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Abstract. This paper compares language modeling techniques for dialog act seg-
mentation of multiparty meetings. The evaluation is twofold; we search fona c
venient representation of textual information and an efficient modeppgoach.

The textual features capture word identities, parts-of-speech, daanhatically
induced classes. The models under examination include hidden evgoatn
models, maximum entropy, and BoosTexter. All presented methodtested
using both human-generated reference transcripts and automaticripeseb-
tained from a state-of-the-art speech recognizer.

1 Introduction

Recent years have witnessed significant progress in thebaegomatic speech recog-
nition (ASR). Nowadays, large volumes of audio data can &estcribed automatically
with reasonable accuracy. Although the application of muattic methods is extremely
labor saving, raw automatic transcripts often do not hawaa tonvenient for subse-
quent processing. The problem is that standard ASR systatpgtaonly a raw stream
of words, leaving out important structural information Bus locations of sentence or
dialog act (DA) boundaries. Such locations are overt inddath text via punctuation
and capitalization, but “hidden” in speech.

As proved by a number of studies, the absence of linguistimbaries is confus-
ing both for humans and computers. For example, Jones eh@kesl that sentence
breaks are critical for legibility of speech transcriptk [likewise, missing sentence or
DA boundaries cause significant problems to automatic doeas processes. Many
natural language processing techniques (e.g., parsingmatic summarization, in-
formation extraction and retrieval, machine translatiarg typically trained on well-
formatted input, such as text, and fail when dealing withtrutsured streams of words.
For instance, Kahn et al. reported a significant error redadh parsing performance
by using an automatic sentence boundary detection sysfem [2

This paper deals with automatic linguistic segmentatiormaftiparty meetings
from the ICSI corpus [3]. The goal is to segment the meetiagdcripts into mean-
ingful utterance units. The target units herein are not defis sentences but as DAs.
Although the original manual transcripts of the ICSI corgdogontain punctuation, and
thus also sentence boundaries, the punctuation is higbbnsistent. Transcribers were
instructed to focus on transcribing words as quickly as iptessthere was not a fo-
cus on consistency or conventions for marking punctuati@mce, instead of using the



inconsistent first-pass punctuation, it was decided to eyngpecial DA segmentation
marks from the MRDA annotation project [4]. In this annatatpass, labelers carefully
annotated both dialog acts and their boundaries, using ass®t of segmentation con-
ventions for the latter. For a given word sequence, the th§kfosegmentation is to
determine which inter-word boundaries correspond to a Dénbary. Each inter-word
boundary is labeled as either a within-DA boundary or a bampndetween two DAs.

There are two basic sources of information that can be usedlve the task: rec-
ognized words and prosody. Several different approachgisgeon one or both of the
information sources have been employed for sentence anceB@entation [5-10]. In
this paper, | focus on an effective utilization of the infation contained in the recog-
nized stream of words. Well-tuned language models (LMshateonly important for
applications where they are combined with a prosody modelalso for the applica-
tions in which we do not have access to, or cannot exploisqguiz information.

The LM evaluation is twofold; | search both for a conveniesginesentation of tex-
tual information and an efficient modeling approach. In ®mwh textual knowledge
representation, | analyze contributions from word idéitparts-of-speech, and auto-
matically induced word classes. In terms of statistical etiog), | explore three different
approaches — hidden event language models, maximum entroggls, and boosting-
based models. | test the methods using both reference hgerarated transcripts and
automatic transcripts obtained from a state-of-the-agesp recognizer. | also address
the issue whether it is better to train the system on cleagreate data or on data
containing word recognition errors.

2 Method

2.1 Dataand Experimental Setup

The ICSI meeting corpus contains approximately 72 hours wfiomannel conversa-
tional English. The data were split into a training set (5letimgs, 539k words), a
development set (11 meetings, 110k words), and a test senéttings, 102k words).
The test set contains unseen speakers, as well as spegsessiag in the training data
as it is typical for the real world applications.

For model training and testing | used both human-generatfence transcripts
and ASR output. Recognition results were obtained usingttite-of-the-art SRI speech
recognition system [11]. Word error rates for this difficdétta are still quite high; the
used ASR system performed at 38.2% (on the whole corpus)effergte the “refer-
ence” DA boundaries for the ASR words, the reference setigalvigned to the recog-
nition output with the constraint that two aligned words oot occur further apart
than a fixed time threshold. DA boundaries occupy 15.9% efrimtord boundaries in
reference and 13.9% in automatic transcripts.

2.2 Textual Features

In this work, | do not only use simple word-based models, lt&n atilize textual in-
formation beyond word identities, as captured by word dassd part-of-speech tags.



I do not use chunking (or even full-parsing) features. Clingleatures may slightly
increase performance for well-structured speech suchazglbast news [12], but pre-
liminary investigations showed that, because of poor clgngerformance on meeting
data, these features rather hurt DA segmentation accuraayeeting speech. Hence,
| did not use them in this work. The following sections deserindividual groups of
employed features.

Words Word features simply capture word identities around pdsdil® boundaries
and represent a baseline for our experiments.

Automatically Induced Classes (AIC) In language modeling, we always have to deal
with data sparseness. In some tasks, we may mitigate tHidgondoy grouping words
with similar properties into word classes. The groupingumed the number of model
parameters to be estimated during training. Automatidaltiiced classes (AIC) are
derived in a data-driven way. Data-driven methods typygadirform a greedy search to
find the best fitting class for each word given an objectivefiom.

The clustering algorithm | used [13] minimizes perplexitiytbe induced class-
basedn-gram with respect to the provided word bigram counts. The i@Andary
token was excluded from merging, however, its statistigsadtected the clustering.
The algorithm works as follows. Initially, each word is pdakinto its own class. Then,
the classes are iteratively merged until the desired numbelusters is reached. The
resulting classes are mutually exclusive, i.e., each wemhly mapped into a single
class. In every step of the algorithm, the overall perpleisitminimized by joining the
pair of classes maximizing the mean mutual information gheeht classes

P(C1,Cg)
I = E P log ———————
(e1,c2) e (e1,e2) log P(c1)P(c2)

1)

A crucial parameter of the word clustering algorithm is thgyet number of classes.
The optimal number was empirically estimated on developrdeta by evaluating per-
formance of models with a different granularity. | starteihva 300-class model and
then was gradually decreasing the number of classes by 2ichnigeration. The opti-
mal number of classes was estimated as 100.

| also tested a model that mixes AICs and frequent words bludkg them from
class merging. This approach can be viewed as a form of bdiclwefback off from
words to classes for rare words but keep word identitiesréanfent words. | have tested
various humbers of left out words in combination with indival class granularities, but
have never achieved better results than for the 100 clas#iesovexcluded words.

Parts-of-speech (POS) The AICs reflect word usage in our datasets, but do not form
clusters with a clearly interpretable linguistic meanimgcontrast, part-of-speech (POS)
tags describe grammatical features of words. The POS tagsol&ained using the TnT
tagger [14] which was tailored for conversational Englishe tagger was trained using
hand-labeled data from the Switchboard Treebank corpusciiteve a better match



with speech recognition output used in testing, punctuaditd capitalization informa-
tion was removed before using the data for tagger traini@g [1

Same as for AICs, | also tested mixed models. In contrast &i@®s, mixing of
frequent words with POS of infrequent words yielded an improent. The reason is
that while the automatic clustering algorithm takes intoccamt bigram counts con-
taining the DA boundary token and thus is aware of strong DAndary indicators,
POS classes are purely grammatical. By keeping the frequenas we also keep some
strong boundary indicators. Optimizing the model on thesttgyment data, | ended up
with 500 most frequent words being kept and not replaced b$ ROs.

2.3 Statistical Language Models

Hidden Event Language Models (HELM) In speech recognition as well as in a num-
ber of other language modeling tasks, the role of the languagdel is to predict the
next word given the word history. In contrast, the goal offiamge modeling in our task
is to estimate the probability that an event, such as DA bapndaccurs in the given
word context. Because these events are not explicitly ptésehe speech signal, they
are callechidden. The hidden event LMs (HELMSs) [5] describe the joint proligpif
words and hidden evenf3(W, E') in an HMM. In this case, the HMM hidden variable
is the type of the event (including “no-event”). The statéshe model correspond to
word/event pairs and the observations to words.

The model is trained by explicitly including the DA boundayg a token in the
vocabulary in am-gram LM. | used trigram LMs with modified Kneser-Ney smooth-
ing [15]. In addition, Witten-Bell smoothing was employext tinigrams in class-based
models (both AIC and POS) since the training data for thesgetsalo not contain any
unigram singletons necessary for the Kneser-Ney methodn@®utesting, the model
performs the forward-backward decoding to find the DA bouedagiven the word
sequence. An implementation of the HELM is available in tRéLB/ toolkit [16].

The HELM does not allow a direct combination of multiple krledge sources.
Thus, | trained a separate model for each data stream andrmedrithe models using a
linear interpolation with weights estimated on developht&ia.

Maximum Entropy Models The above described HELM is a generative model. It
means that during training, it does not directly maximize plosterior probabilities of
the correct classes. On the other hand, Maximum Entropy BVi§{17] is a discrimi-
native model which is trained to directly discriminate amgadme possible target classes.
This setup avoids the mismatch between training and usmgnidel in testing. Max-
Ent framework also allows a natural combination of multigh®wledge sources within

a single model, no additional model combination is necgsséaxEnt belongs to the
exponential (or log-linear) family of classifiers, i.e. theatures are combined linearly,
and then used as an exponent

P(ylz) = % exp (Z aifi($>y)> 2

whereZ(z) is a normalization factor ensuring that, p(y|z) = 1.



An important feature of MaxEnt models is that they are pranewverfitting. To
overcome this drawback, | have used smoothing with Gaugsians that penalizes
large weights. For all experiments with MaxEnt, | employkd VegaMtoolkit.> For
each feature group, the used features includedv-gjtams up to trigrams spanning
across or neighboring with the inter-word boundary in gioestl also added a binary
feature indicating whether the word before the boundargiégiical with the following
word. This feature aims to capture word repetitions.

Boosting-based M odels (BoosTexter) Boosting is an aggregating machine learning
method combining many weak learning algorithms to produt@ccurate classifier.
Each weak classifier is built based on the outputs of preitassifiers, focusing on the
samples that were formerly classified incorrectly; the atgm generates weak classi-
fication rules by calling the weak learners repeatedly ifesef rounds. This approach
can generally be combined with any “weak” classifier. In thisk, an algorithm called
BoosTexter [18] was employed.

BoosTexter was initially designed for the task of text categation, employment
of this method for tasks related to DA segmentation was Yigtesented in [9, 19].
The method combines weak classifiers having a basic formef@rel decision trees
(stumps) using confidence-rated predictions. The teseatabt of each tree can check
for the presence or absence ofraigram, or for a value of a continuous or categorical
feature. Same as with MaxEnt, multiple knowledge sourcededntegrated in a single
model. While BoosTexter is known to be powerful when comhgrié@xical and prosodic
features within a single integral model, herein, | aim tdeste how powerful it is when
only a language model is used. In my experiments, the IC&ipieimentation of the
original BoosTexter method was employe@he used textual features had the same
form as in the MaxEnt model.

2.4 Evaluation Metric
I measure DA segmentation performance using a “boundaoy ste” (BER):

BER:I—i-M

%] 3)

wherel denotes the number of false DA boundary insertiddshe number of misses,
and N the number of words in the test set.

3 Experimental Results

Table 1 presents experimental results for all three modéidN, Maxent, and Boos-
Texter), all feature sets (words, AIC, POS, and POS mixetl witrds), and training
and test conditions. The models for segmentation of hunzarstripts were trained on
reference words. For testing on ASR data, | tried to use athand recognized words
for training, and compared performance of the models.

Yhttp://hal 3. name/ megam
2http://code. googl e. com p/i csi boost/



Table 1. DA segmentation results for individual language models, feature setksemper-
imental setups [BER %] (REF=Reference human transcripts, ASR+#atto transcripts,
AlC=Automatically Induced Classes with 100 clusters, POS=Partsededp POSmixed=Parts-
of-speech for infrequent words with 500 most frequent wordg.K€hance” refers to a model
which classifies all test samples as within-DA boundaries.)

M odel Used Features Train/Test Setup
REF/REF||REF/ASR|ASR/ASR
Chance — 15.92% || 13.85% | 13.85%
HELM Words 7.45% 9.41% 9.50%
AIC 7.58% 9.70% 9.78%
POS 10.62% || 12.06% | 11.85%
POSmixed 7.65% 9.57% 9.59%
Words+AIC 7.11% 9.25% 9.18%
Words+POSmixed 7.23% 9.25% 9.31%
Words+AIC+POSmixed 7.02% 9.12% 9.12%
MaxEnt |Words 7.50% 9.38% 9.38%
AIC 7.42% 9.44% 9.37%
POS 10.52% || 11.79% | 11.80%
POSmixed 7.26% 9.23% 9.25%
Words+AIC 7.19% 9.25% 9.21%
Words+POSmixed 7.27% 9.27% 9.25%
Words+AIC+POSmixed 7.15% 9.24% 9.16%
BoosTexter [Words 7.70% 9.52% 9.49%
AIC 7.61% 9.50% 9.53%
POS 10.87% || 12.03% | 11.13%
POSmixed 7.68% 9.45% 9.46%
Words+AIC 7.50% 9.42% 9.40%
Words+POSmixed 7.66% 9.44% 9.45%
Words+AIC+POSmixedl 7.46% 9.40% 9.40%

In reference conditions, the best models based on a sirafieréegroup were Max-
Ent for mixed POS and AICs, and HELM for words. On the otherdhdhe models
only using POS information performed poorly. A compariséfP®S and POSmixed
shows that POS features are not sufficient indicators of Dénlaries and information
provided by some frequent cue words is necessary to achigigéestory performance.
In terms of a modeling approach comparison, it is intergstinobserve that the gener-
ative HELM model is better in dealing with word informatiornile the discriminative
MaxEnt model better captures class information (both Al@ R@Smixed). The Boos-
Texter model always performed worse than the other two nsodel

The results also indicate that an improvement is achieveshwiord information
is combined with class information. The best resBHR = 7.02%) is obtained when
all three information sources are combined in the HELM moileé improvement over
the baseline word-based model is statistically signifieapt < 10~23 using the Sign
test. The difference between HELM and Boostexter is sigaifiatp < 10~'3, and the
difference between HELM and MaxEntat< 0.02. Of the other two models, MaxEnt
outperformed BoosTexteBBER : 7.15% vs. 7.46%) which is significant at< 10°.



As well as in reference conditions, MaxEnt for mixed POS wees best single
model in ASR-based tests. Unlike reference conditions,Bféaxvas also the best model
for capturing word information. The combination of all terknowledge sources was
helpful once again, the best performing combined model walsMi(BER = 9.12%)
while BoosTexter was the worst. Both HELM and MaxEnt showgai$icant outperfor-
mance of the BoosTexter model & 10~4). In contrast, the difference between HELM
and MaxEnt is not significant.

A comparison of models trained on clean and erroneous datasstihe following.
While for HELM and BoosTexter the performance was almost émees for the MaxEnt
model, | got better results when training on automatic tépss. However, even for the
MaxEnt model, the difference iBE R is only significant ap < 0.08.

4 Summary and Conclusions

| have explored the use of textual information for DA bounddetection in both

human- and ASR-generated transcripts of multiparty mgstihhave analyzed contri-
butions from word identities, parts-of-speech, and autarally induced word classes,
and compared three statistical modeling approaches — HEa®Ent, and BoosTexter.

Among others, the results indicate that POS informatiomiy delpful when the
most frequent words are kept and not replaced by POS taghd8orttest conditions,
the best results were achieved when all information sourege combined. The best
performing combined model was HELM, achievidgF R = 7.02% in reference and
BER = 9.12% in ASR conditions. On the other hand, the boosting-basedeimeas
always the worst. While this model is powerful when combingrgsodic and lexical
information, it does not represent a good approach whentertyal features are used
and prosodic information is not accessible.

A comparison of models trained on clean and ASR data shovisfdhaone of
the models, significant improvement is achieved by traimindASR. The HELM and
BoosTexter models perform approximately the same for haihihg setups, and the
modest gain achieved by the ASR-trained MaxEnt model istadistically significant.
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