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature? In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 16–55. Springer, Berlin (2000)

    Google Scholar 

  13. L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic, Boston (2002)

    Google Scholar 

  14. L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation method for Markov chains. Operations Research (to appear, 2008)

    Google Scholar 

  15. Hickernell, F.J., Sloan, I.H., Wasilkowski, G.W.: On strong tractability of weighted multivariate integration. Mathematics of Computation 73(248), 1903–1911 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ben-Ameur, H., L’Ecuyer, P., Lemieux, C.: Combination of general antithetic transformations and control variables. Mathematics of Operations Research 29(4), 946–960 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Management Science 46(9), 1214–1235 (2000)

    Article  Google Scholar 

  18. Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Transactions on Modeling and Computer Simulation 8(1), 71–102 (1998)

    Article  MATH  Google Scholar 

  19. Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM Journal on Numerical Analysis 13(6), 904–914 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  21. L’Ecuyer, P., Lemieux, C.: Quasi-Monte Carlo via linear shift-register sequences. In: Proceedings of the 1999 Winter Simulation Conference, pp. 632–639. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  22. Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Berlin (1999)

    MATH  Google Scholar 

  23. Liu, R., Owen, A.B.: Estimating mean dimensionality (manuscript, 2003)

    Google Scholar 

  24. Wang, X., Sloan, I.H.: Why are high-dimensional finance problems often of low effective dimension? SIAM Journal on Scientific Computing 27(1), 159–183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension. The Journal of Computational Finance 1(1), 27–46 (1997)

    Google Scholar 

  26. Avramidis, T., L’Ecuyer, P.: Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance-gamma model. Management Science 52(12), 1930–1944 (2006)

    Article  Google Scholar 

  27. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)

    MATH  Google Scholar 

  28. Imai, J., Tan, K.S.: A general dimension reduction technique for derivative pricing. Journal of Computational Finance 10(2), 129–155 (2006)

    Google Scholar 

  29. Morokoff, W.J.: Generating quasi-random paths for stochastic processes. SIAM Review 40(4), 765–788 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, X., Sloan, I.H.: Brownian bridge and principal component analysis: Toward removing the curse of dimensionality. IMA Journal of Numerical Analysis 27, 631–654 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. L’Ecuyer, P., Panneton, F.: F 2-linear random number generators. In: Alexopoulos, C., Goldsman, D. (eds.) Advancing the Frontiers of Simulation: A Festschrift in Honor of George S. Fishman. Springer, New York (to appear, 2007)

    Google Scholar 

  32. L’Ecuyer, P.: Good parameters and implementations for combined multiple recursive random number generators. Operations Research 47(1), 159–164 (1999)

    MATH  MathSciNet  Google Scholar 

  33. L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice structure. Mathematics of Computation 68(225), 249–260 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in Operations Research. Springer, New York (1996)

    MATH  Google Scholar 

  35. Wahba, G.: Spline Models for Observational Data. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    Google Scholar 

  36. L’Ecuyer, P., Couture, R.: An implementation of the lattice and spectral tests for multiple recursive linear random number generators. INFORMS Journal on Computing 9(2), 206–217 (1997)

    MATH  MathSciNet  Google Scholar 

  37. Marsaglia, G., Zaman, A.: A new class of random number generators. The Annals of Applied Probability 1, 462–480 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tezuka, S., L’Ecuyer, P., Couture, R.: On the add-with-carry and subtract-with-borrow random number generators. ACM Transactions of Modeling and Computer Simulation 3(4), 315–331 (1994)

    Article  Google Scholar 

  39. Couture, R., L’Ecuyer, P.: Distribution properties of multiply-with-carry random number generators. Mathematics of Computation 66(218), 591–607 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Goresky, M., Klapper, A.: Efficient multiply-with-carry random number generators with maximal period. ACM Transactions on Modeling and Computer Simulation 13(4), 310–321 (2003)

    Article  Google Scholar 

  41. Golomb, S.W.: Shift-Register Sequences. Holden-Day, San Francisco (1967)

    MATH  Google Scholar 

  42. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer Academic Publishers, Norwell (1995)

    MATH  Google Scholar 

  43. L’Ecuyer, P.: Tables of maximally equidistributed combined LFSR generators. Mathematics of Computation 68(225), 261–269 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  45. L’Ecuyer, P.: Maximally equidistributed combined Tausworthe generators. Mathematics of Computation 65(213), 203–213 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  46. L’Ecuyer, P., Panneton, F.: A new class of linear feedback shift register generators. In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) Proceedings of the 2000 Winter Simulation Conference, pp. 690–696. IEEE Press, Pistacaway (2000)

    Google Scholar 

  47. Dick, J., Sloan, I.H., Wang, X., Wozniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numerische Mathematik 103, 63–97 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Mathematics and Computers in Simulation 75, 903–920 (2006)

    MATH  MathSciNet  Google Scholar 

  49. Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte Carlo rules that achieve strong tractability error bounds in weighted Sobolev spaces. Mathematics of Computation 71, 1609–1640 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM Journal on Scientific Computing 28(16), 2162–2188 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. Journal of Complexity 22, 4–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Dick, J., Sloan, I.H., Wang, X., Wozniakowski, H.: Liberating the weights. Journal of Complexity 20(5), 593–623 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  53. Kuo, F.Y., Sloan, I.H.: Lifting the curse of dimensionality. Notices of the AMS 52(11), 1320–1328 (2005)

    MATH  MathSciNet  Google Scholar 

  54. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Comput. Math. and Math. Phys. 7, 86–112 (1967)

    Article  MathSciNet  Google Scholar 

  55. Faure, H.: Discrépance des suites associées à un système de numération en dimension s. Acta Arithmetica 61, 337–351 (1982)

    MathSciNet  Google Scholar 

  56. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatshefte für Mathematik 104, 273–337 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  57. Niederreiter, H., Xing, C.: The algebraic-geometry approach to low-discrepancy sequences. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 139–160. Springer, New York (1998)

    Google Scholar 

  58. L’Ecuyer, P.: Polynomial integration lattices. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 73–98. Springer, Berlin (2004)

    Google Scholar 

  59. Lemieux, C., L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate integration and simulation. SIAM Journal on Scientific Computing 24(5), 1768–1789 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  60. L’Ecuyer, P., Touzin, R.: On the Deng-Lin random number generators and related methods. Statistics and Computing 14, 5–9 (2004)

    Article  MathSciNet  Google Scholar 

  61. Niederreiter, H., Pirsic, G.: Duality for digital nets and its applications. Acta Arithmetica 97, 173–182 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  62. Schmid, W.C., Schürer, R.: MinT, the database for optimal (t, m, s)-net parameters (2005), http://mint.sbg.ac.at

  63. Panneton, F., L’Ecuyer, P.: Infinite-dimensional highly-uniform point sets defined via linear recurrences in \(\mathbb{F}_{2^w}\). In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 419–429. Springer, Berlin (2006)

    Chapter  Google Scholar 

  64. Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional projections. SIAM Journal on Scientific Computing (to appear, 2008)

    Google Scholar 

  65. Lemieux, C.: L’utilisation de règles de réseau en simulation comme technique de réduction de la variance. PhD thesis, Université de Montréal (May 2000)

    Google Scholar 

  66. L’Ecuyer, P., Panneton, F.: Fast random number generators based on linear recurrences modulo 2: Overview and comparison. In: Proceedings of the 2005 Winter Simulation Conference, pp. 110–119. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  67. Panneton, F., L’Ecuyer, P.: On the xorshift random number generators. ACM Transactions on Modeling and Computer Simulation 15(4), 346–361 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Solomon W. Golomb Matthew G. Parker Alexander Pott Arne Winterhof

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

L’Ecuyer, P. (2008). Comparison of Point Sets and Sequences for Quasi-Monte Carlo and for Random Number Generation. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds) Sequences and Their Applications - SETA 2008. SETA 2008. Lecture Notes in Computer Science, vol 5203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85912-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85912-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85911-6

  • Online ISBN: 978-3-540-85912-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics