
An Algorithm for Orienting Graphs Based on
Cause-Effect Pairs and Its Applications to

Orienting Protein Networks

Alexander Medvedovsky1, Vineet Bafna2, Uri Zwick1, and Roded Sharan1

1 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
{medv,zwick,roded}@post.tau.ac.il.

2 Dept. of Computer Science, UC San Diego, USA. vbafna@cs.ucsd.edu.

Abstract. We consider a graph orientation problem arising in the study
of biological networks. Given an undirected graph and a list of ordered
source-target pairs, the goal is to orient the graph so that a maximum
number of pairs will admit a directed path from the source to the tar-
get. We show that the problem is NP-hard and hard to approximate to
within a constant ratio. We then study restrictions of the problem to
various graph classes, and provide an O(log n) approximation algorithm
for the general case. We show that this algorithm achieves very tight
approximation ratios in practice and is able to infer edge directions with
high accuracy on both simulated and real network data.

1 Introduction

One of the major roles of protein-protein interaction (PPI) networks is to trans-
mit signals within the cell in response to genetic and environmental cues. Tech-
nologies for measuring PPIs (see, e.g., [3]) do not provide information on the
direction in which the signal flows. It is thus a great challenge to orient a given
network by combining causal information on cellular events. One such source of
information is perturbation experiments in which a gene is perturbed and as a
result other genes change their expression levels.

In graph theoretic terms, one is given an undirected graph and a list of
cause-effect pairs. The goal is to direct the edges of the graph, assigning a single
direction to each edge, so that a maximum number of pairs admit a directed
path from the cause to the effect. In fact, by contracting cycles in the graph
one can easily reduce the problem to that of orienting a tree. Hakimi et al. [4]
studied a restricted version of the problem where the list of vertex pairs includes
all possible pairs, giving a quadratic time algorithm for it. Another variant of
the problem was studied in [1] and [5], where rather than maximizing the total
number of pairs, an algorithm was given to decide if one can satisfy all given
pairs.

In this paper we study the resulting tree orientation problem. We prove
that it is NP-hard and hard to approximate to within a constant ratio, study
restrictions of the problem to various graph classes, and provide an O(log n)

approximation algorithm for the general case, where n is the size of the tree.
We show that this algorithm achieves tight approximation ratios in practice and
is able to infer edge directions with high accuracy on both simulated and real
network data.

The paper is organized as follows: In Section 2 the graph orientation prob-
lem is presented and its complexity is analyzed. Section 3 provides exact and
approximate algorithms for restrictions of the problem, and an approximation
algorithm for the general case. Biological applications of the latter algorithm are
described in Section 4. For lack of space, some proofs are shortened or omitted.

2 Problem Definition

Let G = (V,E) be an undirected graph. An orientation G of G is a directed
graph obtained from G by orienting each edge (u, v) ∈ E either from u to v
or from v to u. Let P ⊆ V × V be a set of ordered source-target pairs. A pair
(a, b) ∈ P is satisfied by a given orientation G of G if there is a directed path
from a to b in G. Our goal is to find an orientation G of G that simultaneously
satisfies as many pairs from P as possible.

If the graph G contains a cycle C, then it is easy to see that, for any set P ,
there is an optimal orientation of G in which all the edges of C are oriented in
the same direction and, consequently, all pairs that connect two vertices in C
are satisfied. The original problem can therefore be solved by contracting the
cycle C and then solving an equivalent problem on the contracted graph. Thus,
the interesting case is when the graph G is a tree.

Definition 1. Maximum Tree Orientation (MTO): Given an undirected
tree T and a set P of ordered pairs of vertices, find an orientation of the edges
of T that maximizes the number of pairs in P that are satisfied.

In the decision version of the problem, the input includes T, P , and an integer
k ≤ |P |, and the question is whether the edges can be directed so that at least k
pairs in P are satisfied. As we show next, the problem is NP-hard even when T
is a star or a binary tree.

Theorem 1. MTO is NP-complete.

Proof. The problem is clearly in NP. We show NP-hardness by reduction from
Max Di-Cut [8], which is defined as follows: given a directed graph G = (V,E)
and an integer k ≤ |E|, is there a cut A ⊂ V such that there are at least k edges
e = (u, v), with u ∈ A and v ∈ V \A.

We map an instance (G, k) of Max Di-Cut into an instance (T = (V ′, E′), P, k)
of MTO in the following way: V ′ = V ∪ {O}, E′ = {(v,O) : v ∈ V } and P = E.

Given a cut A ⊂ V with k crossing edges, it is easy to see that each pair
corresponding to such an edge can be satisfied: for all v ∈ A direct the edge
(v,O) toward O, and direct all other edges away from O.

On the other hand, suppose that we have directed the edges of T so that k
pairs are satisfied. Note that if (u, v) is satisfied then u is directed toward O,

2

and no pair (v′, u) can be satisfied. Therefore, the cut defined by A = {u |
(u,O) is directed toward O}, is of size k.

Corollary 1. MTO is NP-complete even on stars.

As Max Di-Cut is hard to approximate to within a factor of 11
12 ' 0.9166

(H̊astad [6]), and the reduction is approximation preserving, we conclude:

Corollary 2. It is NP-hard to approximate MTO to within a factor of 11
12 .

Theorem 2. MTO is NP-complete on binary trees.

Fig. 1. An example of the reduction from MAX-2-SAT to MTO. The input 2-SAT
formula is (x1 ∨ ¬x2) ∧ (x3 ∨ ¬x2); x1 and x3 are assigned a True value, and x2 is
assigned a False value.

Proof. The problem is clearly in NP. We prove NP-hardness by a reduction
from Max 2-SAT, where each clause is assumed to contain exactly two literals.
Suppose f is a 2-SAT formula with variables x1, ..., xn. Create a binary tree T
with subtrees Ts and Tt, so that Ts has a leaf si, and Tt has a leaf ti for each
variable xi. Create two child nodes st

i and sf
i for each si, and tti and tfi for each

ti (see Figure 1).
To complete the reduction we need to specify a set of pairs to be satisfied.

This set will be composed of two subsets: P1, forcing the choice of a truth value
for each variable, and P2, relating these truth values to the clauses in f .

3

The truth value of a variable will be set by forcing a directed path between
st

i and sf
i . If the path is directed from st

i to sf
i we will interpret it as assigning

the value True to xi; if it is directed the other way, we will associate the value
False with xi. To this end, for every variable xi participating in ni clauses, we
will add 3ni pairs (st

i, s
f
i) and 3ni pairs (sf

i , s
t
i) to P1. Similarly, we will force a

path between tti and tfi , indicating the truth value of xi, but this time a path
from tti to tfi will indicate False and the opposite direction will indicate True.
Again, this will be done by adding 3ni pairs (tti, t

f
i) and 3ni pairs (tfi , t

t
i) to P1.

Finally, to force the consistency of truth association in Ts and Tt, we will force
a directed path from st

i to tti or from sf
i to tfi by adding 3ni pairs (st

i, t
t
i) and

3ni pairs (sf
i , t

f
i) to P1.

The complementing subset of pairs is defined as follows:

P2 = {(st
i, t

t
j), (st

i, t
f
j), (sf

i , t
t
j)|(xi ∨ xj) ∈ f} ∪

{(sf
i , t

t
j), (sf

i , t
f
j), (st

i, t
t
j)|(¬xi ∨ xj) ∈ f} ∪

{(st
i, t

t
j), (st

i, t
f
j), (sf

i , t
f
j)|(xi ∨ ¬xj) ∈ f} ∪

{(sf
i , t

t
j), (sf

i , t
f
j), (st

i, t
f
j)|(¬xi ∨ ¬xj) ∈ f}

Define P = P1 ∪ P2. We claim that c clauses in f can be satisfied iff 18n+ c
pairs in P can be satisfied, where n is the total number of clauses in f .

Suppose that there is a truth assignment that satisfies c clauses in f . Direct
the edges (si, s

t
i), (si, s

f
i), (ti, tti) and (ti, t

f
i) according to the assignment. Direct

all other edges in Ts upwards, and edges in Tt downwards. For each i, there are
9ni satisfied pairs in P1. Since

∑
i ni = 2n, the number of satisfied pairs in P1

is 18n. Clearly, for every satisfied clause there is a satisfied pair from P1. Thus,
18n+ c pairs of P can be satisfied.

Conversely, suppose we have an orientation of T so that 18n + c pairs of P
are satisfied. For each i there are at most 9ni satisfied pairs in P1. If the total
number of satisfied pairs in P1 is less than 18n, then for some i there are less
than 9ni satisfied pairs (out of the ones associated with it). This implies that
the directions of the edges (si, s

t
i), (si, s

f
i), (ti, tti), (ti, t

f
i) are inconsistent. Thus,

either 6ni, 3ni or 0 of the corresponding pairs are satisfied. However, if we make
these edge directions consistent, we add at least 3ni satisfied pairs from P1 and
lose at most 3ni pairs involving one of st

i, s
f
i , t

t
i, t

f
i from P2. Thus, w.l.o.g., we can

assume that these edges are directed consistently, implying exactly 18n satisfied
pairs from P1. In addition, we have c satisfied pairs from P2. Moreover, due to
the consistency assumption, each clause can have at most one associated pair
satisfied. It follows that c clauses can be satisfied in f .

3 Exact and Approximation Algorithms for MTO

As we have shown that MTO is NP-hard, we describe polynomial time algorithms
for special cases, and approximation algorithms for special cases and for the
general case. We start by providing an integer programming (IP) formulation

4

of the problem that will be useful for studying the practical performance of the
algorithms we propose for MTO.

3.1 An Integer Program Formulation

Since every two vertices in a tree are connected by a unique path, MTO can be
solved using the following integer program:

1. For each vertex pair p ∈ P introduce a Boolean variable y(p), indicating
whether it is satisfied or not.

2. For each edge e = (u, v) ∈ T , where u < v, introduce a Boolean variable
x(e), indicating its direction (1 if it is directed from u to v, and 0 otherwise).

3. For each pair p = (a, b) ∈ P and every tree edge e = (u, v) ∈ T , where u < v:
if the path from a to b in T uses e in the direction from u to v, introduce a
constraint y(p) ≤ x(e), and if it uses the edge in the direction from v to u,
introduce a constraint y(p) ≤ 1− x(e).

4. Maximize the objective function
∑

p∈P y(p).

It is possible to consider an LP-relaxation of the above integer programming,
but it is not very useful as a value of |P |/2 can always be obtained by setting
x(e) = y(p) = 1

2 for every e ∈ T and p ∈ P .

3.2 Solving MTO on Paths

In this section we present a simple dynamic programming algorithm that solves
MTO on a path in polynomial time.

Assume that the vertices on the path are numbered consecutively from 1
to n. The edges of the path are (i, i+ 1), for 1 ≤ i < n. We think of vertex i as
lying to the left of vertex i+ 1. We also let [i, j] = {i, i+ 1, . . . , j}.

Let P be the input set of pairs. For every 1 ≤ i < j ≤ n, let v+
ij = |{(a, b) ∈

P | i ≤ a < b ≤ j}| and v−ij = |{(b, a) ∈ P | i ≤ a < b ≤ j}|. In other words,
v+

ij is the number of pairs of P with both endpoints in the interval [i, j] that are
satisfied when the edges (i, i+1), . . . , (j−1, j) are all oriented to the right, while
v−ij is the number of such pairs satisfied when the edges are oriented to the left.
Let vij be the maximal number of pairs of P with both endpoints in [i, j] that
can be simultaneously satisfied using any orientation of the edges in the interval
[i, j]. We claim:

Lemma 1. For every 1 ≤ i < j ≤ n we have vij = max{ v+
ij , v

−
ij , max

i<k<j
vik+vkj}.

Proof. The proof that vij ≥ max{ v+
ij , v

−
ij ,maxi<k<j vik +vkj} is straightforward.

We prove, therefore, the opposite inequality. Consider the orientation of [i, j] that
achieves the maximal value of vij . If all the edges in this orientation are oriented
to the right, then vij = v+

ij and we are done. Similarly, if they are all oriented to
the left, then vij = v−ij . Otherwise, there is a vertex i < k < j for which the edges
(k− 1, k) and (k, k + 1) have opposite orientations. It follows that no pair (a, b)

5

with a < k < b or b < k < a can be satisfied by such an orientation. Hence, all
edges satisfied by this orientation lie in either [i, k] or [k, j]; thus, vij = vik +vkj ,
as required.

As an immediate corollary we get:

Theorem 3. MTO on paths of length n can be solved in O(n3) time.

3.3 Approximating MTO on Stars

A star is a tree in which the root is directly connected to all the leaves (i.e.,
a tree with one level). In this section we describe an approximation algorithm
for MTO on stars that will also serve as a building block in our approximation
algorithms for general trees.

Lemma 2. If T is a star then at least 1/4 of all pairs can be satisfied.

Proof. Choose a random orientation. Each pair is then satisfied with a proba-
bility of at least 1/4.

It is easy to use the method of conditional expectations to obtain a determin-
istic linear time algorithm that produces an orientation of a star that satisfies at
least 1/4 of the pairs. This immediately gives us a 1/4-approximation algorithm
for the problem. As the MTO problem on stars is equivalent to the Max-DI-
Cut problem, an 0.874-approximation for the problem can be obtained using
the semidefinite programming based approximation algorithms [2, 9].

Approximating MTO on Caterpillars

Recall that a caterpillar is a graph in which all vertices are on a central path
or at most one edge away from it. MTO is NP-complete even for caterpillars
with maximum degree 3 (the proof is similar to the proof for binary trees, and
is omitted for lack of space). We show the following:

Lemma 3. Let T be a caterpillar. At least 1/8 of all pairs can be satisfied.

Proof. Partition edges into ’path’ edges which lie on the caterpillar path, and
’bush’ edges which “stick” from it. Direct the path edges in a single direction
by choosing one of the two at random. Also, randomly direct each of the bush
edges. Note that each pair of vertices (u, v) is connected by at most two bush
edges and a sub-path. Therefore, the probability that (u, v) is satisfied by the
random assignment is at least 1/8. The claim follows.

6

3.4 Approximating MTO on bounded-depth trees

In this section we present approximation algorithms for rooted, bounded-depth
trees that make use of the approximation algorithm for stars. All the results can
be extended to unrooted, bounded-diameter trees by rooting them at a “central”
vertex so that their depth is bounded by roughly half the diameter.

Consider a tree T with d levels (and depth d − 1). We denote the vertices
at level i by Li, starting from the root at level 1. For a node v, denote by Tv

the subtree rooted at v. Two notions of separation will be useful to us in the
approximation algorithms that we design in the sequel.

Definition 2. A node w in a tree separates a pair (u, v), if w is on the path
between u and v. w is called the lowest common ancestor (LCA) of u and v if
in addition it lies on the lowest possible level in the tree.

Lemma 4. For any vertex v in T , at least 1/4 of the pairs separated by v can
be satisfied.

Proof. Re-root the tree at v, and denote its subtrees by T1, . . . , Tl. We will direct
all edges in Ti either toward v or away from v, consistent with the edge between
v and Ti. To direct the edges between v and Ti, construct an instance of MTO
on a star T ′ as follows: the root is v, and there are l leaves v1, . . . , vl. For each
(u,w) separated by v, where u ∈ Tx, w ∈ Ty, add (vx, vy) to P ′. By Lemma 2,
1/4 of the pairs in P ′ can be satisfied. The edge directions in T ′ are used to
direct the edges of the tree. It is easy to see that any pair (u,w) separated by v,
where u ∈ Tx, w ∈ Ty, is satisfied iff (vx, vy) is satisfied in T ′. The claim follows.

Corollary 3. For any vertex v in T , at least 1/4 of the pairs whose LCA is v
can be satisfied.

Definition 3. For a tree T rooted at a vertex v, we denote by StarMTO(T, P, v)
the star-based solution of the MTO problem on T , as described in the proof of
Lemma 4.

Lemma 5. Let T be a rooted tree with d levels. At least 1/(4d) of the pairs in
P can be satisfied.

Proof. As there are d levels, there must be a level j that contains at least |P |/d
LCAs of the pairs in P . Compute StarMTO(Tv, P, v) for each node v ∈ Lj . By
Corollary 3, at least |P |/(4d) of the pairs are satisfied.

The above lemma provides us with a lower bound on the number of pairs
that can be satisfied. It implies an approximation algorithm to MTO with a
ratio of 1/(4d), but the latter ratio can be improved as we show next:

Lemma 6. Let T be a tree with d levels. MTO can be approximated to within a
factor of 1/(2d) on T .

7

Proof. We form a d-partite graph Gd, in which each node corresponds to a pair
in P . The i-th layer is the set of pairs whose LCAs lie on Li. We connect two
vertices (in two layers) by an edge if the two pairs cannot be simultaneously
satisfied. Clearly, the maximum number of pairs that can be satisfied is no more
than a maximum sized independent set I in Gd.

For the algorithm, find an independent set I ′ in Gd. Next, solve StarMTO
starting with the root level of the tree, and going down the tree. Specifically, for
each vertex v ∈ Li, solve StarMTO(Tv, I

′, v) on the pairs in the independent set
I ′. Note that some of the edge directions have been pre-set by previous levels.
However, as I ′ is an independent set, the edge directions set by previous levels
do not contradict any of the pairs in the current level. By Lemma 2, at least
|I ′|/4 pairs are satisfied. The approximation ratio is therefore

|I ′|
4|I|

=
αd

4

where αd = 2/d is the approximation ratio achievable for independent sets on a
d-partite graph [7]. Overall we get an approximation ratio of 1/(2d).

Lemma 6 implies a 1/(2 lg n) approximation algorithm for a complete binary
tree, as it contains lg n levels.

Approximating MTO on General Trees

Lemma 7. In every tree of size n there is a centroid node whose removal breaks
the tree into components of size at most n/2.

Our approximation algorithm for general trees is as follows:

MTO(T, P)

1. Find a centroid v, with resulting subtrees T1, . . . , Tl.
2. Let As = StarMTO(T, P, v).
3. For all 1 ≤ j ≤ l, let Pj = MTO(Tj , P).
4. return max{As,

∑
j Pj}.

Theorem 4. Let T be a tree with n nodes. For any set P , MTO(T, P) finds an
orientation that satisfies at least 1/(4 lg n) of the pairs.

Proof. Let R(n) be a lower bound on the fraction of the pairs satisfied by the
orientation produced by the algorithm when run on a tree with n vertices. We
show by induction that R(n) ≥ 1

4 lg n .
At the base of the induction n = 2. In this case, at least 1/2 of the pairs are

satisfied, and R(n) ≥ 1/2. Suppose now that R(k) ≥ 1/(4 lg k) for any k < n.
Let P (n) = |P |R(n) denote the minimum number of pairs satisfied by running
MTO on an input of size n. Also, let A be the subset of pairs separated by

8

the centroid v. By the induction assumption,
∑

j P (nj) ≥ |P |−|A|
4 lg(n/2) . Therefore,

applying to the recursion

P (n) = max

 |A|4
,
∑

j

P (nj)

 ≥ max
{
|A|
4
,
|P | − |A|
4 lg(n/2)

}

The two sub-expressions are balanced for |A| = |P |/ lg n, implying that

R(n) =
P (n)
|P |

≥ 1
4 lg n

4 Applications to Simulated and Real Network Data

We implemented the general approximation algorithm described above and tested
it on simulated and real network data. To evaluate its performance we also im-
plemented the integer-program algorithm which provides an optimal solution to
MTO.

4.1 Performance on Simulated Data

As a first test of the algorithm, we measured its approximation ratio performance
on random trees, by comparing the solutions it obtained to those obtained by
the IP algorithm. The random trees contained 1,000 vertices and were generated
by iteratively adding a vertex, and connecting it to one of the already existing
vertices uniformly at random. The cause-effect pairs were generated by drawing
vertices from the tree uniformly at random.

We tested the algorithm’s performance when varying the number of cause-
effect pairs from 20 to 1000. The percentage of satisfied pairs along with the
implied approximation ratio are displayed in Figure 2. Evidently, the algorithm
attains very high approximation ratios in practice reaching up to 0.9 and higher
ratios on instances with 500 or more pairs. Notably, even on random instances
for which at least 80% of the pairs could be satisfied (see a detailed description
in the next paragraph) the average approximation ratio was 0.66 – much higher
than the theoretical guarantee.

To test the utility of the algorithm in predicting edge directions, we simulated
input with known edge directions as follows: we generated 20-1,000 pairs of
vertices. 80% of the pairs were generated in a way that all could be satisfied
simultaneously. The other 20% of the pairs were generated randomly, to simulate
noise. We randomly chose 50 edges on the paths of the ”correct” pairs, and tested
the algorithm’s accuracy in predicting their direction. The accuracy did not seem
to depend on the number of pairs, and was 0.76 on average.

9

Fig. 2. Performance on simulated data. Percents of satisfied pairs are displayed for
both an optimal solution (based on IP) and the approximation algorithm’s solution. A
third plot depicts the implied approximation ratio.

4.2 Biological Data

Next, we tested the performance of our algorithm on real data. To this end,
we used a yeast protein-protein interaction (PPI) network consisting of 15,147
protein-protein interactions obtained from the Database of Interacting Pro-
teins [11]. We complemented this network by additional 596 (kinase-substrate)
PPIs from [10] for which the direction of signal flow is known (from the kinase to
the substrate), represented as undirected edges in the constructed network. For
cause-effect pairs, we used knockout data obtained from [12]. The data set con-
tained 24,457 pairs of a knocked out gene (cause) and an affected gene (effect),
out of which 14,295 are pairs of proteins from the network.

After removal of small disconnected components (of size ≤ 3) and cycle-
contraction, we obtained a tree with 2,027 vertices and 3,370 cause-effect pairs.
Interestingly, about 90% of the vertices in the contracted tree were aligned in a
star form. Applying our approximation algorithm to the tree yielded an orienta-
tion that satisfied 3,262 of the 3,370 pairs. The optimal solution, obtained using
integer programming, satisfied 3,295 pairs, implying a practical approximation
ratio of 0.99. This tight ratio matches the ratios observed in the simulations
(Figure 2).

The orientation produced by the algorithm provided predictions for 3,880
interaction directions. 148 of these interactions were from the kinase-substrate
data set and, hence, their true directions were known. Remarkably, 147 of these

10

148 directions were predicted correctly. Notably, none of the kinase-substrate
interactions were also cause-effect pairs, but rather lied on paths connecting
such pairs.

5 Conclusions

In this paper we have studied the problem of orienting a graph so as to satisfy
a maximum number of ordered pairs. We have given exact and approximate
algorithm to certain restrictions of the problem, and an O(log n) approximation
algorithm for the general case. The algorithm was shown to yield very tight
approximation ratios in practice, and attained remarkable accuracy in predicting
edge directions on a real protein network.

Several open problems that require further investigation include: (i) closing
the gap between the guaranteed approximation ratio in the general case and the
approximation hardness result; (ii) tackling the graph orientation problem when
some of the edge directions are pre-set (in the biological context this happens
when there is prior biological knowledge on directionality or when considering
other types of interactions such as transcriptional regulatory ones); and (iii)
improving the lower bound on the optimum number of pairs that can be satisfied.

6 Acknowledgments

We thank Richard Karp, Eran Halperin, Tomer Shlomi and Eytan Ruppin for
stimulating discussions about the orientation problem. We thank Oved Our-
fali for his help with the implementation. We thank Andreas Beyer and Silpa
Suthram for providing us with the kinase-substrate data. This work was sup-
ported by a grant from the Israel Science Foundation (grant no. 385/06).

References

1. E. M. Arkin and R. Hassin. A note on orientations of mixed graphs. Discrete
Applied Mathematics, 116(3):271–278, 2002.

2. U. Feige and M. X. Goemans. Aproximating the value of two prover proof systems,
with applications to MAX 2-SAT and MAX DI-CUT. In ISTCS, pages 182–189,
1995.

3. S. Fields. High-throughput two-hybrid analysis. the promise and the peril. Febs
J, 272(21):5391–5399, 2005.

4. S. L. Hakimi, E. Schmeichel, and N. E. Young. Orienting graphs to optimize
reachability. Information Processing Letters, 63(5):229–235, 1997.

5. R. Hassin and N. Megiddo. On orientations and shortest paths. Linear Algebra
and its applications, 114/115:589–602, 1989.

6. J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–
859, 2001.

7. D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics, 6:243–254, 1983.

11

8. V. Kann, J. Lagergren, and A. Panconesi. Approximability of maximum splitting
of k-sets and some other apx-complete problems. Information Processing Letters,
58(3):105–110, 1996.

9. M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In Proceedings of the 9th International IPCO
Conference on Integer Programming and Combinatorial Optimization, pages 67–82,
London, UK, 2002. Springer-Verlag.

10. J. Ptacek, G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo, H. Guo, G. Jona,
A. Breitkreutz, R. Sopko, R. R. McCartney, M. C. Schmidt, N. Rachidi, S. J. Lee,
A. S. Mah, L. Meng, M. J. Stark, D. F. Stern, C. De Virgilio, M. Tyers, B. Andrews,
M. Gerstein, B. Schweitzer, P. F. Predki, and M. Snyder. Global analysis of protein
phosphorylation in yeast. Nature 438, pages 679–84, 2005.

11. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, , and D. Eisenberg.
The database of interacting proteins: 2004 update. Nucleic Acids Research, 32,
page D449, 2004.

12. C.-H. Yeang, T. Ideker, and T. Jaakkola. Physical network models. Journal of
Computational Biology, 11(2/3):243–262, 2004.

12

