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Abstract. Young infants learn words by detecting patterns in the speech
signal and by associating these patterns to stimuli provided by non-
speech modalities (such as vision). In this paper, we discuss a computa-
tional model that is able to detect and build word-like representations
on the basis of multimodal input data. Learning of words (and word-
like entities) takes place within a communicative loop between a ’carer’
and the ’learner’. Experiments carried out on three different European
languages (Finnish, Swedish, and Dutch) show that a robust word rep-
resentation can be learned in using approximately 50 acoustic tokens
(examples) of that word. The model is inspired by the memory structure
that is assumed functional for human speech processing.

Key words: language acquisition, word representation, learning

1 Introduction

Language processing is one of the most complex cognitive skills of humans. In-
fants seem to acquire this skill effortlessly, but the large body of literature on
cognition, language and memory shows that we only begin to understand the
processes involved. Understanding speech is tantamount to mapping continuous
speech signals to discrete concepts, which we are used to think of as a sequence
of word-like elements. Infants learn to discover word-like units in speech with-
out prior knowledge about lexical identities and despite the lack of clear word
boundary cues in the signal.

In this paper we propose a computational model of word discovery that is
able to learn new words and that is a plausible analogy of the way in which
infants acquire their native language. Specifically, the model should explain how
babies can learn new words by using already stored representations that are
continuously adapted on the basis of new speech input.

Strangely enough, today automatic speech recognizers are the most elaborate
computational model of speech processing. Contrary to virtually all psycholin-
guistic models ASR is able to handle the entire chain from speech signal to a
sequence of words. However, current ASR algorithms certainly cannot claim any
cognitive or ecological plausibility. At the same time, ASR systems perform sub-
stantially worse than humans [8] [13]. It is widely assumed that for closing the
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performance gap new ASR training and matching paradigms must be explored,
preferably inspired by cognitive models of human speech processing and language
acquisition. In this direction, several attempts have been made, e.g. learning of
words [12], language acquisition [15], and incremental learning [9]. However, none
of the models proposed in the literature are able to learn, adapt and generalize
patterns quickly and effortlessly to recognize new variants of known words and
novel words [5] [16].

In this paper, we propose an embodied computational model for language
acquisition that has similarities with the Cross-channel Early Lexical Learning
(CELL) model [12], but differs from CELL in that it does not assume that infants
represent speech in the form of a lattice of pre-defined phonemes. The current
model avoids the use of pre-existing representation for decoding the information
in the input signals. Instead, the representations in the model emerge from the
multimodal stimuli that are presented to the model.

The structure of this paper is as follows. In the next section, we will discuss
the main components of the proposed computational model and the overall archi-
tecture of the ACORNS model, while the third section deals with experiments.
The final section contains a discussion and our conclusions.

2 An embodied model of word discovery

The (partially) embodied model of language acquisition and speech communica-
tion that we are developing in the FET project ACORNS [2] will contain four
sub-modules, viz. sensory front-end processing, memory access and organization,
information discovery and learning, and interaction in a realistic environment.
Front-end processing: In the first step, the computational model converts sen-
sory input signals into an internal representation which is used in subsequent sub-
modules for learning new patterns and for recognizing known patterns. Front-end
processing may include the conversion of input signals into representation such
as the MFCCs which are used in conventional ASR.
Memory organization and access: Cognitive theories of memory distinguish
at least three types of memory: a sensory store in which all information is cap-
tured only for a very short time (in the order of 2 seconds), a short-term memory
(also called working memory) that holds representations of sensory inputs and
serves as a processing system that is able to compare new sensory inputs to pre-
viously learned patterns that are retrieved from a long-term memory. The model
makes use of these types of memory and stores, retrieves and updates internal
representations. At the same time this memory model supports the Memory-
Prediction Theory, which holds that intelligent action is based on memorized
perception-action loops.
Information discovery and integration: In the Memory-Prediction Theory
it is assumed that multilayered representations are formed in which structure
at a lower level map to structures at a higher level (abstraction). In the experi-
ments reported in this paper the abstraction method is based on Non-negative
Matrix Factorization (NMF) [7] [4] [14]. NMF is member of a family of computa-
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tional approaches that represent data in a (large) matrix and use linear algebra
to decompose this matrix into smaller matrices. These smaller matrices contain
the information in the original matrix in a more condensed and abstract form.
There are close similarities with Latent Semantic Analysis, e.g. [1]. By using
NMF processes such as abstractions receive a clear interpretation in terms of
linear algebraic operations. NMF is a powerful tool for discovering structure in
speech data [14]. In later stages of the ACORNS project we will also experiment
with other structure discovery algorithms.
Interaction and communication: In order to simulate a learning environ-
ment, the learner is endowed with the intention to learn words in order to max-
imize the appreciation it receives from the carer. This is done by translating the
appreciation from the carer into a strive for correctly responding to the carer,
which in turn is interpreted as the optimization of the interpretation of the
stimulus presented by the carer. This optimization involves the Kullback-Leibler
distance between the input and output of NMF.

2.1 Architecture

The ACORNS architecture (cf. Fig. 1) is based on recent psycholinguistic re-
search in speech and language processing [6].

Fig. 1. Global architecture of the ACORNS system. Multimodal input is put into the
sensory store. The sensory store, short-term/working memory and long term memory
have different decay times. Two feedback loops are foreseen: one internal, governing
the intrinsic processes and one external, in which the carer provides feedback to the
model.

The learner receives multimodal input consisting of an audio stream (contain-
ing infant-directed or adult-directed speech) in combination with an abstraction
of the visual modality (a visual ’tag’). This tag is provided in synchrony with
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the speech signal. In this way, we simulate the presence of a visual sensory pro-
cessing system. It is up to the learning agent to learn word-like entities from the
repetitions in the audio signal and from cross-modally reoccurring systematic
patterning.
In its current implementation, the model makes use of a simplified version of
attention and rehearsal mechanisms. The attention and rehearsal mechanisms
operate on representations stored in memory, and transform stored representa-
tions into possibly more abstract representations. We interpret attention as a
process that reduces the part of the input stream that must be analyzed and is
therefore indispensable to keep the computation load manageable, to reduce the
storage into short-term (working) memory, and to reduce the ambiguity to be
resolved during the search.

3 Experiments

A series of learning experiments has been conducted, inspired by phenomena
observed in literature on language acquisition by young infants. In the first ex-
periment, we have investigated the effect of a new speaker on the adaptation of
already trained word representations. The arguments in favor of episodic repre-
sentations used in psycholinguistics [3] suggest that different representation may
be formed for different speakers. That means that representations that conflate
episodes pertaining to several speakers corresponding to the same semantic ob-
ject may only form on higher levels in the hierarchy. Another experiment deals
with the effect of a new language (L2) on word representations that are trained
on L1.

3.1 Material

For training and testing, three databases are available, in Dutch (NL), Finnish
(FIN), and Swedish (SW). For each language we have utterances from 2 male
and 2 female speakers. Each speaker utters 1000 sentences in two speech modes
(adult-directed, ADS, and infant-directed, IDS), making a total of 2000 utter-
ances per speaker. The set of 1000 sentences contains 10 repetitions of combina-
tions of about 10 target words and 10 carrier phrases. (The content of the three
databases differs in details that are not relevant for this discussion). The set of
target words has primarily been chosen on the basis of literature on language
acquisition.
For each utterance, the databases also contains meta-information in the form
of a ’tag’. The tag represents abstract information and idealizes the input from
other modalities. It translates to the presence or absence of vocabulary items in
the audio stream. For example, the tag ’car’ means that an object ’car’ is re-
ferred to in the speech signal (and not that the word ’car’ is pronounced). In the
database, there is no information available about the words, phonetic content
and position of words in the utterances.
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Fig. 2. (Dutch, speaker-blocked). Multimodal input data are presented blocked,
speaker-by-speaker. Each time a new speaker starts (around number of tokens = 0,
2000, 4000, 6000), a drop in performance can be seen. Within about 1000 tokens (that
is, approximately 100 tokens per word) the performance is back on its previous level.
The decrease in performance is mainly due to different voice and speech characteristics
which require an adaptation by the learning model.

3.2 Results

The result of the experiments are shown in figures in which the horizontal axis
represents the number of utterances (tokens) presented during training. The
vertical axis represents the accuracy of the learners replies. The accuracy is
defined as the number of correct responses (defined by comparing the learners
reply with the ground truth in the multimodal stimulus by the carer), divided
by the total number of replies.

4 Discussion and conclusion

The computational model presented in this paper shows that learning relations
between speech fragments and higher-order concepts can be accomplished with
a general purpose pattern discovery technique. The performance of the learner
depends on a number of factors - such as the ordering of the data (stimuli), the
blocking per speaker, speaker changes, and multi-lingual training.

The learner is able to learn a limited set of concepts and classify a new stim-
ulus in terms of one of these concepts. The learner needs a number of tokens
before it can make a reliable representation. During the learning, it is able to
gradually improve the quality of its internal representations, by minimizing the
Kullback-Leibler distance between the observed data and the internal represen-
tations.
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Fig. 3. (multilingual, speaker-blocked). Results of a multilingual experiment. First, two
Dutch speakers are presented, then two Swedish speakers. The speakers are NL female,
NL male, SWE female and SWE male. In the end the model is able to recognize Dutch
and Swedish target words. The solid line represents the case were tags are language-
dependent (word-based); the dashed line represents the ecologically more plausible case
in which the tags are language-independent (semantic).
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Fig. 4. The learner is first exposed to input from one Dutch speaker (the primary carer).
After 2000 utterances from the primary carer, three other persons (2 males, 1 female)
start interacting with the learner. The utterances from the new speakers are presented
in random order. At first, the learner has difficulties adapting to new speakers, but it
catches up after some 500 examples. The solid line indicates the accuracy of the 1-best
reply of the learner; the dashed line shows the accuracy of the 2-best replies.
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A second characteristic of the learner’s behavior is the adjustment to a new
speaker. As soon as a new speaker starts interacting with the learner, the in-
ternal representations are adapted to accommodate the speaker characteristics.
Moreover, the learner reuses already stored representations whenever possible.
This is particularly clear in the multilingual experiment based on the semantic
tags (fig 4).
The speech database contains infant- and adult directed speech. This distinction
is now not used, but other experiments have shown that the learner is able to
distinguish these styles.
The computational model illustrates the relevance of various issues that are
known to play a role in (models of) human speech processing. One of these
issues is how words get activated (and to what extent), the second with the
way how competition may act during the word search. In the current model,
the activation of lexical items is separated from the actual competition. This
is similar to Shortlist, one of the widely used computational models for human
word processing [11]. Shortlist is a two-stage model in which activation of words
by incoming speech input is separated from competition between the activated
words. Other than Shortlist, however, the current model plays out the entire
lexicon, while in Shortlist the network in which competition plays a role is con-
structed from only those words supported by the input. In the current model,
competition is not explicitly implemented. Instead, it emerges from the paral-
lel search among multiple candidates. This is in line with earlier findings e.g.
obtained with another model of human word processing TRACE [10]. TRACE
showed that competition is not a necessary consequence of parallel processing.

One of the research lines that will be pursued in the near future deals with
the mechanisms that underly the emergence of words as a function of utterance-
based training. In a genuine communicative setting, the learner must be able to
learn not only from the presented multimodal stimuli, but also from the feedback
that she receives from the carer. This will open the possibility of investigating
the effect of corrective feedback on the learning process in more detail than is
possible now. This will both enhance the ecological and cognitive plausibility of
the computational model.

The second research line that will be exploited is also directly related to the
cognitive plausibility. This research line deals with the use of semantically related
tags that are presented to the learner in combination with the speech signal. In
the current interaction model, the tags represent high-level references to objects
that the learner receives and processes with 100 percent certainty. We aim at a
model of a learner that receives multimodal input (speech and semantic tags)
in such a way that the construction and adaptation of new representations is
entirely controlled by the learner’s internal learning mechanisms.
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