
Solving a Telecommunications Feature Subscription
Configuration Problem

David Lesaint1, Deepak Mehta2, Barry O’Sullivan2, Luis Quesada2, and Nic Wilson2

1 Intelligent Systems Research Centre, British Telecom, UK
david.lesaint@bt.com

2 Cork Constraint Computation Centre, University College Cork, Ireland
{d.mehta,b.osullivan,l.quesada,n.wilson}@4c.ucc.ie

Abstract. Call control features (e.g., call-divert, voice-mail) are primitive op-
tions to which users can subscribe off-line to personalise their service. The con-
figuration of a feature subscription involves choosing and sequencing features
from a catalogue and is subject to constraints that prevent undesirable feature in-
teractions at run-time. When the subscription requested by a user is inconsistent,
one problem is to find an optimal relaxation. In this paper, we show that this prob-
lem is NP-hard and we present a constraint programming formulation using the
variable weighted constraint satisfaction problem framework. We also present
simple formulations using partial weighted maximum satisfiability and integer
linear programming. We experimentally compare our formulations of the differ-
ent approaches; the results suggest that our constraint programming approach is
the best of the three overall.

1 Introduction

Information and communication services, from news feeds to internet telephony, are
playing an increasing, and potentially disruptive, role in our daily lives. As a result,
providers seek to develop personalisation solutions allowing customers to control and
enrich their service. In telephony, for instance, personalisation relies on the provisioning
of call control features. A feature is an increment of functionality which, if activated,
modifies the basic service behaviour in systematic or non-systematic ways, e.g., do-not-
disturb, multi-media ring-back tones, call-divert-on-busy, credit-card-calling, find-me.

Modern service delivery platforms provide the ability to implement features as mod-
ular applications and compose them on demand when setting up live sessions, that is,
consistently with the feature subscriptions preconfigured by participants. In this con-
text, a personalisation approach consists of exposing feature catalogues to subscribers
and letting them select and sequence the features of their choice.

Not all sequences of features are acceptable though due to the possible occurrence
of feature interactions. A feature interaction is “some way in which a feature modifies
or influences the behaviour of another feature in generating the system’s overall be-
haviour” [1]. For instance, a do-not-disturb feature will block any incoming call and
cancel the effect of any subsequent feature subscribed by the callee. This is an unde-
sirable interaction: as shown in Figure 1, the call originating from X will never reach

Fig. 1. An example of an undesirable feature interaction

call-logging. However, if call-logging is placed before do-not-disturb then both features
will play their role.

Distributed Feature Composition (DFC) provides a method and a formal architec-
ture model to address feature interactions [1–3]. The method consists of constraining
the selection and sequencing of features by prescribing constraints that prevent unde-
sirable interactions. These feature interaction resolution constraints are represented in
a feature catalogue as precedence or exclusion constraints. A precedence constraint,
fi ≺ fj , means that if the features fi and fj are part of the same sequence then fi
must precede fj in the sequence. An exclusion constraint between fi and fj means that
they cannot be together in any sequence. Undesirable interactions are then avoided by
rejecting any sequence that does not satisfy the catalogue constraints.

A feature subscription is defined by a set of features, a set of user specified prece-
dence constraints and a set of feature interaction constraints from the catalogue. The
main task is to find a sequence of features that is consistent with the constraints in the
catalogue. It may not always be possible to construct a sequence of features that consists
of all the user selected features and respect all user specified precedence constraints. In
such cases, the task is to find a relaxation of the feature subscription that is closest to
the initial requirements of the user.

In this paper, we shall show that checking the consistency of a feature subscription
is polynomial in time, but finding an optimal relaxation of a feature subscription, when
inconsistent, is NP-hard. We shall then present the formulation of finding an optimal re-
laxation using constraint programming. In particular, we shall use the variable weighted
constraint satisfaction problem framework. In this framework, a branch and bound al-
gorithm that maintains some level of consistency is usually used for finding an optimal
solution. We shall investigate the impact of maintaining three different levels of con-
sistency. The first one is Generalised Arc Consistency (GAC) [4], which is commonly
used. The others are mixed consistencies. Here, mixed consistency means maintaining
different levels of consistency on different sets of variables of a given problem. The first
(second) mixed consistency enforces (a restricted version of) singleton GAC on some
variables and GAC on the remaining variables of the problem.

We shall also consider partial weighted maximum satisfiability, an artificial intelli-
gence technique, and integer linear programming, an operations research approach. We
shall present the formulations using these approaches and shall discuss their differences
with respect to the constraint programming formulation.

We have conducted experiments to compare the different approaches. The experi-
ments are performed on a variety of random catalogues and random feature subscrip-
tions. We shall present empirical results that demonstrate the superiority of maintaining

mixed consistency on the generalised arc consistency. For hard problems, we see a dif-
ference of up to three orders of magnitude in terms of search nodes and one order of
magnitude in terms of time. Our results suggest that, when singleton generalised arc
consistency is used, the constraint programming approach considerably outperforms
our integer linear programming and partial weighted maximum satisfiability formula-
tions. We highlight the factors that deteriorate the scalability of the latter approaches.

The rest of the paper is organised as follows. Section 2 provides an overview of the
DFC architecture, its composition style and subscription configuration method. Sec-
tion 3 presents the relevant definitions and theorems. Section 4 describes the constraint
programming formulation for finding an optimal relaxation and discusses branch and
bound algorithms that maintain different levels of consistency. The integer linear pro-
gramming and partial weighted maximum satisfiability formulations of the problem are
described in Section 5. The empirical evaluation of these approaches is shown in Sec-
tion 6. Finally our conclusions are presented in Section 7.

2 Configuring Feature Subscriptions in DFC

In DFC each feature is implemented by one or more modules called feature box types
(FBT) and each FBT has many run-time instances called feature boxes. We assume
in this paper that each feature is implemented by a single FBT and we associate fea-
tures with FBTs. As shown in Figure 2, a call session between two end-points is set up
by chaining feature boxes. The routing method decomposes the connection path into
a source and a target region and each region into zones. A source (target) zone is a
sequence of feature boxes that execute for the same source (target) address.

The first source zone is as-

CL
src=x
trg=z TCS

TDR

OCS

<

CL

OCS

CL <TDR

<

TDR

CFU

<TCS

<><CL

CFUTCSCL

C
A

T
A

L
O

G
U

E

X
src=x
trg=y OCS

zone of X

Y

Z

src=x
trg=y

zone of Y

src=x
trg=z

zone of Z

src=x
trg=z

CL TCSTDR TCSOCS

source sub. of X target sub. of Y target sub. of Z

S
U

B
S

C
R

IP
T

IO
N

S
Z

O
N

E
S

SOURCE REGION TARGET REGION

ROUTING

CONFIGURATION

TCS

features

feature

box types

feature
boxes

Fig. 2. DFC: Catalogues, subscriptions and sessions.

sociated with the source address
encapsulated in the initial setup
request, e.g., zone ofX in Fig-
ure 2. A change of source ad-
dress in the source region, caused
for instance by an identifica-
tion feature, triggers the creation
of a new source zone [5]. If no
such change occurs in a source
zone and the zone cannot be
expanded further, routers switch
to the target region. Likewise,
a change of target address in
the target region, as performed
by Time-Dependent-Routing (TDR) in Figure 2, triggers the creation of a new target
zone. If no such change occurs in a target zone and the zone cannot be expanded further
(as for Z in Figure 2), the request is sent to the final box identified by the encapsulated
target address.

DFC routers are only concerned with locating feature boxes and assembling zones
into regions. They do not make decisions as to the type of feature boxes (the FBTs)

appearing in zones or their ordering. They simply fetch this information from the fea-
ture subscriptions that are preconfigured for each address in each region based on the
catalogue published by the service provider.

A catalogue is a set of features subject to precedence and exclusion constraints.
Features fall into three classes: source, target and reversible, i.e., a subset of features
that are both source and target. Constraints are formulated by designers on pairs of
source features and pairs of target features to prevent undesirable feature interactions
in each zone [6]. Specifically, a precedence constraint imposes a routing order between
two features, as for the case of Terminating-Call-Screening (TCS) and Call-Logging
(CL) in Figure 2. An exclusion constraint makes two features mutually exclusive, as for
the case of CL and Call-Forwarding-Unconditional (CFU) in Figure 2.

A subscription is a subset of catalogue features and a set of user precedence con-
straints between features in each region. For instance, the subscription of Y in the target
region includes the user precedence TDR≺TCS. Configuring a subscription involves
selecting, parameterising and sequencing features in each region consistently with the
catalogue constraints and other integrity rules [3]. In particular, the source and target
regions of a subscription must include the same reversible features in inverse order, i.e.
source and target regions are not configured independently.

3 Formal Definitions

Let fi and fj be features, we write a precedence constraint of fi before fj as 〈fi, fj〉, or
as fi ≺ fj . An exclusion constraint between fi and fj expresses that these features can-
not appear together in a sequence of features. We encode this as the pair of precedence
constraints 〈fi, fj〉 and 〈fj , fi〉.

Definition 1 (Feature Catalogue). A catalogue is a tuple 〈F, P 〉, where F is a set of
features that are available to users and P is a set of precedence constraints on F .

The transpose of a catalogue 〈F, P 〉 is the catalogue 〈F, PT 〉 such that ∀〈fi, fj〉 ∈ F 2 :
〈fi, fj〉 ∈ P ⇔ 〈fj , fi〉 ∈ PT . In DFC the precedence constraints between the features
in the source (target) catalogue are specified with respect to the direction of the call. For
the purpose of configuration, we combine the source catalogue 〈Fs, Ps〉 and the target
catalogue 〈Ft, Pt〉 into a single catalogue 〈Fc, Pc〉 ≡ 〈Fs ∪ Ft, Ps ∪ Pt

T 〉.

Definition 2 (Feature Subscription). A feature subscription S of catalogue 〈Fc, Pc〉
is a tuple 〈F,C,U,WF ,WU 〉, where F ⊆ Fc, C is the projection of Pc on F , i.e.,
Pc ↓F= {fi ≺ fj ∈ Pc : {fi, fj} ⊆ F}, U is a set of (user defined) precedence
constraints on F , WF : F → N is a function that assigns weights to features and
WU : U → N is a function that assigns weights to user precedence constraints. The
value of S is defined by Value(S) =

∑
f∈F WF (f) +

∑
p∈U WU (p).

Note that a weight associated with a feature signifies its importance for the user. These
weights could be elicited directly, or using data mining or analysis of user interactions.

Definition 3 (Consistency). A feature subscription 〈F,C,U,WF ,WU 〉 of some cata-
logue is defined to be consistent if and only if the directed graph 〈F,C ∪ U〉 is acyclic.

Due to the composition of the source and target catalogues into a single catalogue, a
feature subscription S is consistent if and only if both source and target regions are
consistent in the DFC sense.

Theorem 1 (Complexity of Consistency Checking). Determining whether a feature
subscription 〈F,C,U,WF ,WU 〉 is consistent or not can be checked in O(|F |+ |C|+
|U |).

Proof. We use Topological Sort [7]. In Topological Sort we are interested in ordering
the nodes of a directed graph such that if the edge 〈i, j〉 is in the set of edges of the
graph then node i is less than node j in the order. In order to use Topological Sort for
detecting whether a feature subscription is consistent, we associate nodes with features
and edges with precedence constraints. Then, the subscription is consistent iff for all
edges 〈i, j〉 in the graph associated with the subscription we have that i ≺ j in the order
computed by Topological Sort. As the complexity of Topological Sort is linear with
respect to the size of the graph, detecting whether a feature subscription is consistent is
O(|F |+ |C|+ |U |). ut

If an input feature subscription is not consistent then the task is to relax the given
feature subscription by dropping one or more features or user precedence constraints to
generate a consistent feature subscription with maximum value.

Definition 4 (Relaxation). A relaxation of a feature subscription 〈F,C,U,WF ,WU 〉
is a subscription 〈F ′, C ′, U ′,W ′

F ,W
′
U 〉 such that F ′ ⊆ F , C ′ = Pc↓F ′ , U ′ ⊆ U↓F ′ ,

WF ′ is WF restricted to F ′, and WU ′ is WU restricted to U ′.

Definition 5 (Optimal Relaxation). Let RS be the set of all consistent relaxations of
a feature subscription S. We say that Si ∈ RS is an optimal relaxation of S if it has
maximum value among all relaxations, i.e., if and only if there does not exist Sj ∈ RS

such that Value(Sj) > Value(Si).

Theorem 2 (Complexity of Finding an Optimal Relaxation). Finding an optimal
relaxation of a feature subscription is NP-hard.

Proof. Given a directed graph 〈V,E〉, the Feedback Vertex Set Problem is to find a
smallest V ′ ⊆ V whose deletion makes the graph acyclic. This problem is known
to be NP-hard [8]. We prove that finding an optimal relaxation is NP-hard by reduc-
ing the feedback vertex set problem to the latter. Given a feature subscription S =
〈F,C,U,WF ,WU 〉, the feedback vertex set problem can be reduced to our problem by
associating the nodes of the directed graph V with features F , the edges E with cata-
logue precedence constraints C, the empty set ∅ with U , and the constant function that
maps every element of its domain to 1 (λx.1) with both WF and WU . Notice that, as
U = ∅, the only way of finding an optimal relaxation of S is by removing a set of fea-
tures from F . Assuming that an optimal relaxation is S′ = 〈F ′, C ′, U ′,W ′

F ,W
′
U 〉, the

set of features F−F ′ corresponds to the smallest set of nodes V ′ whose deletion makes
the directed graph acyclic. Thus, we can conclude that finding an optimal relaxation S′

is NP-hard. ut

4 A Constraint Programming Approach

Constraint programming has been successfully used in many applications such as plan-
ning, scheduling, resource allocation, routing, and bio-informatics [9]. Here problems
are primarily stated as a Constraint Satisfaction Problems (CSP), that is a finite set of
variables, together with a finite set of constraints. A solution to a CSP is an assignment
of a value to each variable such that all constraints are satisfied simultaneously. The
basic approach to solving a CSP instance is to use a backtracking search algorithm that
interleaves two processes: constraint propagation and labeling. Constraint propagation
helps in pruning values that do not lead to a solution of the problem. Labeling involves
assigning values to variables that may lead to a solution.

Various generalisations of the CSP have been developed to find a solution that is
optimal with respect to certain criteria such as costs, preferences or priorities. One of
the most significant is the Constraint Optimisation Problem (COP). Here the goal to
find an optimal solution that maximises (minimises) the objective function. The sim-
plest COP formulation retains the CSP limitation of allowing only hard Boolean-valued
constraints but adds an objective function over the variables.

4.1 Formulation

In this section we model the problem of finding an optimal relaxation of a feature sub-
scription 〈F,C,U,WF ,WU 〉 as a COP .

Variables and Domains. We associate each feature fi ∈ F with two variables: a
Boolean variable bfi and an integer variable pfi. A Boolean variable bfi is instantiated
to 1 or 0 depending on whether fi is included in the subscription or not, respectively.
The domain of each integer variable pfi is {1, . . . , |F |}. Assuming that the computed
subscription is consistent, an integer variable pfi corresponds to the position of the
feature fi in a sequence. We associate each user precedence constraint pij ≡ (fi ≺
fj) ∈ U with a Boolean variable bpij . A Boolean variable bpij is instantiated to 1 or 0
depending on whether pij is respected in the computed subscription or not respectively.

Constraints. A catalogue precedence constraint pij ∈ C that feature fi should be
before feature fj can be expressed as follows:

bfi ∧ bfj ⇒ (pfi < pfj).

Note that the constraint is activated only if the selection variables bfi and bfj are instan-
tiated to 1. A user precedence constraint pij ∈ U that fi should be placed before fj in
their subscription can be expressed as follows:

bpij ⇒ (bfi ∧ bfj ∧ (pfi < pfj)).

Note that if a user precedence constraint holds then the features fi and fj are included
in the subscription and also the feature fi is placed before fj , that is, the selection
variables bfi and bfj are instantiated to 1 and pfi < pfj is true.

Objective Function. The objective of finding an optimal relaxation of a feature sub-
scription can be expressed as follows:

Maximise
∑
fi∈F

bfi ×WF (fi) +
∑

pij∈U

bpij ×WU (pij).

4.2 Solution Technique

A depth-first branch and bound algorithm (BB) is generally used to find an optimal solu-
tion. In case of maximisation, BB keeps the current optimal value of the solution while
traversing the search tree. This value is a lower bound (lb) of the objective function. At
each node of the search tree BB computes an overestimation of the global value. This
value is an upper bound (ub) of the best solution that can be found as long as the current
search path is maintained. If ub ≤ lb, then a solution of a greater value than the current
optimal value cannot be found below the current node, so the current branch is pruned
and the algorithm backtracks.

Enforcing local consistency enables the computation of ub(i,a), which is a special-
isation of ub for a value a of an unassigned variable i. If ub(i,a) ≤ lb, then value a
can be removed because it will not be present in any solution better than the current
one. Removed values are restored when BB backtracks above the node where they were
eliminated. The quality of the upper bound can be improved by increasing the level
of local consistency that is maintained at each node of the search tree. The different
levels of local consistencies that we have considered are generalised Arc Consistency
(GAC) [4] and mixed consistency [10].

A problem is said to be generalised arc consistent if it has non-empty domains and
for any assignment of a variable each constraint in which that variable is involved can
be satisfied. A problem is said to be singleton generalised arc consistent [11] if it has
non-empty domains and for any assignment of a variable, the resulting subproblem can
be made GAC. Enforcing Singleton generalised Arc Consistency (SGAC) in a SAC-1
manner [12] works by having an outer loop consisting of variable-value pairs of the
form (x, a). For each a in the domain of x if there is a domain wipeout while enforcing
arc consistency then a is removed from the domain of x and arc consistency is enforced.
The main problem with SAC-1 is that deleting a single value triggers the outer loop
again. The Restricted SAC (RSAC) algorithm avoids this triggering by considering each
variable-value pair only once [13].

Mixed consistency means maintaining different levels of consistency on different
variables of a problem. In [14] it has been shown that maintaining mixed consistency, in
particular maintaining SAC on some variables and maintaining arc consistency on some
variables, can reduce the solution time for some CSPs. In this paper we shall study the
effect of maintaining different levels of consistency on different sets of variables within
a branch and bound search. We shall investigate the effect of Maintaining generalised
Singleton Arc Consistency (MGSAC) on the Boolean variables and Maintaining gener-
alised Arc Consistency (MGAC) on the remaining variables of the problem. We shall
also investigate the effect of Maintaining Restricted Singleton generalised Arc Consis-
tency (MRSGAC) on the Boolean variables and MGAC on the remaining variables. The
former shall be denoted by MSGACb and the latter by MRGSACb. Results presented in

Section 6 suggest that maintaining singleton generalised arc consistency on the Boolean
variables of the random instances of the feature subscription configuration problem re-
duces the search space and time of the branch and bound algorithm significantly.

5 Other Approaches

We present a partial weighted maximum Boolean satisfiability and an integer linear
programming formulation for finding an optimal relaxation of a feature subscription.

5.1 Partial Weighted Maximum Boolean Satisfiability

The Boolean Satisfiability Problem (SAT) is a decision problem whose instance is an
expression in propositional logic written using only ∧, ∨, ¬, variables and parenthe-
ses. The problem is to decide whether there is an assignment of true and false values
to the variables that will make the expression true. The expression is normally writ-
ten in conjunctive normal form. The Partial Weighted Maximum Boolean Satisfiability
Problem (PWMSAT) is an extension of SAT that includes the notions of hard and soft
clauses. Any solution should respect the hard clauses. Soft clauses are associated with
weights. The goal is to find an assignment that maximises the sum of the weights of the
satisfied clauses. The PWMSAT formulation of finding an optimal relaxation of a feature
subscription 〈F,C,U,WF ,WU 〉 is outlined below.

Variables. Let PrecDom be the set of possible precedence constraints that can be de-
fined on F , i.e., {fi ≺ fj : {fi, fj} ⊆ F ∧ fi 6= fj}). For each feature fi ∈ F there
is a Boolean variable bfi, which is true or false depending on whether feature fi is in-
cluded or not in the computed subscription. For each precedence constraint pij there is
a Boolean variable bpij , which is true or false depending on whether the precedence
constraint fi ≺ fj holds or not in the computed subscription.

Clauses. In our model, clauses are represented with a tuple 〈w, c〉, where w is the
weight of clause and c is the clause itself. Note that the hard clauses are associated
with weight >, which represents an infinite penalty for not satisfying the clause. Each
precedence constraint pij ∈ C must be satisfied if the features fi and fj are included in
the computed subscription. We model this by adding the following clause

〈>, (¬bfi ∨ ¬bfj ∨ bpij)〉.

The precedence relation should be transitive and asymmetric in order to ensure that
the subscription graph is acyclic. In order to ensure this, for every {pij , pjk} ⊆ PrecDom,
we add the following clause:

〈>, (¬bpij ∨ ¬bpjk ∨ bpik)〉. (1)

Note that Rule (1) need only be applied to 〈i, j, k〉 such that i 6= k because of Rule (2)
below. In our model, both bpij and bpji can be false. However, if one of them is true

the other one is false. As this should be the case for any precedence relation, we add the
following clause for every pij ∈ PrecDom:

〈>, (¬bpij ∨ ¬bpji)〉. (2)

We make sure that each precedence constraint pij ∈ PrecDom is only satisfied when its
features are included by considering the following clauses:

〈>, (bfi ∨ ¬bpij)〉 〈>, (bfj ∨ ¬bpij)〉.

We need to penalise any solution that does not include a feature fi ∈ F or a user
precedence constraint pij ∈ U . This is done by adding the following clauses:

〈wfi, (bfi)〉 〈wpij , (bpij)〉,

where wfi = WF (fi) and wpij = WU (〈fi, fj〉). The cost of violating these clauses is
the weight of the feature fi and the weight of the precedence constraint pij respectively.

The number of Boolean variables in the PWMSAT model (approximately |F |2) is
greater than the number of Boolean variables in the CP model (|F |+ |U |). These extra
variables are used by Rule (1) and (2) to avoid cycles in the final subscription graph. We
remark that the subscription contains a cycle if and only if the transitive closure ofC∪U
contains a cycle. Therefore, it is sufficient to associate Boolean variables only with the
precedence constraints in the transitive closure of C ∪U . Reducing these variables will
also reduce the transitive clauses, especially when the input subscription graph is not
dense. Otherwise, Rule (1) will generate |F |×(|F |−1)×(|F |−2) transitivity clauses.
For example, for the subscription 〈F,C,U,WF ,WU 〉 with F = {f1, f2, f3, f4, f5, f6},
C = {p12, p21, p34, p43, p56, p65}, and U = ∅, Rule (1) will generate 120 transitive
clauses. Since any relaxation of the given subscription respecting the clauses generated
by Rule (2) is acyclic, the 120 transitive clauses are useless. Thus, if PrecDom is instead
set to be the transitive closure of C ∪ U , then Rule (1) would not generate any clause
for the mentioned example. Another way to reduce the number of transitive clauses is
by not considering the ones where {pji, pkj , pik} ∩ C 6= ∅, especially when the input
subscription graph is not sparse. The reason is that these transitive clauses are always
entailed due to the enforcement of the catalogue precedence constraints.

Note that the two techniques described before for reducing the number of transitive
clauses complement each other. This reduction in the number of clauses might have an
impact on the runtime of the PWMSAT approach, since less memory might be needed.
Even though it is sufficient to associate a Boolean variable with each precedence con-
straint in the transitive closure of C∪U , it is still greater than |F |+ |U |. Another way of
reducing the number of variables is to associate a feature with a finite domain variable
representing its position (as done in the CP model), log-encode the finite domain vari-
ables, and express the precedence constraints using a lexicographical comparator [15].
This approach indeed uses fewer variables than the implemented approach since only
|F | × log |F | variables are needed for encoding the position variables. However, it is
not so straightforward to automatically translate the resulting Boolean formula into its
corresponding conjunctive normal form.

5.2 Integer Linear Programming

In Linear Programming the goal is to optimise an objective function subject to linear
equality and inequality constraints. When all the variables are forced to be integer-
valued, the problem is an Integer Linear Programming (ILP) problem. The standard
way of expressing these problems is by presenting the function to be optimised, the
linear constraints to be respected and the domain of the variables involved. Both the CP
and the PWMSAT formulations for finding an optimal relaxation of a feature subscription
〈F,C,U,WF ,WU 〉 can be modeled in ILP. The translation of the PWMSAT formulation
into ILP formulation is straightforward. For this particular model, we observed that
CPLEX was not able to solve even simple problems within a time limit of 4 hours. Due
to the lack of space we shall describe neither the formulation nor its corresponding
results. The ILP formulation that is equivalent to the CP formulation is outlined below.

Variables. For each fi ∈ F , we use a binary variable bfi and an integer variable pfi. A
binary variable bfi is equal to 1 or 0 depending on whether feature fi is included or not.
An integer variable pfi is the position of feature fi in the final subscription. For each
user precedence constraint pij ∈ U , we use a binary variable bpij . It is instantiated to 1
or 0 depending on whether the precedence constraint fi ≺ fj holds or not.

Linear Inequalities. If the features fi and fj are included in the computed subscription
and if pij ∈ C then the position of feature fi must be less than the position of feature fj .
To this effect, we need to translate the underlying implication (bfi ∧ bfj ⇒ (pfi < pfj))
into the following linear inequality:

pfi − pfj + n ∗ bfi + n ∗ bfj ≤ 2n− 1 . (3)

Here, n is a constant that is used to refer to the number of features |F | selected by the
user. When both bfi and bfj are 1, Inequality (3) will force (pfi < pfj). Note that this is
not required for any user precedence constraint pij ∈ U , since it can be violated.

A user precedence pij ∈ U is equivalent to the implication bpij ⇒ pfi < pfj ∧bfi∧
bfj , which in turn is equivalent to the conjunction of the three implications (bpij ⇒
(pfi < pfj)), (bpij ⇒ bfi) and (bpij ⇒ bfj). These implications can be translated into
the following inequalities:

pfi − pfj + n ∗ bpij ≤ n− 1 (4)

bpij − bfi ≤ 0 (5)

bpij − bfj ≤ 0 . (6)

Inequality (4) means that bpij = 1 forces pfi < pfj to be true. Also, if bpij = 1 then
both bfi and bfj are equal to 1 from Inequalities (5) and (6) respectively.

Objective Function. The objective is to find an optimal relaxation of a feature sub-
scription configuration problem 〈F,C,U,WF ,WU 〉 that maximises the sum of the weights
of the features and the user precedence constraints that are selected:

Maximise
∑
fi∈F

wfi bfi +
∑

pij∈U

wpij bpij .

6 Experimental Results

In this section, we shall describe the empirical evaluation of finding an optimal relax-
ation of randomly generated feature subscriptions using constraint programming, partial
weighted maximum Boolean satisfiability and integer linear programming.

6.1 Problem Generation and Solvers

We generated and experimented with a variety of random catalogues and many classes
of random feature subscriptions. All the random selections below are performed with
uniform distributions. A random catalogue is defined by a tuple 〈fc, Bc, Tc〉. Here, fc
is the number of features,Bc is the number of binary constraints and Tc ⊆ {<,>,<>}
is a set of types of constraints. Note that fi <> fj means that in any given subscription
both fi and fj cannot exist together. A random catalogue is generated by selecting
Bc pairs of features randomly from fc(fc − 1)/2 pairs of features. Each selected pair
of features is then associated with a type of constraint that is selected randomly from
Tc. A random feature subscription is defined by a tuple 〈fu, pu, w〉. Here, fu is the
number of features that are selected randomly from fc features, pu is the number of
user precedence constraints between the pairs of features that are selected randomly
from fu(fu − 1)/2 pairs of features, and w is an integer greater than 0. Each feature
and each user precedence constraint is associated with an integer weight that is selected
randomly between 1 and w inclusive.

We generated catalogues of the following forms: 〈50, 250, {<,>}〉, 〈50, 500, {<,>
,<>}〉 and 〈50, 750, {<,>}〉. For each random catalogue, we generated classes of fea-
ture subscriptions of the following forms: 〈10, 5, 4〉, 〈15, 20, 4〉, 〈20, 10, 4〉, 〈25, 40, 4〉,
〈30, 20, 4〉, 〈35, 35, 4〉, 〈40, 40, 4〉, 〈45, 90, 4〉 and 〈50, 5, 4〉. Note that 〈50, 250, {<,>
}〉 is the default catalogue by and the value of w is 4 by default, unless stated otherwise.
For the catalogue 〈50, 250, {<,>}〉we also generated 〈5, 0, 1〉, 〈10, 0, 1〉, . . . , 〈50, 0, 1〉
and 〈5, 5, 1〉, 〈10, 10, 1〉, . . . , 〈50, 50, 1〉 classes of random feature subscriptions. For
each class 10 instances were generated and their mean results are reported in this paper.

The CP model was implemented and solved using CHOCO [16], a Java library for
constraint programming systems. The PWMSAT model of the problem was implemented
and solved using SAT4J [17], an efficient library of SAT solvers in Java. The ILP model of
the problem was solved using ILOG CPLEX [18]. All the experiments were performed
on a PC Pentium 4 (CPU 1.8 GHz and 768MB of RAM) processor. The performances
of all the approaches are measured in terms of search nodes (#nodes) and runtime in
milliseconds (time). We used the time limit of 4 hours to cut the search.

6.2 Maintaining Different Levels of Consistency in CP

For the CP model, we first investigated the effect of Maintaining generalised Arc Con-
sistency (MGAC) during branch and bound search. We then studied the effect of main-
taining different levels of consistency on different sets of variables within a problem. In
particular we investigated, (1) maintaining generalised singleton arc consistency on the
Boolean variables and MGAC on the remaining variables, and (2) maintaining restricted

singleton generalised arc consistency on the Boolean variables and MGAC on the re-
maining variables; the former is denoted by MSGACb and the latter by MRSGACb. The
results are presented in Table 1 for these three branch and bound search algorithms.

Table 1 clearly shows that main- MGAC MRSGACb MSGACb

〈f, p〉 time #nodes time #nodes time #nodes
〈10, 5〉 17 21 23 16 26 16
〈15, 20〉 92 726 34 41 42 41
〈20, 10〉 203 1,694 39 47 50 46
〈25, 40〉 14,985 88,407 595 187 678 169
〈30, 20〉 6,073 29,211 653 184 768 161
〈35, 35〉 124,220 481,364 7,431 1,279 8,379 1,093
〈40, 40〉 1,644,624 5,311,838 67,798 9,838 76,667 8,475

Table 1. Average results of MGAC, MRSGACb and MSGACb.

taining (R)SGAC on the Boolean vari-
ables and GAC on the integer variables
dominates maintaining GAC on all the
variables. To the best of our knowl-
edge this is the first time that such a
significant improvement has been ob-
served by maintaining a partial form
of singleton arc consistency. We also
see that there is no difference in the number of nodes visited by MRSGACb and MSGACb

for the first two classes of feature subscriptions. However, as the problem size increases
the difference in terms of the number of nodes also increases significantly. Note that in
the remainder of the paper the results that correspond to the CP approach are obtained
by using MSGACb algorithm.

6.3 Comparison between the Alternative Approaches

The performances of using constraint programming (CP), partial weighted maximum
satisfiability (PWMSAT) and integer linear programming (CPLEX) approaches are pre-
sented in Tables 2 and 3. If any approach failed to find and prove an optimal relaxation
within a time limit of 4 hours then that time limit is used as the runtime of the algorithm
and the number of nodes visited in that time limit is used as the number of nodes of the
algorithm in order to compute the average runtime and average search nodes of a given
problem class. In the tables, the column labelled as #us is used to denote the number
of instances for which the time limit was exceeded. If this column is not present for
any approach then it means that all the instances of all the problem classes were solved
within the time limit. In general finding an optimal relaxation is NP-hard. Therefore,
we need to investigate which approach can do it in reasonable time.

Tables 2 and 3 suggest that our CP approach performs better than our ILP and PWM-
SAT approaches. Although in very few cases the CP approach is outperformed by the
other two approaches, it performs significantly better in all other cases. Nevertheless,

Table 2. Catalogue 〈50, 250, {<,>}〉.

optimal PWMSAT CPLEX CP
〈f, p〉 value #nodes time #us #nodes time #us #nodes time
〈10, 5〉 36 167 345 0 0 11 0 16 23
〈15, 20〉 69 721 1,039 0 51 61 0 41 34
〈20, 10〉 62 1,295 1,619 0 50 47 0 47 39
〈25, 40〉 115 5,039 4,391 0 3,482 1,945 0 187 595
〈30, 20〉 93 5,415 6,397 0 1,901 1,025 0 184 653
〈35, 35〉 118 30,135 23,955 0 35,247 22,763 0 1,279 7,431
〈40, 40〉 123 186,913 282,760 0 299,829 247,140 0 9,838 67,798
〈45, 90〉 173 6,291,957 12,638,251 8 5,280,594 7,690,899 2 104,729 1,115,515
〈50, 4〉 96 165,928 195,717 0 1,164,755 1,010,383 0 60,292 413,611

it is also true that a remarkable improvement in our CP approach is due to maintaining
(restricted) singleton arc consistency on the Boolean variables. For example, for feature
subscription 〈40, 40〉 and catalogue 〈50, 250, {<,>}〉 constraint programming (with
MSGACb), on average, requires approximately only 1 minute whereas MGAC requires
approximately half an hour.

The CP approach solved all the instances

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06

T
im

e
in

 m
ill

is
ec

on
ds

Number of clauses

Fig. 3. Clauses vs Time

within the time limit. CPLEX could not solve
2 instances. More precisely, it could not prove
their optimality within the time limit. SAT4J
exceeded the time limit for 9 instances. This
could be a consequence of O(n3) transitive
clauses, where n = |F |. Figure 3 depicts a
plot between the number of clauses and the
runtime of SAT4J. This plot clearly suggests
that the runtime of SAT4J increases as the num-
ber of clauses increases. The high number of
clauses restricts the scalability of the PWM-
SAT approach. For large instances SAT4J also
runs out of the default memory (64MB). For instance, for catalogue 〈50, 250, {<,>}〉
and feature subscription 〈45, 90〉, SAT4J runs out of memory when solving one of the
instances. Note that the results for SAT4J presented in this section correspond to the
instances that are generated after reducing the variables and the clauses by applying
the techniques described in Section 5.1. The application of these techniques reduces
the runtime up to 65%. However, this only enabled one of the previously unsolvable
instances to be solved.

Figure 4 presents the comparison of the different approaches in terms of their run-
times for the subscriptions, when U = ∅ and the weight of each feature is 1. The
runtimes of the approaches for the instances when |F | = |U | are presented in Figure 5.
Overall, the CP approach performs best. Although, the SAT4J solver performs best when
|F | > 35 and U = ∅, it would be interesting to find out whether its performance will
deteriorate when |F | > 50. In Figure 5, when |F | = 50, neither the ILP approach nor
the PWMSAT approach managed to solve all the instances. This is the reason that their
average runtimes, for the case of 50 features, are close to the timeout. If the timeout

Table 3. Results for more dense catalogues.

Catalogue 〈50, 500, {<,>,<>}〉 Catalogue 〈50, 750, {<,>}〉
PWMSAT CPLEX CP PWMSAT CPLEX CP

〈f, p〉 #nodes time #nodes time #nodes time #nodes time #us #nodes time #nodes time
〈10, 5〉 326 528 0 10 13 3 246 500 0 28 33 16 7
〈15, 20〉 1,066 1,173 4 53 31 28 1,111 985 0 306 261 40 45
〈20, 10〉 2,583 1,981 18 85 49 59 2,484 1,542 0 798 540 82 145
〈25, 40〉 5,753 2,961 76 554 110 250 6,904 3,158 0 7,043 5,741 236 910
〈30, 20〉 9,738 4,092 90 447 158 417 11,841 5,025 0 22,253 18,461 591 2,381
〈35, 35〉 12,584 6,841 300 1,824 461 1,643 31,214 18,278 0 109,472 126,354 2,288 12,879
〈40, 40〉 22,486 11,310 711 3,018 892 3,914 68,112 92,105 0 354,454 514,275 6,363 42,268
〈45, 90〉 60,504 59,267 2,130 17,452 2,286 14,803 602,192 2,443,228 1 1,969,716 3,780,539 19,909 188,826
〈50, 4〉 43,765 21,472 1,500 3,771 4,208 16,921 184,584 319,531 0 1,646,752 3,162,084 51,063 342,492

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

504540353025201510

T
im

e
in

 m
ill

is
ec

on
ds

Number of Features

SAT
CP

CPLEX

Fig. 4. Results for 〈fu, 0, 1〉, where fu varies
from 5 to 50 in steps of 5.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

504540353025201510

T
im

e
in

 m
ill

is
ec

on
ds

Number of Features

SAT
CP

CPLEX

Fig. 5. Results for 〈fu, pu, 1〉, where fu = pu
and fu varies from 5 to 50 in steps of 5.

was higher, the gap between the CP approach and the other approaches, for the case of
50 features in Figure 5 would be even more significant.

7 Conclusions

We presented, and evaluated, three optimisation-based approaches to finding optimal re-
configurations of call-control features when the user’s preferences violate the technical
constraints defined by a set of DFC rules. We proved that finding an optimal relaxation
of a feature subscription is NP-hard. For the constraint programming approach, we stud-
ied the effect of maintaining generalised arc consistency and two mixed consistencies
during branch and bound search. Our experimental results suggest that maintaining (re-
stricted) generalised singleton arc consistency on the Boolean variables and generalised
arc consistency on the integer variables outperforms MGAC significantly. Our results
also suggest that the CP approach when applied with stronger consistency, is able to
scale well compared to the other approaches. Finding an optimal relaxation for a rea-
sonable size catalogue (e.g., [19] refers to a catalogue with up to 25 features) is feasible
using constraint programming.

Acknowledgements. This material is based upon works supported by the Science
Foundation Ireland under Grant No. 05/IN/I886, and Embark Post Doctoral Fellow-
ships No. CT1080049908 and No. CT1080049909. The authors would also like to
thank Hadrien Cambazard, Daniel Le Berre and Alan Holland for their support in using
CHOCO, SAT4J and CPLEX respectively.

References

1. Bond, G.W., Cheung, E., Purdy, H., Zave, P., Ramming, C.: An Open Architecture for Next-
Generation Telecommunication Services. ACM Transactions on Internet Technology 4(1)
(2004) 83–123

2. Jackson, M., Zave, P.: Distributed Feature Composition: a Virtual Architecture for Telecom-
munications Services. IEEE TSE 24(10) (October 1998) 831–847

3. Jackson, M., Zave, P.: The DFC Manual. AT&T. (November 2003)
4. Bessiere, C.: Constraint propagation. Technical Report 06020, LIRMM, Montpellier,France

(March 2006)
5. Zave, P., Goguen, H., Smith, T.M.: Component Coordination: a Telecommunication Case

Study. Computer Networks 45(5) (August 2004) 645–664
6. Zave, P.: An Experiment in Feature Engineering. In McIver, A., Morgan, C., eds.: Program-

ming Methodology. Springer-Verlag (2003) 353–377
7. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press (1990)
8. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the The Theory of NP-

Completeness. W. H. Freeman and Company (1979)
9. Wallace, M.: Practical applications of constraint programming. Constraints Journal 1(1)

(September 1996) 139–168
10. Dooms, G., Deville, Y., Dupont, P.: CP(Graph): Introducing a graph computation domain in

constraint programming. In: CP 2005. (2005)
11. Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary con-

straints. Artificial Intelligence (2007)
12. Debruyne, R., Bessiére, C.: Some practical filtering techniques for the constraint satifaction

problem. In: Proceedings of the 15th International Joint Conference on Artificial Intelli-
gence, Nagoya, Japan (1997) 412–417

13. Prosser, P., Stergiou, K., Walsh, T.: Singleton Consistencies. In Dechter, R., ed.: CP-2000.
(September 2000) 353–368

14. Lecoutre, C., Patrick, P.: Maintaining singleton arc consistency. In: Proceedings of the 3rd
International Workshop on Constraint Propagation And Implementation (CPAI’2006) held
with CP’2006, Nantes, France (September, 2006) 47–61

15. Hawkins, P., Lagoon, V., Stuckey, P.J.: Solving set constraint satisfaction problems using
ROBDDs. Journal of Artificial Intelligence Research 24 (2005) 109 – 156

16. Laburthe, F., Jussien, N.: JChoco: A java library for constraint programming.
17. Le Berre, D.: SAT4J: An efficient library of SAT solvers in java.
18. ILOG: CPLEX solver 10.1 http://www.ilog.com/products/cplex/.
19. Bond, G.W., Cheung, E., Goguen, H., Hanson, K.J., Henderson, D., Karam, G.M., Purdy,

K.H., Smith, T.M., Zave, P.: Experience with Component-Based Development of a Telecom-
munication Service. In: CBSE 2005. (2005) 298–305

