Computing all optimal solutions in Satisfiability
problems with Preferences

Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea

DIST, Universita di Genova, Viale Causa, 13 — 16145 Genhaby
{emanuel e, enri co, marco}@li st.unige.it

Abstract. The problem of finding an optimal solution in a constrainisfattion
problem with preferences has attracted a lot of researchehstificial Intelli-
gence in general, and in the constraint programming commimparticular. As
a consequence, several approaches for expressing andinggabout satisfiabil-
ity problems with preferences have been proposed, andevebltions exist for
finding one optimal solution. However, in many cases, it isdesirable to find
just one solution. Indeed, it might be desirable to be ableotapute more, and
possibly all, optimal solutions, e.g., for comparativelpkeiate them on the basis
of other criteria not captured by the preferences.

In this paper we present a procedure for computing all optsnautions of a
satisfiability problem with preferences. The procedureuigrgnteed to compute
all and only the optimal solutions, i.e., models which areapiimal are not even
computed.

1 Introduction

The problem of finding an optimal solution in a constrainisgattion problem with
qualitative preferences has attracted a lot of researahdusificial Intelligence in gen-
eral, and in the constraint programming community in paréc

As a consequence, several approaches for expressing awhirggabout satisfia-
bility (SAT) problems with preferences have been propoaed,viable solutions exist
for finding one optimal solution, see, e.g., [1, 2]. Howewemany cases, it is not de-
sirable to find just one solution. Indeed, it might be dedeab be able to compute
more, and possibly all, optimal solutions, e.g., for conagigely evaluate them on the
basis of other criteria not captured by the preferences.nfaxample of the practical
importance of the issue, from the ILOG web pagd#l. OG CPLEX 11 introduces the
solution pool feature, which allows users to consider rplétsolutions to a MIP model.
In practice, a single, even optimal, solution is not alwayfficent, because every as-
pect of a problem cannot always be perfectly captured in a ivitldlel. The solution
pool feature offers a mechanism for exploring the effectsulfjective preferences on
the solution space without enforcing them as constraintisenrmodel”.

A simple approach for finding all optimal solutions consigtfirst enumerating all
(non necessarily optimal) solutions, and then eliminagngplution if there exists

Yhttp://ww. il og. cont product s/ cpl ex/ news/ what snew. cf m

another solution,” which is “preferred” tou. The first obvious drawback of this ap-
proach is that it requires the computation of all solutie&n the non optimal ones.
The second drawback is that each solution has to be storecbamglared with the oth-

ers. In [3], in the context of CP-nets, the authors noticed ity imposing an ordering

on the splitting heuristic used for searching solutionis fiossible to mitigate the sec-
ond drawback by comparing a solution only with the previpggnerated ones, which
are already guaranteed to be optimal: In this way, only thiauisgenerated optimal so-
lutions need to be stored. Still, the number of optimal sohd can be exponential and
all the solutions (even the non optimal ones) are computed.

In this paper we present a procedure for computing all optsolations of a SAT
problem with qualitative preferences which is guaranteecbimpute all and only the
optimal solutions, i.e., models which are not optimal aré exen computed. In our
setting, a qualitative preference is a partially orderddoéditerals S, <: S is the set
of literals that we would like to have satisfied, ards partial order onS expressing
the relative importance of fulfilling the literals ifi. For this result, it is essential that
the splitting heuristic follows the partial order on the eegsed preferences: Imposing
such ordering can lead to significant degradations in thipaances of the solver [4],
though this has been shown to happen only when the numbegfafipnces is very high
(in the order of the number of variables in the problem [2fid ¢his is not the case for
many applications, see, e.g., [5].

2 Satisfiability and Qualitative Preferences

Consider a finite seP of variablesA literal is a variablex or its negation-z. A for-
mulais either a variable or a finite combination of formulas ugimgn-ary connectives
A,V for conjunction and disjunctionn(> 0), and the unary connective for nega-
tion. We use the symbol$ and T to denote the empty disjunction and conjunction
respectively. Ifl is a literal, we writel for -/ and we assumg = x. This notation

is extended to set§ of literals, i.e.,S = {l : [€ S}. Formulas are used to express
hard constraints that have to be satisfied. For examplen ¢fne4 variable&ish, Meat
RedWineWhiteWinethe formula

(Fish v Meat) A (RedWine/ WhiteWine (1)

models the fact that we cannot have both fisklf) and meatileaf), both red RedWing
and white WhiteWing wine.

An assignments a consistent set of literals. If € 1, we say that botti andi
areassignedby . An assignmeny is total if each literall is assigned by:. A total
assignment; satisfies

a literall if and only if I € p,

(¢1 V... Vp,) (n>0)ifand only if . satisfies at least ong, with 1 <1 <mn,
(p1 A ... Awy) (n > 0)if and only if i satisfies allp; with 1 <1 < mn,

the negation of a formulaw if and only if © does not satisfy).

A modelof a formulay is a total assignment satisfying A formulay entailsa formula
1 if the models ofp are a subset of the models of For instance, (1) has 9 models.

In the following, we represent a total assignment as the Seawables assigned to
true. For instanceFish, WhiteWiné represents the total assignment in which the only
variables assigned to true dfsh andWhiteWinegi.e., the situation in which we have
fish and white wine.

A (qualitative) preference (on literals)a partially ordered set of literals, i.e., a pair
S, < where(i) S is a set of literals, called thget of preferencesvhich represents the
set of literals that we would like to have satisfied; dng < is a partial order orp':
I < I” models the fact that we preféto I’. For example,

{Fish, Meat RedWiné, {Fish < Meat} (2)

models the case in which we prefer to have both fish and medarid red wine; in
the case in which it is not possible to have both fish and meaprefer to have the fish
more than the meat.

A qualitative preferencé, < on literals can be extended to the set of total assign-
ments as follows: Given two total assignmentand’, we say thaj is preferred to
© (1 =< 1) if and only if (i) there exists a literdl € S with [€ p andl € p/; and(i7)
for each literal’ € SN (¢ \ p), there exists aliterdle S N (p\ ') such that < 1.

A model of a formulayp is optimalif it is a minimal element of the partially ordered
set of models op. For instance, considering the qualitative preferencgtli2)formula
(1) has only two optimal models, i.€.Fish} and{Fish, WhiteWine.

Consider a formulg, a qualitative preferencg, < and a sef’” of optimal models
of ¢. I' is said to becomplete (wrtS, <) if contains all the optimal models qf. With
this notion, there can be only one complete set of optimaletsdavhich, in the case
of (1) and the preference (2), is the $éFish, WhiteWiné, {Fish}}. Other notions of
completeness are possible.

3 Computing all optimal solutions

Given a formulap and a preference, we now show how it is possible to compute a
complete set of models af by extending the Davis-Logemann-Loveland procedure
(bLL) [6] and the procedure in [2] for computing one optimal slntbdLL is the most
used decision procedure for checking satisfiability of folas. HoweverpLL does not
directly handle arbitrary formulas, but finite sets of clesisvhere @lausas a finite set

of literals to be interpreted disjunctively. This is notmiiation because of well known
clause form transformation procedures (see, e.g., [7, 8]).

In the following, we will continuously switch between forias and sets of clauses,
intuitively meaning the same thing.

Consider a formulg and a preferencg, <. An assignment dominatesan assign-
menty’ (wrt S, <) if u < u'. The problem of computing a complete set of optimal
models ofp wrt S, < can be solved by considering the following crucial conditio
which enables us to say which are the assignments that arealieh by (wrt S, <).

We therefore define a formula whose models are dominated Bonsider a total as-
signmentu.

1. n(w) is the set of preferences not satisfiedihy.e.,n(u) = S N7

2. foreachl € S, d(l, i1) is the set of literals in: which are preferred tbaccording
to<,i.ed(l,u)={':1¢epl <lorl <1}.

Then theu-dominates formuléwrt S, <) is

ﬁ((\/len(p) (/\l’ed(l,,u)ll A l)) v (/\lep,le(sug)l A (vl/e#,l/g(sug)ﬁ))) (3)

The total assignment dominates a total assignmeiitwrt S, < iff u’ satisfies the
correspondingi-dominates formula, as stated by the following theorem.

Theorem 1. Let S, < be a qualitative preference on literals. A total assignnaori-
nates a total assignmept wrt S, < if and only if " satisfies the.-dominates formula
wrt S, <.

For example,

1. if uy = {Fish} andS, < is asin (2), then
(@) n(u1) is {Meat}, andd(Meat) = {Fish},
(b) the u1-dominates formula is+((Fish A Meat) v (Fish A Meat A RedWineA
WhiteWing): Any total assignment which does not satigfsish A Meat) or
(Fish A RedWinen WhiteWine is dominated by{Fish}. Notice that the total
assignmen{Fish WhiteWine is not dominated byFish}, as expected.
2. if uo = {Meat} andS, < is as in (2), then
(@) n(ps) is {Fish}, andd(Fish) = 0,
(b) thepus-dominates formula is:(Fishv (Fish A MeatA RedWine\ WhiteWing):
o does not dominate the total assignments satisfiisg or (Fish A Meat A
RedWine\ WhiteWing.

Notice that since:.; < ps, theu;-dominates formula is entailed by thg-dominates
formula: 1 dominates a superset of the total assignments dominatggd. by

It is thus possible to generalize tbeL-based procedure presented in [2] for com-
puting an optimal model, in order to return complete setsptineal models. The re-
sulting procedure is represented in Figure 1. In the figure,

e it is assumed that the input formulais a set of clauseg; is an assignmentp is
an initially empty set of clauses;
e (p U), is the set of clauses obtained framuU ¢ by (i) deleting the clauses
C € pUy with puNC #), and(i7) substituting each clause € ¢ U with C'\ 7z;
e Reasof) returns a set of clauses equivalent to the negation of:tdeminates
formula.
e Chooseliteral(y U1, pv) returns an unassigned litededuch that
— if there exists a literal ir§ which is not assigned by, then each literal’ with
" < I has to be assigned by and
— lis an arbitrary literal occurring iy U 1), otherwise.

nOPT-DLL has to be invoked witlp andp set to the input formula and the empty
set respectivelyaOPT-DLL prints a complete set of optimal models, as stated by the
following theorem.

Theorem 2. Let S, < be a qualitative preference on literals. Legtbe a set of clauses.
nOPT-DLL (¢, () prints a complete set of optimal models far

S, < := a qualitative preference on literals;
P =0

function nOPTDLL (¢ U v, 1)
1if (L € (pU1),) return FALSE;
2 if (u is total)
3 Prinp);
4 4 =1 U Reasofy);
5 return FALSE;
6 if ({I} € (pU),) return nOPTDLL (o U, U {1});
7 1 := ChooselLiteral(p U 1, p);
8 return nOPT-DLL(p U4, U {i}) or
nOPT-DLL (¢ U, u U {1}).

Fig. 1. The algorithm ofnOPT-DLL.

4 Conclusions

In this paper we have presented an algorithm for computirgpaltions in SAT prob-
lems with preferences. The algorithm computes only optimadiels, by following the
given partial order on preferences, but is not ensured t&kwopolynomial space.
Future work comprises the design of algorithms which areantaed to work in poly-
nomial space.

References

1. Craig Boutilier, Ronen |. Brafman, Carmel Domshlak, Hwldd. Hoos, and David Poole.
CP-nets: A tool for representing and reasoning with coodél ceteris paribus preference
statementsJ. Artif. Intell. Res. (JAIR)21:135-191, 2004.

2. E. Giunchiglia and M. Maratea. Solving optimization deshs with DLL. InProc. of 17th
European Conference on Artificial Intelligence (ECAdages 377-381, 2006.

3. Craig Bouitilier, Ronen I. Brafman, Carmel Domshlak, Hwldd. Hoos, and David Poole.
Preference-based constrained optimization with CP-netS€omputational Intelligence
20(2):137-157, 2004.

4. Matti Jarvisalo, Tommi Junttila, and Ilkka Niemela. ridstricted vs restricted cut in a tableau
method for Boolean circuitsAnnals of Mathematics and Artificial Intelligencé4(4):373—
399, August 2005.

5. Enrico Giunchiglia and Marco Maratea. Planning as sabdity with preferences. Iim Proc.
of 22nd AAAI Conference on Artificial Intelligenqeages 987-992. AAAI Press, 2007.

6. Martin Davis, George Logemann, and Donald W. Loveland. a&lnine program for theorem
proving. Communication of ACMb(7):394—-397, 1962.

7. G. Tseitin. On the complexity of proofs in propositionagjics. Seminars in Mathematics8,
1970. Reprinted in [9].

8. D.A. Plaisted and S. Greenbaum. A Structure-preserviagseé Form TranslationJournal
of Symbolic ComputatiQr2:293-304, 1986.

9. Jorg Siekmann and Graham Wrightson, editérmstomation of Reasoning: Classical Papers
in Computational Logic 1967—-1978olume 1-2. Springer-Verlag, 1983.

