
Computing all optimal solutions in Satisfiability
problems with Preferences

Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea

DIST, Università di Genova, Viale Causa, 13 – 16145 Genova,Italy
{emanuele,enrico,marco}@dist.unige.it

Abstract. The problem of finding an optimal solution in a constraint satisfaction
problem with preferences has attracted a lot of researchersin Artificial Intelli-
gence in general, and in the constraint programming community in particular. As
a consequence, several approaches for expressing and reasoning about satisfiabil-
ity problems with preferences have been proposed, and viable solutions exist for
finding one optimal solution. However, in many cases, it is not desirable to find
just one solution. Indeed, it might be desirable to be able tocompute more, and
possibly all, optimal solutions, e.g., for comparatively evaluate them on the basis
of other criteria not captured by the preferences.
In this paper we present a procedure for computing all optimal solutions of a
satisfiability problem with preferences. The procedure is guaranteed to compute
all and only the optimal solutions, i.e., models which are not optimal are not even
computed.

1 Introduction

The problem of finding an optimal solution in a constraint satisfaction problem with
qualitative preferences has attracted a lot of researchersin Artificial Intelligence in gen-
eral, and in the constraint programming community in particular.

As a consequence, several approaches for expressing and reasoning about satisfia-
bility (SAT) problems with preferences have been proposed,and viable solutions exist
for finding one optimal solution, see, e.g., [1, 2]. However,in many cases, it is not de-
sirable to find just one solution. Indeed, it might be desirable to be able to compute
more, and possibly all, optimal solutions, e.g., for comparatively evaluate them on the
basis of other criteria not captured by the preferences. As an example of the practical
importance of the issue, from the ILOG web page1: ”ILOG CPLEX 11 introduces the
solution pool feature, which allows users to consider multiple solutions to a MIP model.
In practice, a single, even optimal, solution is not always sufficient, because every as-
pect of a problem cannot always be perfectly captured in a MIPmodel. The solution
pool feature offers a mechanism for exploring the effects ofsubjective preferences on
the solution space without enforcing them as constraints inthe model”.

A simple approach for finding all optimal solutions consistsin first enumerating all
(non necessarily optimal) solutions, and then eliminatinga solutionµ if there exists

1 http://www.ilog.com/products/cplex/news/whatsnew.cfm.



another solutionµ′ which is “preferred” toµ. The first obvious drawback of this ap-
proach is that it requires the computation of all solutions,even the non optimal ones.
The second drawback is that each solution has to be stored andcompared with the oth-
ers. In [3], in the context of CP-nets, the authors noticed that by imposing an ordering
on the splitting heuristic used for searching solutions, itis possible to mitigate the sec-
ond drawback by comparing a solution only with the previously generated ones, which
are already guaranteed to be optimal: In this way, only the sofar generated optimal so-
lutions need to be stored. Still, the number of optimal solutions can be exponential and
all the solutions (even the non optimal ones) are computed.

In this paper we present a procedure for computing all optimal solutions of a SAT
problem with qualitative preferences which is guaranteed to compute all and only the
optimal solutions, i.e., models which are not optimal are not even computed. In our
setting, a qualitative preference is a partially ordered set of literalsS,≺: S is the set
of literals that we would like to have satisfied, and≺ is partial order onS expressing
the relative importance of fulfilling the literals inS. For this result, it is essential that
the splitting heuristic follows the partial order on the expressed preferences: Imposing
such ordering can lead to significant degradations in the performances of the solver [4],
though this has been shown to happen only when the number of preferences is very high
(in the order of the number of variables in the problem [2]), and this is not the case for
many applications, see, e.g., [5].

2 Satisfiability and Qualitative Preferences

Consider a finite setP of variables. A literal is a variablex or its negation¬x. A for-
mulais either a variable or a finite combination of formulas usingthen-ary connectives
∧,∨ for conjunction and disjunction (n ≥ 0), and the unary connective¬ for nega-
tion. We use the symbols⊥ and⊤ to denote the empty disjunction and conjunction
respectively. Ifl is a literal, we writel for ¬l and we assumex = x. This notation
is extended to setsS of literals, i.e.,S = {l : l ∈ S}. Formulas are used to express
hard constraints that have to be satisfied. For example, given the 4 variablesFish, Meat,
RedWine, WhiteWine, the formula

(Fish∨ Meat) ∧ (RedWine∨ WhiteWine) (1)

models the fact that we cannot have both fish (Fish) and meat (Meat), both red (RedWine)
and white (WhiteWine) wine.

An assignmentis a consistent set of literals. Ifl ∈ µ, we say that bothl and l
areassignedby µ. An assignmentµ is total if each literall is assigned byµ. A total
assignmentµ satisfies

• a literall if and only if l ∈ µ,
• (ϕ1 ∨ . . . ∨ ϕn) (n ≥ 0) if and only if µ satisfies at least oneϕi with 1 ≤ i ≤ n,
• (ϕ1 ∧ . . . ∧ ϕn) (n ≥ 0) if and only if µ satisfies allϕi with 1 ≤ i ≤ n,
• the negation of a formula¬ψ if and only if µ does not satisfyψ.

A modelof a formulaϕ is a total assignment satisfyingϕ. A formulaϕ entailsa formula
ψ if the models ofϕ are a subset of the models ofψ. For instance, (1) has 9 models.



In the following, we represent a total assignment as the set of variables assigned to
true. For instance,{Fish,WhiteWine} represents the total assignment in which the only
variables assigned to true areFish andWhiteWine, i.e., the situation in which we have
fish and white wine.

A (qualitative) preference (on literals)is a partially ordered set of literals, i.e., a pair
S,≺ where(i) S is a set of literals, called theset of preferences, which represents the
set of literals that we would like to have satisfied; and(ii) ≺ is a partial order onS:
l ≺ l′ models the fact that we preferl to l′. For example,

{Fish,Meat,RedWine}, {Fish≺ Meat} (2)

models the case in which we prefer to have both fish and meat, and avoid red wine; in
the case in which it is not possible to have both fish and meat, we prefer to have the fish
more than the meat.

A qualitative preferenceS,≺ on literals can be extended to the set of total assign-
ments as follows: Given two total assignmentsµ andµ′, we say thatµ is preferred to
µ′ (µ ≺ µ′) if and only if (i) there exists a literall ∈ S with l ∈ µ andl ∈ µ′; and(ii)
for each literall′ ∈ S ∩ (µ′ \ µ), there exists a literall ∈ S ∩ (µ \ µ′) such thatl ≺ l′.
A modelµ of a formulaϕ is optimal if it is a minimal element of the partially ordered
set of models ofϕ. For instance, considering the qualitative preference (2), the formula
(1) has only two optimal models, i.e.,{Fish} and{Fish,WhiteWine}.

Consider a formulaϕ, a qualitative preferenceS,≺ and a setΓ of optimal models
of ϕ. Γ is said to becomplete (wrtS,≺) if contains all the optimal models ofϕ. With
this notion, there can be only one complete set of optimal models, which, in the case
of (1) and the preference (2), is the set{{Fish,WhiteWine}, {Fish}}. Other notions of
completeness are possible.

3 Computing all optimal solutions

Given a formulaϕ and a preference, we now show how it is possible to compute a
complete set of models ofϕ by extending the Davis-Logemann-Loveland procedure
(DLL ) [6] and the procedure in [2] for computing one optimal solution. DLL is the most
used decision procedure for checking satisfiability of formulas. However,DLL does not
directly handle arbitrary formulas, but finite sets of clauses, where aclauseis a finite set
of literals to be interpreted disjunctively. This is not a limitation because of well known
clause form transformation procedures (see, e.g., [7, 8]).

In the following, we will continuously switch between formulas and sets of clauses,
intuitively meaning the same thing.

Consider a formulaϕ and a preferenceS,≺. An assignmentµ dominatesan assign-
mentµ′ (wrt S,≺) if µ ≺ µ′. The problem of computing a complete set of optimal
models ofϕ wrt S,≺ can be solved by considering the following crucial condition
which enables us to say which are the assignments that are dominated byµ (wrt S,≺).
We therefore define a formula whose models are dominated byµ. Consider a total as-
signmentµ.

1. n(µ) is the set of preferences not satisfied byµ, i.e.,n(µ) = S ∩ µ



2. for eachl ∈ S, d(l, µ) is the set of literals inµ which are preferred tol according
to ≺, i.e.,d(l, µ) = {l′ : l′ ∈ µ, l′ ≺ l or l′ ≺ l}.

Then theµ-dominates formula(wrt S,≺) is

¬((∨l∈n(µ)(∧l′∈d(l,µ)l
′ ∧ l)) ∨ (∧l∈µ,l∈(S∪S)l ∧ (∨l′∈µ,l′ 6∈(S∪S)l

′))) (3)

The total assignmentµ dominates a total assignmentµ′ wrt S,≺ iff µ′ satisfies the
correspondingµ-dominates formula, as stated by the following theorem.

Theorem 1. LetS,≺ be a qualitative preference on literals. A total assignmentdomi-
nates a total assignmentµ′ wrt S,≺ if and only ifµ′ satisfies theµ-dominates formula
wrt S,≺.

For example,

1. if µ1 = {Fish} andS,≺ is as in (2), then
(a) n(µ1) is {Meat}, andd(Meat) = {Fish},
(b) theµ1-dominates formula is¬((Fish ∧ Meat) ∨ (Fish ∧ Meat∧ RedWine∧

WhiteWine)): Any total assignment which does not satisfy(Fish∧ Meat) or
(Fish∧ RedWine∧ WhiteWine) is dominated by{Fish}. Notice that the total
assignment{Fish,WhiteWine} is not dominated by{Fish}, as expected.

2. if µ2 = {Meat} andS,≺ is as in (2), then
(a) n(µ2) is {Fish}, andd(Fish) = ∅,
(b) theµ2-dominates formula is¬(Fish∨ (Fish∧Meat∧RedWine∧WhiteWine)):

µ2 does not dominate the total assignments satisfyingFish or (Fish∧ Meat∧
RedWine∧ WhiteWine).

Notice that sinceµ1 ≺ µ2, theµ1-dominates formula is entailed by theµ2-dominates
formula:µ1 dominates a superset of the total assignments dominated byµ2.

It is thus possible to generalize theDLL -based procedure presented in [2] for com-
puting an optimal model, in order to return complete sets of optimal models. The re-
sulting procedure is represented in Figure 1. In the figure,

• it is assumed that the input formulaϕ is a set of clauses;µ is an assignment;ψ is
an initially empty set of clauses;

• (ϕ ∪ ψ)µ is the set of clauses obtained fromϕ ∪ ψ by (i) deleting the clauses
C ∈ ϕ∪ψ with µ∩C 6= ∅, and(ii) substituting each clauseC ∈ ϕ∪ψ with C \µ;

• Reason(µ) returns a set of clauses equivalent to the negation of theµ-dominates
formula.

• ChooseLiteral1(ϕ ∪ ψ, µ) returns an unassigned literall such that
– if there exists a literal inS which is not assigned byµ, then each literall′ with
l′ ≺ l has to be assigned byµ, and

– l is an arbitrary literal occurring inϕ ∪ ψ, otherwise.

nOPT-DLL has to be invoked withϕ andµ set to the input formula and the empty
set respectively.nOPT-DLL prints a complete set of optimal models, as stated by the
following theorem.

Theorem 2. LetS,≺ be a qualitative preference on literals. Letϕ be a set of clauses.
nOPT-DLL(ϕ, ∅) prints a complete set of optimal models forϕ.



S,≺ := a qualitative preference on literals;
ψ := ∅;

function nOPT-DLL (ϕ∪ ψ, µ)
1 if (⊥ ∈ (ϕ ∪ ψ)µ) return FALSE;
2 if (µ is total)
3 Print(µ);
4 ψ := ψ ∪ Reason(µ);
5 return FALSE;
6 if ({l} ∈ (ϕ ∪ ψ)µ) return nOPT-DLL(ϕ ∪ ψ, µ ∪ {l});
7 l := ChooseLiteral1(ϕ ∪ ψ, µ);
8 return nOPT-DLL(ϕ ∪ ψ, µ ∪ {l}) or

nOPT-DLL(ϕ ∪ ψ, µ ∪ {l}).

Fig. 1.The algorithm ofnOPT-DLL .

4 Conclusions

In this paper we have presented an algorithm for computing all solutions in SAT prob-
lems with preferences. The algorithm computes only optimalmodels, by following the
given partial order on preferences, but is not ensured to work in polynomial space.
Future work comprises the design of algorithms which are guaranteed to work in poly-
nomial space.

References

1. Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David Poole.
CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference
statements.J. Artif. Intell. Res. (JAIR), 21:135–191, 2004.

2. E. Giunchiglia and M. Maratea. Solving optimization problems with DLL. In Proc. of 17th
European Conference on Artificial Intelligence (ECAI), pages 377–381, 2006.

3. Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David Poole.
Preference-based constrained optimization with CP-nets.Computational Intelligence,
20(2):137–157, 2004.

4. Matti Järvisalo, Tommi Junttila, and Ilkka Niemelä. Unrestricted vs restricted cut in a tableau
method for Boolean circuits.Annals of Mathematics and Artificial Intelligence, 44(4):373–
399, August 2005.

5. Enrico Giunchiglia and Marco Maratea. Planning as satisfiability with preferences. InIn Proc.
of 22nd AAAI Conference on Artificial Intelligence, pages 987–992. AAAI Press, 2007.

6. Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem
proving. Communication of ACM, 5(7):394–397, 1962.

7. G. Tseitin. On the complexity of proofs in propositional logics. Seminars in Mathematics, 8,
1970. Reprinted in [9].

8. D.A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation.Journal
of Symbolic Computation, 2:293–304, 1986.

9. Jörg Siekmann and Graham Wrightson, editors.Automation of Reasoning: Classical Papers
in Computational Logic 1967–1970, volume 1-2. Springer-Verlag, 1983.


