Skip to main content

Boosting the Performance of Inference Algorithms for Transcriptional Regulatory Networks Using a Phylogenetic Approach

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5251))

Included in the following conference series:

Abstract

Inferring transcriptional regulatory networks from gene-expression data remains a challenging problem, in part because of the noisy nature of the data and the lack of strong network models. Time-series expression data have shown promise and recent work by Babu on the evolution of regulatory networks in E. coli and S. cerevisiae opened another avenue of investigation. In this paper we take the evolutionary approach one step further, by developing ML-based refinement algorithms that take advantage of established phylogenetic relationships among a group of related organisms and of a simple evolutionary model for regulatory networks to improve the inference of these networks for these organisms from expression data gathered under similar conditions.

We use simulations with different methods for generating gene-expression data, different phylogenies, and different evolutionary rates, and use different network inference algorithms, to study the performance of our algorithmic boosters. The results of simulations (including various tests to exclude confounding factors) demonstrate clear and significant improvements (in both specificity and sensitivity) on the performance of current inference algorithms. Thus gene-expression studies across a range of related organisms could yield significantly more accurate regulatory networks than single-organism studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Proc. 4th Pacific Symp. on Biocomputing (PSB 1999), pp. 17–28. World Scientific, Singapore (1999)

    Google Scholar 

  2. Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opinion in Struct. Bio. 14(3), 283–291 (2004)

    Article  Google Scholar 

  3. Babu, M.M., Teichmann, S.A.: Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res. 31(4), 1234–1244 (2003)

    Article  Google Scholar 

  4. Babu, M.M., Teichmann, S.A., Aravind, L.: Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Bio. 358(2), 614–633 (2006)

    Article  Google Scholar 

  5. Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)

    Article  Google Scholar 

  6. Bourque, G., Sankoff, D.: Improving gene network inference by comparing expression time-series across species, developmental stages or tissues. J. Bioinform. Comput. Biol. 2(4), 765–783 (2004)

    Article  Google Scholar 

  7. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Proc. 4th Pacific Symp. on Biocomputing (PSB 1999), pp. 29–40. World Scientific, Singapore (1999)

    Google Scholar 

  8. Conant, R.C.: Extended dependency analysis of large systems. Int’l J. General Systems 14(2), 97–141 (1988)

    Article  MathSciNet  Google Scholar 

  9. Friedman, N.: Inferring cellular networks using probabilistic graph models. Science 303(5659), 799–805 (2004)

    Article  Google Scholar 

  10. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Bio. 7(3-4), 601–620 (2000)

    Article  Google Scholar 

  11. Friedman, N., Murphy, K.P., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. 14th Conf. on Uncertainty in Art. Intell. UAI 1998, pp. 139–147 (1998)

    Google Scholar 

  12. Hillis, D.M.: Approaches for assessing phylogenetic accuracy. Syst. Bio. 44, 3–16 (1995)

    Article  Google Scholar 

  13. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., Hirakawa, M.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006)

    Article  Google Scholar 

  14. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 4(3), 228–235 (2003)

    Article  Google Scholar 

  15. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Proc. 3rd Pacific Symp. on Biocomputing (PSB 1998), pp. 18–29. World Scientific, Singapore (1998)

    Google Scholar 

  16. Moret, B.M.E., Warnow, T.: Reconstructing optimal phylogenetic trees: A challenge in experimental algorithmics. In: Fleischer, R., Moret, B.M.E., Schmidt, E.M. (eds.) Experimental Algorithmics. LNCS, vol. 2547, pp. 163–180. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Murphy, K.P.: The Bayes net toolbox for MATLAB. Computing Sci. and Statistics 33, 331–351 (2001)

    Google Scholar 

  18. Pupko, T., Pe’er, I., Shamir, R., Graur, D.: A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol. Bio. Evol. 17(6), 890–896 (2000)

    Google Scholar 

  19. Slonim, D.K.: From patterns to pathways: gene expression data analysis comes of age. Nature Genetics 32, 502–508 (2002)

    Article  Google Scholar 

  20. Teichmann, S.A., Babu, M.M.: Gene regulatory network growth by duplication. Nature Genetics 36(5), 492–496 (2004)

    Article  Google Scholar 

  21. Wang, R., Wang, Y., Zhang, X., Chen, L.: Inferring transcriptional regulatory networks from high-throughput data. Bioinformatics 23(22), 3056–3064 (2007)

    Article  Google Scholar 

  22. Xu, R., Hu, X., Wunsch, D.C.: Inference of genetic regulatory networks from time series gene expression data. In: Proc. IEEE Int’l Joint Conf. on Neural Networks, vol. 2, pp. 1215–1220. IEEE Press, Piscataway (2004)

    Google Scholar 

  23. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), 3594–3603 (2004)

    Article  Google Scholar 

  24. Zhao, W., Serpedin, E., Dougherty, E.R.: Inferring gene regulatory networks from time series data using the minimum length description principle. Bioinformatics 22(17), 2129–2135 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Keith A. Crandall Jens Lagergren

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Moret, B.M.E. (2008). Boosting the Performance of Inference Algorithms for Transcriptional Regulatory Networks Using a Phylogenetic Approach. In: Crandall, K.A., Lagergren, J. (eds) Algorithms in Bioinformatics. WABI 2008. Lecture Notes in Computer Science(), vol 5251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87361-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87361-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87360-0

  • Online ISBN: 978-3-540-87361-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics