Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

  • 2119 Accesses

Abstract

The evolution of cooperative behaviors of small-world networking agents in a snowdrift game mode is investigated, where two agents (nodes) are connected with probability depending on their spatial Euclidean lattice distance in the power-law form controlled by an exponent α. Extensive numerical simulations indicate that the game dynamics crucially depends on the spatial topological structure of underlying networks with different values of the exponent α. Especially, in the distance-independent case of α=0, the small-world connectivity pattern contributes to an enhancement of cooperation compared with that in regular lattices, even with a high cost-to-benefit ratio r. However, with the increment of α > 0, when r ≥ 0.4, the spatial distance-dependent small-world (SDSW) structure tends to inhibit the evolution of cooperation in the snowdrift game.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  2. Smith, M.J., Szathmáry, E.: The Major Transitions in Evolution. W. H. Freeman, Oxford (1995)

    Google Scholar 

  3. Duncan Lucc, R., Raiffa, H.: Games and Decisions. Dover, New York (1985)

    Google Scholar 

  4. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  5. Gintis, H.: Game Theory Evolving. Princeton University, Princeton (2000)

    Google Scholar 

  6. Maynard Smith, J., Price, G.: The Logic of Animal Conflict. Nature 246, 15–18 (1973)

    Article  Google Scholar 

  7. Sugden, R.: The Economics of Rights, Co-operation and Welfare. Blackwell, Oxford (1986)

    Google Scholar 

  8. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

    Google Scholar 

  9. Doebeli, M., Hauert, C.: Models of Cooperation Based on the Prisoner’s Dilemma and the Snowdrift Game. Ecology Letters 8, 748–766 (2005)

    Article  Google Scholar 

  10. Nowak, M.A., May, R.: Evolutionary Games and Spatial Chaos. Nature 359, 826–829 (1992)

    Article  Google Scholar 

  11. Hauert, C., Doebeli, M.: Spatial Structure often Inhibits the Evolution of Cooperation in the Snowdrift Game. Nature 428, 643–646 (2004)

    Article  Google Scholar 

  12. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  13. Sysi-Aho, M., et al.: Spatial Snowdrift Game with Myopic Agents. Eur. Phys. J. B. 44, 129–135 (2005)

    Article  Google Scholar 

  14. Tomassini, M., Luthi, L., Giacobini, M.: Hawks and Doves on Small-world Networks. Phys. Rev. E 73, 016132 (2006)

    Article  Google Scholar 

  15. Kleinberg, J.M.: Navigation in a Small World. Nature 406, 845–847 (2000)

    Article  Google Scholar 

  16. Jespersen, S., Blumen, A.: Small-world Networks: Links with Long-tailed Distribution. Phys. Rev. E 62, 6270–6274 (2000)

    Article  Google Scholar 

  17. Sen, P., Chakrabarti, B.K.: Small-world Phenomena and the Statistics of Linear Polymers. J. Phys. A 34, 7749–7755 (2001)

    Article  MATH  Google Scholar 

  18. Sen, P., Banerjee, K., Biswas, T.: Phase Transition in a Network with a Range-dependent Connection Probability. Phys. Rev. E 66, 037102 (2002)

    Article  Google Scholar 

  19. Boccaletti, S., et al.: Complex Networks: Structure and Dynamics. Physics Reports 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  20. Newman, M.E.J., Watts, D.J.: Scaling and Percolation in the Small-world Network Model. Phys. Rev. E 60, 7332–7342 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shang, L. (2008). Cooperative Dynamics in Spatially Structured Populations. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics